Problem 1

For the common-emitter amplifier shown in Fig. P5.130, let $V_{CC} = 9 \text{ V}$, $R_1 = 27 \text{ k}\Omega$, $R_2 = 15 \text{ k}\Omega$, $R_E = 1.2 \text{ k}\Omega$, and $R_C = 2.2 \text{ k}\Omega$. The transistor has $\beta = 100$ and $V_A = 100 \text{ V}$.

Calculate the dc bias current I_E. If the amplifier operates between a source for which $R_{\text{sig}} = 10 \text{ k}\Omega$ and a load of 2 kΩ, replace the transistor with its hybrid-π model, and find the values of R_{in}, the voltage gain v_o/v_{sig}, and the current gain i_o/i_i.

![Figure P5.130](image-url)
Problem 2

5.136 In the circuit of Fig. P5.136, v_{sig} is a small sine-wave signal. Find R_{in} and the gain v_o/v_{sig}. Assume $\beta = 100$. If the amplitude of the signal v_{be} is to be limited to 5 mV, what is the largest signal at the input? What is the corresponding signal at the output?