ENEE 302H
Digital Electronics

Some Parasitics & How to Deal with Them

Prof. Bruce Jacob
blj@eng.umd.edu

Credit where credit is due:
Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin & Vijay’s CSE477 slides (PSU), Schmit & Strojwas’s 18-322 slides (CMU), Dally’s EE273 slides (Stanford), Wolf’s slides for Modern VLSI Design, and/or Rabaey’s slides (UCB).
Overview

- *Circuit Integrity* — Project-review presentation
- Capacitive Parasitics
- Resistive Parasitics
- Inductive Parasitics
- Advanced Interconnect Techniques
RF and Circuit Integrity in Digital Systems

Prof. Bruce Jacob
Electrical & Computer Engineering
University of Maryland
blj@umd.edu
Overview

How Digital Circuits & Systems Are Built, and Some Ways in Which They Fail

- Components of Digital Systems
- RF- and Temperature-Related Vulnerabilities
 - Data Inputs and Networks
 - Clock Inputs and Networks
 - Power/Ground Inputs and Networks
- Circuit Design: Our Device-Under-Test

Recent Work

- Comparison of Vulnerability: DUT’s Clock/Data Inputs
- [DUT: test chip fabricated in AMI’s 0.5μm process]
- Custom Chip Design & Fabrication for ESD Studies

Future Work
Digital Systems: A Primer

Simple Digital **Circuit:**

Simple Digital **System:**

- **VDD pad**
- **Data pad**
- **Clk pad**
- **GND pad**
- **I/O Buffers**
- **Combinational Logic**
- **State Storage**
Digital Systems: A Primer

Components of Digital Systems

Most systems are pipelined:

- Multiple logic blocks operating simultaneously
- Highly synchronous: lock-step operation
Digital Systems: A Primer

Components of Digital Systems

Groundplanes play significant role:

- Provide references for input amplifiers
- Allow CMOS circuits to behave as signal repeaters (with high input impedance, low output impedance)
I/O Pads play significant role:

- Enormous capacitances, require enormous gates to drive them (and the pins & off-chip traces)
- Big gates => big currents; fast clocks => small dt ... VDD/VSS leads have inductance => Ldi/dt noise
Digital Systems: A Primer

Components of Digital Systems

At the bottom are ‘just’ a bunch of MOSFETs
Digital Systems: A Primer

Components of Digital Systems

- At the bottom are ‘just’ a bunch of MOSFETs
 - Each register shown holds one bit
 - Each I/O pad requires its own ESD, receivers, & drivers
 - Logic blocks can be arbitrarily large/complex
Circuit Integrity: *Data*

How To Make This System Fail …

- RF that makes it this far (past initial I/O buffers) has corrupted the system: only solution is to use higher level bus- or packet-encoding techniques
- Corrupted data can lead to incorrect results, software crash/reboot, transmission to remote nodes, etc.
Sequential Circuits Primer

SET-UP and HOLD times

- Storage elements (latches, registers) expect data and clock edges to be timed perfectly (e.g., within 20ps)
Sequential Circuits Primer

SET-UP and HOLD time, metastability

- Data must not transition near clock edges
- *Corollary*: Perturbations on clock network (e.g., noise spikes, thermal-related delays) achieve same results
Circuit Integrity: *Clock*

How To Make This System Fail …

- RF that makes it this far (past initial I/O buffers) has corrupted the system: packet-encoding techniques that might detect data corruption are inapplicable.
- Unwanted clock edges likely result in metastability, lead to incorrect results, most likely system crash.
Circuit Integrity: Clock

Maximum clock-frequency calculations

- Critical path determines minimum clock period (in this example: 800ps + register overhead + skew/etc. = 1000ps total, or 1GHz [as opposed to 750ps/1.33GHz])
Circuit Integrity: Clock

How To Make This System Fail …

- Thermal gradients in synchronous systems disastrous (consider tight timing margins in GHz systems)

Hot-Spot

This portion of the system logic heats up, experiences more delay than other areas

Logic delay = 800ps = 550ps
Circuit Integrity: V_{DD} & V_{SS}

How To Make This System Fail …

- Localized (or global) ripples on groundplanes can cause logic to misbehave, inputs to be misinterpreted (e.g. suppose Data/Clk = 1, $V > V_{IL}$ on gate of 2nd INV)
- Causes same effects as data/clock corruption
Circuit Integrity

DISTINGUISHING CHARACTERISTICS of the NETWORKS in DIGITAL SYSTEMS:

- **CLK**: Only Edges Matter
- **DATA**: Both Timing and Levels Matter
- **VDD/GND**: Even Small Changes in Level (e.g., 5–10%) Matter

CLK/DATA: Enter Via ESD Protection

VDD/GND: 1/2 ESD (shunts one to other)
Our Research Question

Comparing CLK and DATA inputs, which is more important:

- The distinguishing characteristics of the way those inputs will be used in the digital system or circuit?
- The levels and frequencies of injected RF?

