2. Dynamics

We begin by discussing briefly, the dynamics of particles and rigid bodies from the
balance laws of Newton and Euler to the variational principle of Langrange and Hamilton.
The latter can be used effectively to quickly generate equations of motion for a manipulator

composed of linked rigid bodies.

2.1 Particles

From Newton, for a particle of mass m, coordinates z (in the laboratory/ inertial

frame).

f = m# (2.1.1)

Additionally, if we let p = mt and £ = rzp denote the augular momentum,

é =zzp+ zrxp
_ P
= ma:p+:r:a:f
=zzf (2.1.2)

The quantity ¢ f = torque on the particle due to the force f. Equation 2.1.2
is referred to as Euler’s balance law, and for particles it is clearly a derived principle,
not a fundamental one, since it is a consequence of (2.1.1). To work out the equations of
motion of a rigid body, one could proceed along similar lines, this time modeling also the
internal forces of the rigid body that hold the particles in the rigid body together. The
necessary hypothesis on internal forces is that they are along the lines joining the particles
and directed opposite to each other but equal in magnitude. Then one computes the force

resultant and applies (2.1.1) and (2.1.2) to the entire system of particles.

This is unsatisfactory, in that the hypothesis on internal forces is not (easily) checkable.
This i1s overcome by following Euler and treating the rigid body as a fundamental unit

(idealization). Newton’s and Euler’s balance laws are then axioms.

1



2.2 Rigid Bodies

Consider a rigid body as in the figure 2.1,

Figure 2.1 Rigid Body

The body is subject top a pure force f along a specified line of action and a pure
couple ¢y. A particular point (but arbitrary), is determined on the line of action of f by
the vector y. Assume that the frame of reference on the body is attached at its origin 0 to
the center of the mass of the rigid body. We note that this data will be used to compute

the resultant couple ¢ on the body.

From Newton,

f = m# (2.2.1)

From Euler,

c = ¢ (2.2.2)

What are ¢ and ¢ in this setting?
The total angular momentum of the rigid body,
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£ =wai dm(z)

- /ﬂ (BX + r)z (BX + ) dm(X)
= (BX + r)z (BQX + r)dm(X)
_ B f X z(® x X)dm(X)

8

+ mrzv . (2.2.3)

Here we have used the fact that

(i) (BU) x (BW) = B(V x w) for Be 50(3);

(ii) f, X dm(X) = 0,

since the center of mass of § coincides with the origin of the body frame.

Now
X x (@ x X) = (X-X)0
XX
= (JIX|*1 - XX7)Q.
Definel = f, (|| X ||* 1 - XXT) dm (X), to be the moment of inertia of the body in

the body frame. Then, the angular momentum,

£ =BIQ 4+ mrzo

=BIQ+rezp (2.2.4)
where p = mr is the linear momentum. From figure 2.1, the torque/ couple resultant

is
c=¢ + v x f (225)



(Verify that this is independent of the choice of the point v on the line of action of the

force !)
i= 2 (BIQ + rep)
Then dt
= ¢ + vyzf.
Since B = B},
¢ = BIQ + BQIQ + rzp
+ rzp

= BIt + B(2 x IN) + 0 + rzf
= ¢ + y=f

Then,

B + QzIQ) = ¢, + (y — r)zf
= ¢, + dzf.

We thus summarize,

f =mF (a)
co + dof = B(IQ + QzIQN) (2.2.5)
(%)

Letting C, = BTc¢, and D = BTd, F = BTf, we can express Euler’s Balance low is

the more common form,

IN =00 xQ+C, + D xF
=IQ x Q +C (2.2.7)

where C = torque resultant in body frame. If we define the moment of inertia in the

laboratory frame to be,



Ly = BIBT,
then SIQ = Ij.pw and hence

. d
ﬂ(]IQ + 9 x ][Q) = a(][mbw).

Thus, the balance laws of a rigid body are;

oo+ 5 g = 3 ) 151} (22:8)

where, v, = 7. This statement of the balance laws is somewhat in the spirit of expressing

the conditions in terms of twists and wrenches, The vector

o ] 2]

plays the part of a “generalized momentam”. Note however that I;4p is time-dependent:



2.3 Langrangian Mechanics

In treating the mechanics of particles subject to pure conservative forces of the form
f = —‘Z—: where v : R* — R is a continuously differentiable function, the potential energy,

one notices (as Lagrange did), that Newton’s equations 2.1.1 are equivalent to Lagrange’s

equations
d L oL
- = - = = 2.3.1
dt Oz Oz 0 (2.31)
where L = 3 m || # {|* — v is the Lagrangian. Further (2.3.1) continual the first order

necessary condition to be satisfied by a continuously differentiable curve z(-) with end

points z(t;) and z(¢;) fixed and minimizing the functional.

t2
I = L(z(t), (¢)) dt (2.3.2)
t;
The proof relies on the observation (see D. Luenberger: Optimization by Vector Space

Methods, Wiley, 1969, pp 179-180), that the Gateaux differential of I on an admissible

variation of the given trajectory z(-) is

“ 9L d oL
- B = — _ - == ..
ek =[G - g ) Mo (2.3.3)
where admissibility implies k(¢;) = h(f3) = 0 and k is continuous, but otherwise A() is
arbitrary.
For I to be a minimum (locally), it is necessary that dI(z; k) = 0 for all admissible

h. From this (2.3.1) follows.

For a system (or a particle) subject to additional external force, the principle of

Langrange and D’Alembert says

— = - = = fou (2.3.4)



The principle holds without change for a system if = is now a generalized coordinate
and f.;¢ is the corresponding generalized force. By this we mean that virtual power

= fezt * & where the dot product is suitably interpreted.

