1. Kinematics of Manipulation

1.0 Introduction: Kinematics is the study of motion (Ampere coined thie word from
the Greek “s¢'vnua” meaning movement), and as such its application is not limited to
mechanisms. In contrast, dynamics 1s the study of motion of a particle or a system of
mass particles (rigid body, elastic plate. fluid in open channel etc.), induced by forces {and
torques). In the context of robotic manipulation, we are interested in the kinematics and
dynamics of linkages composed of interconnected rigid bodies. The joints are articulated
and imposc constraints on relative motions. We are interested in the analysis and math-
ematical representation of complex spatial motions executed by such a linkage subject

to the interconnection constraints.

We will be mostly concerned with linkages in which the joints have either a single
rotational degree of freedom (R pair) or a single translational degree of freedom (P pair).
Robot manipulators will be composed of links which we will (for thie most part) treat as
rigid bodies. The links will often constitute open kinematic chains. The number of degrees
of freedom of the robotic manipulator is thus equal to the numiber of joints. Closed chains

are also of interest.

Example 1:




Example 2:

The standard dexterity or articulation requirement is six degrees of freedom, three de-
grees of freedom for positioning (translational) and three degrees of freedom for orientation
(rotational). However, manipulators with many more degrees of freedom are found to be

useful when operating in restricted work-spaces.
Examples 1 and 2 above show some typical arrangements of robot manipulator joints.

Classically, joints between rigid bodies are called pairs and are distinguished into two

main classes:

(a) higher pairs - refer to contact occuring between a point and a surface. or a point

and line or a line and a surface.

(¢} lower pairs - contact does not occur in discrete points or lines. Instead it occurs

between surfaces.
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Among the various pairs sketched above, we distinguish the screw pair (H-pair) as
having special significance. By definition, the pitch h is the distance the nut translates
when the screw is rotated through 1 radian. When h = > the H-pair becomes a P-pair.
When k = 0 the H-pair becomes an R-pair. By convention h is taken as positive when the

screw is right-handed and negative when it is left-handed.

If their contacting elements are suitably surfaced and properly lubricated, lower pairs
form satisfactory working faces in machinery. The most common is the R-pair as a journal
bearing. In machine tools we find the P-pair, as a slide-way and slider and also the H-pair.
Marine thrust bearings use the E-pair; piston pumps use the C-pair and quite often the

S-pair as well.



1.1 Rigid Motions

We introduce here the concept of rigid motion. Consider first a finite dimensional
vector space V, over the real numbers. Let dim (V) =n. Let p: V" x V' — Ry be a metric
on V. We say that a map ¢: V— V preserves the metric p (or leaves invariant the

metric p), if,

(1.1) p(é(v),#(w)) = p(v,w) for all v,w, €V .

Suppose, the vector space V carries an inner product < +,- >. Thus < -,- > : V x V

— IR is a map satisfying:
(a) < vyw>=<w,v>
(b) < vy + v, w>=< v, w >+ < vy, w>
(¢) < avyw>=a<v,w>acR

(d) <v,2 >=0= v =0. Otherwise < v,v >> 0
Then we can associate a metric p by defining.
(1.2)  p(v,w) =< v—w,v—w >?

If A: V — V is an tnvertible linear map with the property that it leaves invariant
the inner product, i.e. < Av,Aw >=< v,w > Vv, w € V, then A also leaves invariant
the metric (1.2). We denote the collection of all such invertible linear maps as O(V, <
e >)or O(V). If A€ O(V) so does A~'. Further the identity map 1 € O(V'). Also if
Ay, Az € O(V), Ay - Ay € O(V) where A, - A3 denotes the composition of linear maps. In
other words, the set O(V') has the structure of a group, the orthogonal group of the inner
product space (V, < -,- >). Now consider the collection of all affine transformations of V
of the form v — Av + b where b € V and A € O (V). It follows that each such affine map
also preserves the metric (1.2). This collection of affine maps is denoted as E(V') and is

called the group of rigid motions of (V, < -,- >).

Clearly O (V) — E (V). The set E (V) is also a group with the following properties;

if qiv = Av + by, g1 € E(V)
gav = Agqv + by, g2 € E(V)
then gilv = AT v — AT'h and,
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(g1 0g2)v = (A1 A2)v + (A1 b2 + b))

n
H

We now consider the concrete situation when V = R" and < v,w >= )", v; w;, wherev,

w, € R".

Then we denote the corresponding orthogonal group as O(n). It is easy to see that,

A: A nxnmatrix
O(n) = ’ : (Here  'denotes transpose)
AA =1

Now, if we let 4 € O(n), then
1= det (A'A) = det (A') det (L) = [det(4)]*.
Hence det (A) = £1. Define SO(n) = {4 € O(n) : det (4) = 1}. We call SO(n) the

special orthogonal group of n X n matrices. It is a subgroup of O(n).

