ENEE 302H
Digital Electronics

CMOS Memories and Systems: Part I, DRAM Systems

Prof. Bruce Jacob
blj@ece.umd.edu

Credit where credit is due:
Overview

DRAM:
- DRAM systems
- DRAM circuits

SRAM:
- SRAM systems
- SRAM circuits
- Register files
DRAM

Switching element (transistor)

Storage element (capacitor)

Word Line

Bit Line

Dual In-line Memory Module (DIMM)

(printed circuit board w/ DRAM chips on it)
The Memory System

... and DRAM’s place within it.

(typical PC-style desktop system)
DRAM-System Closeup

Traditional “JEDEC-Style” DRAM system
Memory Request Overview

Part A: Searching on-chip for data

- Fetch
- Decode
- Exec
- Mem
- WB

Stages of instruction execution

Part B: Going off-chip for data

- Processor Core
- DTLB
- L1 cache
- BIU (Bus Interface Unit)
- L2 cache
- memory request scheduling
- physical to memory address mapping
- read data buffer
- physical to memory address translation (DTLB access)

Proceeding through the memory hierarchy in a modern processor

** Steps not required for some processor/system controllers. Protocol-dependent.

Progression of a Memory Read Transaction Request Through Memory System
Access-Protocol Basics

DRAM ORGANIZATION

- Bit Line
- Word Line
- Storage element (capacitor)
- Switching element

DRAM Components:
- Column Decoder
- Sense Amps
- Data In/Out Buffers
- Memory Array
- Row Decoder...
Access-Protocol Basics

BUS TRANSMISSION

CPU MEMORY CONTROLLER

DRAM
Column Decoder
Sense Amps
... Bit Lines...

Row Decoder
Memory Array
Access-Protocol Basics

[PRECHARGE and] ROW ACCESS

AKA: OPEN a DRAM Page/Row
or
ACT (Activate a DRAM Page/Row)
or
RAS (Row Address Strobe)
Access-Protocol Basics

COLUMN ACCESS

READ Command
or
CAS: Column Address Strobe
Access-Protocol Basics

DATA TRANSFER

CPU
MEMORY CONTROLLER
BUS

MEMORY
Array

... with optional additional
CAS: Column Address Strobe

Data Out

Column Decoder
Sense Amps

Data In/Out Buffers

... Bit Lines...

... with optional additional
CAS: Column Address Strobe

note: page mode enables overlap with CAS
Access-Protocol Basics

BUS TRANSMISSION

CPU ← MEMORIES

BUS

MEMORY CONTROLLER

DRAM

Column Decoder

Sense Amps

... Bit Lines...

Row Decoder

... Word Lines...

Memory Array

Data In/Out Buffers
Access-Protocol Basics

A: Transaction request may be delayed in Queue
B: Transaction request sent to Memory Controller
C: Transaction converted to Command Sequences
 (may be queued)
D: Command/s Sent to DRAM
E\textsubscript{1}: Requires only a \textbf{CAS} or
E\textsubscript{2}: Requires \textbf{RAS} + \textbf{CAS} or
E\textsubscript{3}: Requires \textbf{PRE} + \textbf{RAS} + \textbf{CAS}
F: Transaction sent back to CPU

“DRAM Latency” = A + B + C + D + E + F
Access-Protocol Basics

Read Timing for Conventional DRAM
Access-Protocol Basics

Read Timing for Synchronous DRAM

(RAS + CAS + OE ... == Command Bus)
DRAM Circuit Basics

“Row” Defined

Row Size: 8 Kb @ 256 Mb SDRAM node
4 Kb @ 256 Mb RDRAM node
DRAM Circuit Basics

Sense Amplifier I: 6 rows shown

Sense and Amplify
DRAM Circuit Basics

Sense Amplifier I: 6 rows shown

Vcc (logic 1) Gnd (logic 0)
DRAM Circuit Basics

Sense Amplifier II: Precharged

- Precharged to $V_{cc}/2$
- Sense and Amplify

V_{cc} (logic 1), Gnd (logic 0), $V_{cc}/2$
DRAM Circuit Basics

Sense Amplifier III: Destructive Read

- **Vcc** (logic 1)
- **Gnd** (logic 0)
- **Vcc/2**

1. **Wordline Driven**
2. **Sense and Amplify**
DRAM Circuit Basics

“Column” Defined

Column: Smallest addressable quantity of DRAM on chip

SDRAM*: column size == chip data bus width (4, 8, 16, 32)
RDRAM: column size != chip data bus width (128 bit fixed)

SDRAM*: get n columns per access. n = (1, 2, 4, 8)
RDRAM: get 1 column per access.