Our Device Under Test (counter):

Just about simplest possible digital system

[Last Year’s Results: evaluated vulnerability of CLK input]
Our Device Under Test

8-bit Ripple Counter, Chip Built via MOSIS
Full-Custom Design (except for pad frame)
Fabricated in AMI’s 0.5µm Technology
3.3V power supply
Points of Interest:

- Digital system built from complementary gate designs (high input impedance, low output impedance).
- CLK only driving MUX, one DFF (see previous slide).
- => CLK and CLKSEL see virtually identical loads.
Experimental RF Set-Up

Power Amp 33dB at 1GHz
Freq 800MHz – 4.2Ghz with 1.2W max power
Test Board

CLK & CLKSEL

Counter Output
Test Scenarios

[Diagram showing test scenarios with labeled components such as VDD, VSS, CLK, CLKSEL, and internal oscillator.]
CLK vs. CLKSEL Inputs

Power-v-Freq. required to cause incorrect behavior (state change in digital logic)

Power Triggering Levels

- Injected Power (CLK)
- Injected Power (CLKSEL)
Input Impedance

CLK pin

CLKSEL pin

CLK pin, old set-up
Recent Work: ESD

ESD Test Chip I (die photo) for Rodgers & Firestone

ESD Test Chip II (layout) for Rodgers & Firestone

Custom-designed on-chip pads to accommodate input probes

Designed & fabricated two chips (one on right just back from fab) ... allow probing at various points between PAD and internals
Future Work

New Test Structures (e.g., to emulate larger designs, differentiate between CLK & DATA)
Future Work

Using same board, test the power rail

Design new board that differentiates GND input pin from IC’s ground plane, to test the ground pin’s susceptibility
Acknowledgments, etc.

GRAD STUDENTS:
Vincent Chan, Cagdas Dirik, Samuel Rodriguez, Hongxia Wang

INVALUABLE AID:
Todd Firestone and John Rodgers

FOR MORE INFO:
http://www.ece.umd.edu/~blj/integrity
blj@umd.edu
Capacitive Parasitics

CROSS TALK

Largely capacitive at current switching speeds ... inductive coupling is major concern in I/O of mixed signal circuits (e.g. RF).

Translation: *pay attention to the cut-off frequency.*

In general, $V_{\text{in}} \neq 0$
Capacitive Coupling

Influenced by *impedance* of coupled line:
- Wire Y is **driven**: ΔV_y is transient
- Wire Y is **floating**: ΔV_y is *persistent*

Floating:

\[
\Delta V_y = \Delta V_x \cdot \frac{C_{xy}}{C_y + C_{xy}}
\]
Capacitive Coupling

Influenced by *impedance* of coupled line:

- Wire Y is **driven**: ΔV_y is **transient**
- Wire Y is **floating**: ΔV_y is **persistent**

Driven:

\[
\Delta V_y = \Delta V_x \cdot \frac{Z_y \cdot C_{xy}}{t_{rise}}
\]
Floating-Coupling Example

X is (logically unrelated) wire crossing over circuit in the metal-1 layer. Because this is a dynamic circuit, the output is floating when PDN=>false.

Example assumes capacitance to poly wire Y (gate for inverter); node Y is precharged during PRE stage to 2.5V, wire X undergoes 2.5 -> 0V.

3 x 1 µm overlap: 0.19 V disturbance
Driven-Coupling Example

Transient decays with time constant

\[\tau_{xy} = R_y(C_{xy} + C_y) \]
Crosstalk & Technology

Crosstalk vs. Technology

Black line quiet
Red lines pulsed
Glitches strength vs technology
Some Solutions to Capacitive Crosstalk

- Proportional noise source: Increasing Vdd will not help
- Avoid floating nodes: use “keeper” circuits, e.g.:
 - Keep sensitive nodes from full-swing signals
 - Make rise/fall time large (but it can increase power)
 - Use differential signaling: turns cross-talk into “common-mode” noise source
 - Don’t have long parallel wires
 - Wires on adjacent metal levels: perpendicular
 - Shield wires by inserting VDD/GND wires between (works in same plane as well as in vertical dimension)
Capacitance & Wire Delays

Recall rise time:

$$\frac{1}{RC}$$

What if is C is not a constant?