The rigid motion group of R" with the standard Euclidean metric will be denoted as
E(n). It is possible to identify R" with a subset of R**! by means of the imbedding

i: R" — R"

We can then view the action of E(n) on R" as equivalent to the action on i(IR") of the
group of linear transformations of the form

A | b

o 1
where A € O(n) and b € R". More precisely E(n) has a representation as the group of

matrices of the form

A | b

- | = , A€O(n), beR".

0 | 1
We make some dimension calculations. The equation A'A = 1 on (n X n) matrices
corresponds to n + # = L—"—}l—) scalar equations. There are n? unknowns in A. Thus

one expects O(n) to be an 1("2—_]1 - parameter family of matrices. More precisely O(n) is a
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differentiable manifold with 2 connected components each of dimension in,_,_—l) Thus O(3)

is of dimension 3. We use the notation SE(n) to denote the Euclidean group

A | b
- | =|: A€ S0O(n), beR"

1.2 Rigid Motions in 3 Dimensions and Rigid Bodies

We now specialize the motions of the previous section to 3-dimensional Euclidean
space. It should be emphasized that the groups O(3) and E(3) have additional roles as

configuration spaces. This we explain below.

A rigid body is a system of particles with the property that the relative distances
between the particles remain fixed under all motions / configurations of the body. Choose
any point P on a rigid body as in the adjoining figure. With this point P as origin,
attach a body fized
orthonormal frame {a;.as,a3}.

Let {e1,€2,€e3}
be an arbitrary

orthonormal fixed frame. Then

a configuration of the rigid body
is completely specified by the following;:
- The vector rp = QP

- The 3x3 matrix A, € SO(3) that carries the translated frame {ef, eF, ef}

(where each ef is parallel to e;) to the body - fixed frame {a;, ay. a3}.

More precisely,

Aae‘lp =a

Aacf = da
(1.2.1) - Agel = a4
Thus the matrix

A | TP

0 11



specifies a configuration of the rigid body. In other words the configuration space (= set
of all possible configurations) of a rigid body can be identified with SE(3). If further the
rigid body is constrained to move in such a way that the body has a fixed point - which
we may assume to be P, then by identifying that point P with the reference frame origin
0, we see that the configuration of the rigid body is completely determined by a matrix 4,

(also known as the attitude matrix of the rigid body). We thus summarize that
(1) for a general rigid body the configuration space is SE(3}):
(ii) for a rigid body with a fixed point P, the configuration space 1s SO(3).

From equation (1.2.1) it is obvious that,

A = lay]

ai; =< a4, ef >

= cosine of the angle between the unit vectors a; and ef

Hence the matrix A, is also called the direction cosine matriz.

We have already remarked that O(3) and SO(3) are three dimensional manifolds. One
way to see this is through the so called Euler angle parametrization of the direction cosine

matrix.
The Euler Angles of A,:

The angular orientation of the frame a A{a;,a», a3} fixed to the body relative to the
frame eP A{el, e, ef'} is thought to be the result of three successive rotations. Before
the first rotation, the frame aA{a;, a2, az} coincides with the frame ePA{eP, ef, ).
The first rotation is carried out about the axis ef through the angle . This carries the
body fixed frame from its original orientation to an orientation denoted as e£” . The second

rotation is through an angle # about the axis e, results in the orientation denoted as e’
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The third rotation through an angle ¢ about the axis el produces the final orientation of

- the body. The angles ), 6, ¢ are known as the Euler angles. Let.

cos (¥) sin(¥) 0
(1.2.3) A¥Y = | —sin (¢p) cos(p) O
0 0 1
1 0 0
(1.2.4) A% = |0 cos(8)  sin(8)
0 —sin(8) cos()
and
cos(¢) sin(¢) O
(1.2.5) A? = | —sin(d) cos(8) O
0 0 1
Then,
(1.2.6) , A, = A°4% 4% '
If we use the notation,
cos(f) = cg, cos¢ = cg,
cos(¥) = cy, sin(@) = ss.

sin(@) = sq and sin(y) = 8y,

then

CyCy — Sy CPSg SyCy + CyCpsSyp  SpSp
(1.2.7) Ay = | —cySy — SyCacy —S84S84 + CypCeCy  39C4

Sy Sg —Cy 38 Cg

The Euler angle parametrization is physically realized by the Cardan suspension in Fig.
1.2.1. The angles 3, 6 and ¢ are, in this order, the rotation angle of the outer gimbal
relative to the material base, of the inner gimbal relative to the outer gimbal and of the

body relative to the inner gimbal. For § = nmr(n = 0,1,2,...), the two gimbals coincide
(gimbal lock).