* SDRAM means SDRAM and variants. i.e. DDR SDRAM
DRAM Architecture Basics

PHYSICAL ORGANIZATION

This is per bank ...
Typical DRAMs have 2+ banks
DRAM “Speed” Part I

How fast can I move data from DRAM cell to sense amp?

t_{RCD}

RCD (Row Command Delay)
DRAM “Speed” Part II

How fast can I get data out of sense amps back into memory controller?

t_{CAS} aka t_{CASL} aka t_{CL}

CAS: Column Address Strobe
CASL: Column Address Strobe Latency
CL: Column Address Strobe Latency
DRAM “Speed” Part III

How fast can I move data from DRAM cell into memory controller?

$t_{RAC} = t_{RCD} + t_{CAS}$

RAC (Random Access Delay)
How fast can I precharge DRAM array so I can engage another RAS?

RP (Row Precharge Delay)
DRAM “Speed” Part V

How fast can I read data from two different rows?

\[t_{RC} = t_{RAS} + t_{RP} \]

RC (Row Cycle Time)
DRAM “Speed” Summary I

What do I care about?

t_{RCD}
t_{CAS}
t_{RP}
$t_{RC} = t_{RAS} + t_{RP}$
$t_{RAC} = t_{RCD} + t_{CAS}$

- t_{RCD}: Row Cycle Time
- t_{CAS}: Column Address Strobe
- t_{RP}: Row Precharge Delay
- t_{RC}: Row Command Delay
- t_{RAC}: Random Access Delay

Seen in ads.
Easy to explain
Easy to sell

Embedded systems designers
DRAM manufacturers

Computer Architect:
Latency bound code
i.e. linked list traversal

RAS: Row Address Strobe
CAS: Column Address Strobe
RCD: Row Command Delay
RAC: Random Access Delay
RP: Row Precharge Delay
RC: Row Cycle Time
DRAM “Speed” Summary II

<table>
<thead>
<tr>
<th>DRAM Type</th>
<th>Frequency (per chip)</th>
<th>Data Bus Width (per chip)</th>
<th>Peak Data Bandwidth (per Chip)</th>
<th>Random Access Time (t_{RAC})</th>
<th>Row Cycle Time (t_{RC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC133 SDRAM</td>
<td>133</td>
<td>16</td>
<td>200 MB/s</td>
<td>45 ns</td>
<td>60 ns</td>
</tr>
<tr>
<td>DDR 266</td>
<td>133 * 2</td>
<td>16</td>
<td>532 MB/s</td>
<td>45 ns</td>
<td>60 ns</td>
</tr>
<tr>
<td>PC800 RDRAM</td>
<td>400 * 2</td>
<td>16</td>
<td>1.6 GB/s</td>
<td>60 ns</td>
<td>70 ns</td>
</tr>
<tr>
<td>FCRAM</td>
<td>200 * 2</td>
<td>16</td>
<td>0.8 GB/s</td>
<td>25 ns</td>
<td>25 ns</td>
</tr>
<tr>
<td>RLDRAM</td>
<td>300 * 2</td>
<td>32</td>
<td>2.4 GB/s</td>
<td>25 ns</td>
<td>25 ns</td>
</tr>
</tbody>
</table>

Data: Dec. 2002

- DRAM is “slow”
 - But doesn’t have to be $t_{RC} < 10$ns achievable
- Higher die cost → Not adopted in standard
- Not commodity → Expensive
Signal Propagation

Ideal Transmission Line
\[\sim 0.66c = 20 \text{ cm/ns} \]
PC Board + Module Connectors + Varying Electrical Loads
= Rather non-Ideal Transmission Line
DRAM Interface: Protocol

The Digital Fantasy

Pretend that the world looks like this

But...
DRAM Interface: Signals

FCRAM side

Controller side

VDDQ(Pad)

VSSQ(Pad)

DQS (Pin)

DQ0-15 (Pin)

skew=158psec

skew=102psec

*Toshiba Presentation, Denali MemCon 2002
Interface: Clocking Issues

Figure 1: Sliding Time

Figure 2: H Tree?