Miller Effect

- Both terminals of capacitor are switched in opposite directions (0 -> V_{dd}, V_{dd} -> 0)
- Effective voltage is doubled and additional charge is needed (from $Q=CV$

Bottom Line:

RC time constant doubles.
Capacitance & Wire Delays

- r is ratio between capacitance to neighbor and to GND:

<table>
<thead>
<tr>
<th>bit $k - 1$</th>
<th>bit k</th>
<th>bit $k + 1$</th>
<th>Delay factor g</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>—</td>
<td>$1 + r$</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>$1 + 2r$</td>
</tr>
<tr>
<td>—</td>
<td>↑</td>
<td>—</td>
<td>$1 + 2r$</td>
</tr>
<tr>
<td>—</td>
<td>↑</td>
<td>↓</td>
<td>$1 + 3r$</td>
</tr>
<tr>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>$1 + 4r$</td>
</tr>
</tbody>
</table>

- Wire delay may vary over 500% between worst & best case, due solely to activity on wires
Solutions to Wire-Delay Prob.

Dense Wire Fabric

Trade-off:
- Cross-coupling capacitance 40x lower, 2% delay variation
- Increase in area and overall capacitance
Solutions to Wire-Delay Prob.

Bus encoding to reduce "bad" transitions
I/O Pad Drivers, revisited

I/O Pads constrain your design:

- Enormous capacitances, require enormous gates to drive them (plus the pins & off-chip traces)
- This represents 1000x capacitive load of on-chip gate
- Big gates => big currents; fast clocks => small dt … VDD/VSS leads have inductance => Ldi/dt noise
Transistor Sizing

Sizing for Large Capacitive Loads

Suppose C_{load} large (e.g. bond pads, etc.)

- Scale each inverter (both FETs in the circuit) by a factor A (input capacitances scale by A)
- If input C to last inverter $* A = C_{load}$
 (i.e., C_{load} looks like $N+1^{th}$ inverter) then we have:

 \[\text{Input C of last inverter} = C_{in1} A^N = C_{load} \]

- Rearranging:
 \[A = \left[\frac{C_{load}}{C_{in1}} \right]^{1/N} \]
Transistor Sizing

Sizing for Large Capacitive Loads

- Capacitances increase by factor of A left to right
- Resistances decrease by factor of A left to right
- Total delay ($t_{pHL} + t_{pLH}$):
 \[
 \begin{align*}
 &\left(\frac{R_n1 + R_p1}{A}\right) \cdot \left(\frac{C_{out1} + AC_{in1}}{A}\right) + \\
 &\left(\frac{R_n1 + R_p1}{A}\right) \cdot \left(\frac{AC_{out1} + A^2C_{in1}}{A}\right) + \\
 &= N \left(\frac{R_n1 + R_p1}{A}\right) \cdot \left(\frac{C_{out1} + AC_{in1}}{A}\right)
 \end{align*}
 \]

- Find optimal chain length:
 \[
 N_{opt} = \ln\left(\frac{C_{load}}{C_{in1}}\right)
 \]
Example

Load is ~8000x that of single inverter’s input capacitance: find optimal solution.
Example

\[N_{opt} = \ln\left(\frac{20\text{pF}}{2.5\text{fF}}\right) = 8.98 \Rightarrow 9 \text{ stages} \]

Scaling factor \(A = \left(\frac{20\text{pF}}{2.5\text{fF}}\right)^{1/9} = 2.7 \)

Total delay = \((t_{pHL} + t_{pLH}) \)
= \(N \left(R_{n1} + R_{p1} \right) \cdot \left(C_{out1} + A C_{in1} \right) \)
= \(N \left(R_{n1} + R_{p1} \right) \cdot \left(C_{out1} + \left[C_{load} \div C_{in1} \right]^{1/N} C_{in1} \right) \)

(assume \(C_{in1} = 1.5 C_{out1} = 2.5 \text{fF} \))

= \(9 \cdot (31/9 + 13/3) \cdot (1.85\text{fF} + 2.7 \cdot 2.5\text{fF}) \)
= 602 \text{ ps} (0.6 \text{ ns})
But Wait!