More precise and mathematically pleasing treatments of the Lagrange D’Alembert
principle (on arbitrary manifolds) can be given but this requires additional technical ma-
chinery - which we shall skip.

One goal is to use (2.3.4) in derving the equation of motion of a manipulator.

2.4 Dynamics of a Serial Link Manipulator

(all links assumed rigid)

Assume that a suitable conversion (e.g. Denavit-Hartenberg) has been used to attach

frames of reference to each link of a manipulator. Let the :** link be as in figure 2.2,

The origin 0 is not assumed to be the center of mass of link (). The element of the

Euclidean group

T = (if 1’") (2.4.1)

determines the instantaneous configuration of link (7) in the laboratory frame. For a general

material particle fixed in link (?)

‘z = 'B'X 4+° (2.4.2)

determines the laboratory coordinates. The kinetic energy of this link is given
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1 ’ ,.
K= g [ NI dn (o)
Iink(i)
= 1/ tr (2 7 dm (z)
2 Jiink(i)
1 2y i T i
=§/ tr ((d1) (‘27)) dm ( z)
link(t)
1 o . . ]
- 3 / tr T (1X0) (CXT) 19T dm (X)
link (i)
= %tr (T¢ By To'T) (2.4.3)

medskipwhere,

Ji = / (PX1) (XT 1) dm (' X)
link (i)
Remark: If 0 is the center of the rigid body, then,

0

] ‘X1XT dm (*X)
Li Jiink

is called the coefficient of inertia. It is easy to verify that for any Q,

tr(_ Q) = Q- LQ

[o]
I
where II; is the usual moment of inertia.

Returning to (2.4.3), recall from section (1.5) that

Ty = To(q) Ti(g2) - Ti 1 (a) (2.4.4)
Thus
- ‘. BTy
TTé = : 2.4.5
0 J.__Zl an' ( )



Hence

LILES 8T _ OT§
. Sl Ny ed 2.4.4
. 4 g I (341' J 3qk) @44

Suppose to each joint is attached an actuator (that rotates or translates), with stored

evergy.

1

K?Ct — 2

JEet g2 (2.4.5)

If the joint (¢) is an R-pair then J#* is an axial moment-of- inertia. If it is a P-pair, then

J#t is a mass.

The total kinetic energy of the manipulator

N
K =) (Ki + K (2.4.6)
i=1

The potential evergy of the manipulator due to gravity is

=Zv.‘+ﬁ

N
= —-Z mi gT T(; zRC + v (2.4.7)

where ¥ = constant corresponding to referance potential energy,

i (112)

where ‘R. = center of mass of i** link in i** frame, ¢7 = (q., ¢y, g:0) is the vector
of (uniform) acceleration due to gravity in the laboratory frame, and m; = mass of ith
linked.

The Lagrangian for the manipulator is,



L=k-V (2.4.8)
The equation of motion are then

d OL oL

where F; = joint generalized force / torque using the fact that

=0 for >1
Oqp , P

1

and the formulas (2.4.4)-(2.4.9), one can show that

N
Fi = ) Dy + I

=1
N
+ Z E Dijx ¢5 ¢x + D; (2.4.10)
=1 k=1
where, '
N ™ T
a1y a1y
Dij = Y tr (—0 T (—0) ) (2.4.11)
p=maz(i,j} 94; Oar
N
Ty oty
Dijx = > tr (—0 Jp (—0)) (2.4.12)
p=maz (i, J, k) an aq'k aqi
N
ary -
Di =) -mpg’ T PRe (2.4.13)
p=i !

These are the equations of motion of a manipulator in the absense of contact forces.
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The equations are modified if there is gearing at the joints. For a gear pair

0 O
O O
T

#teeth=N, N,

“Law of Gearing”
.g:.k = %f ( ignoring backlash)

2

At equilibrium,
m, N
T, N,
where TI'; = torque at gear .

Let us assume that all joints of the given manipulator have actuators linked to gears

with gear ratio Ng : 1, i.e.

. 1
= — qi i = 1,2,.--,N
qv' Nﬂ qi, 1~y L
where ¢; = motor/actuator rate and . '_ joint rate, for i** joint.

For mechanical advantage with weak actuators, Ny >> 1.

Now
1 ac 2 7
L - 'é J! tNO ,,?
N £ i . r
1 .. 3 a7
+ = Z . . tr ( ,,0 Ji 9 )
2 i=1 j=1 k=1 Tk i aqk an



= %05 T 9w
_d oL _ oL
T odt a;‘f 8¢ Oqi
_d6L 1 oL 1
- dt 36" N[] 661 NU
d OL oL
> M= Ge T &
Then
N

NoFi = Y Dij | + JFNG

. H
J=

7§
N N o
+ ZZ Dijk §; ¢« + Dy

1=1k=1

Where D;j, D;, D;j) are as before except that one substitutes §; for ¢; everywhere in the
formulas 2.4.11 - 2.4.13.

It is equivalently,

o N D;; N Npo
= ,; Ny O + ;; N3 q; 9k
+ J:fld qs
D;
N

Dii . . i i i
= (JF* + E}E‘)QI’ + Fiist + Faist + Fpf
0

where the disterbance terms are
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N

i D =
F;iat = Z '; qj
j=t 0
i i
N N
i e Dijr . .
Fios = DD, 7 i
j=1 k=1 0
i D;
ngiat = —Iv—o

It is clear that since J#* + %'ai is the dominant (acceleration) term one can resonably
neglect the disturbance terms. This is often done leading to independent joint control

techniques.
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