What Kind of Clocking System?
Path Length Differential

High Frequency AND Wide Parallel Busses are Difficult to Implement
Timing Variations

How many DIMMs in System?
How many devices on each DIMM?
Who built the memory module?

Infinite variations on timing!
DRAM System Topology Determines Electrical Loading Conditions and Signal Propagation Lengths
SDRAM Topology Example

Single Channel SDRAM Controller

Command & Address

Data bus (64 bits)

(16 bits)

x16 DRAM Chip

x16 DRAM Chip

x16 DRAM Chip

x16 DRAM Chip

Loading Imbalance
SDRAM Topology Example II

(Same topology, different drawing, a little more detail)
RDRAM Topology Example

Packets traveling down Parallel Paths. Skew is minimal by design.

clock turns around
I/O - Differential Pair

Single Ended Transmission Line

Differential Pair Transmission Line

Increase Rate of bits/s/pin?
Cost Per Pin?
Pin Count?
I/O - Multi Level Logic

Increase Rate of bits/s/pin
Packaging

DIP
“good old days”

SOJ
Small Outline J-lead

TSOP
Thin Small Outline Package

LQFP
Low Profile Quad Flat Package

FBGA
Fine Ball Grid Array

Features	Target Specification
Package | FBGA | LQFP
Speed | 800MBps | 550Mbps
Vdd/Vddq | 2.5V/2.5V (1.8V)
Interface | SSTL_2
Row Cycle Time t_{RC} | 35ns

Memory Roadmap for Hynix NetDDR II
Access Protocol

Single Cycle Command

Multiple Cycle Command
Access Protocol (r/r)

Consecutive Cache Line Read Requests to Same DRAM Row

- a = Active (open page)
- r = Read (Column Read)
- d = Data (Data chunk)
Access Protocol (r/w)

One Datapath - Two Commands

> Data In/Out Buffers

© Column Decoder

© Sense Amps

Case 1: Read Following a Write Command to Different DRAM Devices

Case 2: Read Following a Write Command to Same DRAM Device

Soln: Delay Data of Write Command to match Read Latency
Address Mapping

- Physical Address
- Device Id
- Row Addr
- Col Addr
- Bank Id

Access Distribution for Temp Control
Avoid Bank Conflicts
Access Reordering for performance
Example: Bank Conflicts

Multiple Banks to Reduce Access Conflicts

Read 05AE5700 Device id 3, Row id 266, Bank id 0
Read 023BB880 Device id 3, Row id 1BA, Bank id 0
Read 05AE5780 Device id 3, Row id 266, Bank id 0
Read 00CBA2C0 Device id 3, Row id 052, Bank id 1

More Banks per Chip == Performance == Logic Overhead
Example: Access Reordering

1. Read 05AE5700 → Device id 3, Row id 266, Bank id 0
2. Read 023BB880 → Device id 3, Row id 1BA, Bank id 0
3. Read 05AE5780 → Device id 3, Row id 266, Bank id 0
4. Read 00CBA2C0 → Device id 1, Row id 052, Bank id 1