You don’t (necessarily) need the optimal arrangement

You can (perhaps) get away with a slower circuit

Say, for example, you want 1GHz (1ns) ...

0.6ns is overkill

Minimize (integer) N to obey

$$\frac{t_{p,\text{max}}}{t_{p0}} \geq \ln(\text{Fan-out}) \frac{A}{\ln(A)} = N \times \text{Fan-out}^{1/N}$$

(requires numerical methods)
Example, revisited

Load is ~8000x that of single inverter’s input capacitance: find optimal solution.

If \(t_{p,\text{max}} = 1\text{ns} \) (and not 0.6ns) we can have \(N=4 \)

Scaling factor \(A = (20\text{pF}/2.5\text{fF})^{1/4} = 9.46 \)
Example, revisited

$C_{in1} = 2.5\, fF$

$0.5/0.25 \mu m$

$9.5^2 (0.5/0.25) = 44.8/22.4 \mu m$

$9.5^1 (0.5/0.25) = 4.7/2.4 \mu m$

$9.5^3 (0.5/0.25) = 423/212 \mu m$

$sizes in microns$

$N_{opt} \Rightarrow 4$ stages

Scaling factor $A = (20pF/2.5fF)^{1/4} = 9.46$

Total delay $= (t_{pHL} + t_{pLH})$

$= N \left(R_{n1} + R_{p1} \right) \cdot (C_{out1} + AC_{in1})$

$= N \left(R_{n1} + R_{p1} \right) \cdot (C_{out1} + [C_{load} \div C_{in1}]^{1/N} C_{in1})$

(assume $C_{in1} = 1.5C_{out1} = 2.5\, fF$)

$= 4 \cdot (31/9 + 13/3) \cdot (1.85fF + 9.46 \cdot 2.5fF)$

$= 793\, ps \, (0.8\, ns)$
Example, revisited

C_{in1} = 2.5fF

Versus:

Reduced area, reduced current, reduced capacitance, nearly same speed

(better parasitics, ground bounce effects)
Can we do better?

\[C_{in1}=2.5 \text{ fF} \]

\[\text{Optimal stage count } N_{opt} \Rightarrow 3 \text{ stages} \]

Scaling factor \(A = \left(\frac{20 \text{pF}}{2.5 \text{fF}} \right)^{1/3} = 20 \)

Total delay \(= (t_{pHL} + t_{pLH}) \)

\[= N \left(R_{n1} + R_{p1} \right) \cdot (C_{out1} + AC_{in1}) \]

\[= N \left(R_{n1} + R_{p1} \right) \cdot (C_{out1} + \left[C_{load} \div C_{in1} \right]^{1/N} C_{in1}) \]

(assume \(C_{in1} = 1.5C_{out1} = 2.5 \text{ fF} \))

\[= 3 \cdot \left(\frac{31}{9} \div \frac{13}{3} \right) \cdot (1.85 \text{fF} + 20 \cdot 2.5 \text{fF}) \]

\[= 1210 \text{ ps} \ (1.2 \text{ ns}) \]
Tri-State Buffers

Inverting tri-state buffer

Non-inverting tri-state buffer

Increased output drive
Designing Large Transistors

D (rain)

S (ource)

G (ate)
Designing Large Transistors
I/O Pads, again

Where have you seen this before?
I/O Pad Drivers, revisited

Oh yeah …
Resistive Parasitics

Basic Idea: IR drops over long distances

Power Rails

Possible to get relatively large non-zero voltage at input: reduces noise margins
Power/Ground Distribution

(a) Finger-shaped network (b) Network with multiple supply pins
Resistive Parasitics

IR Drops and RC Delay over long wires

- (remember: delay of wire is quadratic w/ its length)

Solution: repeaters or pipelining

Instead of this:

Do this:

Or this:
Inductive Parasitics

L di/dt noise (ground bounce):

Current flow changes direction when input (thus output) values change

Magnitude of current change is di
The time to switch directions is dt
The voltage-drop induced on this wire at time of switching is L di/dt
Inductive Parasitics

L di/dt noise (ground bounce):

$\Delta V = L \frac{di}{dt} = \text{voltage-drop induced on this wire}$

Another inverter, elsewhere.

What comes out here?

I/O Driver:

ΔV
Inductive Parasitics

Simultaneous Switching Noise:

FCRAM side

VDDQ(Pad)

DQS(Pin)

DQ0-15(Pin)

VSSQ(Pad)

Controller side

DQS(Pin)

DQ0-15(Pin)

skew=158psec

skew=102psec