HW#3
Problem 1

5.62 The essence of transistor operation is that a change in \(v_{BE} \), \(\Delta v_{BE} \), produces a change in \(i_C \), \(\Delta i_C \). By keeping \(\Delta v_{BE} \) small, \(\Delta i_C \) is approximately linearly related to \(\Delta v_{BE} \),

\[\Delta i_C = g_m \Delta v_{BE} \]

where \(g_m \) is known as the transistor transconductance. By passing \(\Delta i_C \) through \(R_C \), an output voltage signal \(\Delta v_O \) is obtained. Use the expression for the small-signal voltage gain in Eq. (5.56) to derive an expression for \(g_m \). Find the value of \(g_m \) for a transistor biased at \(I_C = 1 \) mA.

Problem 2

5.64 Sketch the \(i_C-v_{CE} \) characteristics of an npn transistor having \(\beta = 100 \) and \(V_A = 100 \) V. Sketch characteristic curves for \(i_B = 20 \) \(\mu \)A, 50 \(\mu \)A, 80 \(\mu \)A, and 100 \(\mu \)A. For the purpose of this sketch, assume that \(i_C = \beta i_B \) at \(v_{CE} = 0 \). Also, sketch the load line obtained for \(V_{CC} = 10 \) V and \(R_C = 1 \) k\(\Omega \). If the dc bias current into the base is 50 \(\mu \)A, write the equation for the corresponding \(i_C-v_{CE} \) curve. Also, write the equation for the load line, and solve the two equations to obtain \(V_{CE} \) and \(I_C \). If the input signal causes a sinusoidal signal of 30-\(\mu \)A peak amplitude to be superimposed on \(I_B \), find the corresponding signal components of \(i_C \) and \(v_{CE} \).
Problem 3 and 4 (A “very high” β just means that $I_B = 0$.)

5.69 The transistor in the circuit of Fig. P5.69 has a very high β. Find V_E and V_C for V_B (a) +2 V, (b) +1 V, and (c) 0 V. Assume $V_{BE} \approx 0.7$ V.

FIGURE P5.69

5.70 The transistor in the circuit of Fig. P5.69 has a very high β. Find the highest value of V_B for which the transistor still operates in the active mode. Also, find the value of V_B for which the transistor operates in saturation with a forced β of 1.