Act = Activate Page (Data moved from DRAM cells to row buffer)
Read = Read Data (Data moved from row buffer to memory controller)
Prec = Precharge (close page/evict data in row buffer/sense amp)
Technology Roadmap (ITRS)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi Generation (nm)</td>
<td>90</td>
<td>65</td>
<td>45</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>CPU MHz</td>
<td>3990</td>
<td>6740</td>
<td>12000</td>
<td>19000</td>
<td>29000</td>
</tr>
<tr>
<td>MLogicTransistors/cm²</td>
<td>77.2</td>
<td>154.3</td>
<td>309</td>
<td>617</td>
<td>1235</td>
</tr>
<tr>
<td>High Perf chip pin count</td>
<td>2263</td>
<td>3012</td>
<td>4009</td>
<td>5335</td>
<td>7100</td>
</tr>
<tr>
<td>High Performance chip cost (cents/pin)</td>
<td>1.88</td>
<td>1.61</td>
<td>1.68</td>
<td>1.44</td>
<td>1.22</td>
</tr>
<tr>
<td>Memory pin cost (cents/pin)</td>
<td>0.34 - 1.39</td>
<td>0.27 - 0.84</td>
<td>0.22 - 0.34</td>
<td>0.19 - 0.39</td>
<td>0.19 - 0.33</td>
</tr>
<tr>
<td>Memory pin count</td>
<td>48-160</td>
<td>48-160</td>
<td>62-208</td>
<td>81-270</td>
<td>105-351</td>
</tr>
</tbody>
</table>

Trend: Free Transistors & Costly Interconnects
Choices for Future

- **Direct Connect**
 - Custom DRAM: Highest Bandwidth + Low Latency

- **Direct Connect**
 - semi-comm. DRAM: High Bandwidth + Low/Moderate Latency

- **Direct Connect**
 - Commodity DRAM: Low Bandwidth + Low Latency

- **Indirect Connection**
 - Highest Bandwidth
 - Highest Latency
 - Inexpensive DRAM
DRAM Evolutionary Tree

- Conventional DRAM
- (Mostly) Structural Modifications
 - Targeting Throughput
- Structural Modifications
 - Targeting Latency
- MOSYS
- FCRAM
- VCDRAM
- ESDRAM

- Interface Modifications
 - Targeting Throughput
- Rambus, DDR/2
- Future Trends
DRAM Evolution

Read Timing for Conventional DRAM

- Row Access
- Column Access
- Transfer Overlap
- Data Transfer

The diagram illustrates the read timing for conventional DRAM, showing the sequence of Row Access, Column Access, and Data Transfer with overlapping operations.
DRAM Evolution

Read Timing for Fast Page Mode
DRAM Evolution

Read Timing for Extended Data Out

- Row Address
- Column Address
- Dataout
- Valid Dataout
- RAS
- CAS
- DQ

Colors:
- Row Access
- Column Access
- Transfer Overlap
- Data Transfer
DRAM Evolution

Read Timing for Burst EDO

Row Access
Column Access
Transfer Overlap
Data Transfer

RAS
CAS
Address
Row Address
Column Address
DQ
Valid Data
Valid Data
Valid Data
Valid Data
DRAM Evolution

Read Timing for Pipeline Burst EDO

Row Access
Column Access
Transfer Overlap
Data Transfer

RAS
CAS
Address
Row Address
Column Address
DQ
Valid Data
Valid Data
Valid Data
Valid Data
DRAM Evolution

Read Timing for Synchronous DRAM

(RAS + CAS + OE ... == Command Bus)
DRAM Evolution

Inter-Row Read Timing for ESDRAM

Regular CAS-2 SDRAM, R/R to same bank

ESDRAM, R/R to same bank
DRAM Evolution

Write-Around in ESDRAM

Regular CAS-2 SDRAM, R/W/R to same bank, rows 0/1/0

ESDRAM, R/W/R to same bank, rows 0/1/0

(can second READ be this aggressive?)
DRAM Evolution

Internal Structure of Virtual Channel

Segment cache is software-managed, reduces energy
DRAM Evolution

Internal Structure of Fast Cycle RAM

SDRAM

8M Array (8Kr x 1Kb)

Row Decoder

Sense Amps

13 bits

$R_{CD} = 15$ns
(two clocks)

FCRAM

8M Array (?

Row Decoder

Sense Amps

15 bits

$R_{CD} = 5$ns
(one clock)

Reduces access time and energy/access
DRAM Evolution

Internal Structure of MoSys 1T-SRAM

- Bank Select
- Auto Refresh
- DQs

addr