Fig. 1.2.1 Euler Angles in Cardan Suspension

A basic result on rigid motions is Euler’s theorem.
Theorem (Euler):

Any motion of a rigid body with one point P fixed can be obtained by a pure (clockwise)

rotation of the rigid body about an axis passing through the fixed point.

Proof: We have to show that given an element A € SO(3) there is a unit vector ¢ € R?

such that c is the axis of rotation (and hence fixed) and A is representable as a pure rotation

about c.
To see this, let spec (A) 2 set of eigenvalues of & = {A;. X2, A3}
Since :
Az = dz = A'dz = Ad'z
1
= A'z = 3

it follows that A € spec(A4) iff A1 € spec (A') = spec(A).

In other words, we see that the eigenvalues of A occur in reciprocal pairs. Now,
MAz2A; = det(A) = + 1. Suppose A\; # 1. Then since A[! ¢ spec (A), one of the two

eigenvalues Az, A3 must have the value A'. Let us say A = AT,
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Then1=,\1)\2)\3 = AlArl A3 = As.

Thus we see that 1 € spec (A). Let ¢ be a corresponding unit eigenvector; .Ac = ¢. The
vector ¢ plays the role of the axis of rotation. Let d and e be two unit vectors spanning the

2-plane ¢*. Then,

< Ad,c> =< Ad,Ac >=<d,c>=10
< Ae,e > =< Ae, Ac >=< e, ¢ >= 0.

Thus A leaves invariant the 2-plane e¢t. Since A is length preserving it is a rotation in

the plane ¢t =

Remark We can make a bit more explicit our arguments above. Choosing {c.d.e} as

basis, we are looking for the matrix representation of A in that basis. Suppose.

v = vic + vad + v3e vi €ER.

Then
Av = A(vye + vad + v3e)
= ’U1AC -+ ‘UzAd -+ ‘U3A€

= v1 - (annc+ az1d + az1€) + v2 - (a12¢ + a22d + az2e) + v3 - {a13¢ + @23d + azae).
3 3 - 3
= (Z CI]J“UJ‘)C + (Z azj'vj)d + (Z 033‘1)_1')6.
j=1 j=1 i=1

/
The matrix [e;;] is the matrix representation of A € SO(3) in the new basis.

Since Ac = ¢, we have
a =1 y Q21 = 0, az; = 0',
also
0 =<e¢, d> = < Ac, Ad > =<¢, Ad> = a3}
0 =<¢, e> = < Ac, Ae > = < ¢, Ae > = ap3;
1 =<d d> = < Ad, Ad > = (az)? +(as2)?
1 =<e > = (a23)* + (as3)®
0 =<d, e> =< Ad, Ae > = ay az3 + a32 a3
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Thus the matrix representation of A in the basis {c,d, e} is of the form,
' 1 0 0
(1.2.8) 0 az az
0 a3z as;

where

| (a22)* + (a23)* =1
(129) (0.32)2 + (a33)2 =1

azazy +azzazz = 0.

It can be immediately verified that azz = cos(@). azz = sin(0), a30 = —sin(o). azs = cos{o}
is a solution of (1.2.9) for suitable ¢. ¢ is essentially unique. In fact if we observe that

tr(A) is independent of the choice of basis then we see that,

2cos(¢) +1 =tr(4)
or
1
¢ = co.s_l[;{tr(fl) -1}
This leads us to,
EULER’S theorem (alternative form)
Let A € SO(3). Then, there exists ¢ such that ¢'¢ = 1. 4d¢ = ¢ and,
A = expl$S(c)]
= I+ sin(9) - [S(c)] + (1 — cos(¢))- 5°(e)
where, by S(c) we mean the skew-symmetric matrix
0 C3 —cC3
S(c)y=|=cs O 1
[#] —C1 0

and we also use the identity,
§%c)y=—-I+cc

The pfoof of this alternative form of Euler’s theorem is left as an ezercise.
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Another way to think about the parameterization problem for SO(3) is to use the
Cayley transform. Let A ¢ SO(3). Then, for any = ¢ R?, < Az, Ar > =<z 2>

Let y = Axz. Then,
0 =<y, y> — <z, 2>
=<y - Yy + x>
=<(A - L)z, (A + Dz >.
Suppose —1 is not an eigenvalue of A. Then (A + 1) is invertible. Let.

f=(4+0De

As z varies over all of R?, so does f. Further,

<(A-DA+1D7f, f>=0 VYFieR>.

It then follows that,
B=(A-1)(4+ 1!
is a skew-symmetric matrix. Further, letting,

0 —=by b
B = b3 O _bl

-by b 0

we conclude that,

det (1 —B) =1 + b + b2 + 53 > 0. Hence (1 — B) is invertible. Therefore,

A=@1-B)"'@1+ B).

This is known as the Cayley transform. We have shown that any 3 x 3 orthogonal
matrix A can be written as a Cayley transform of a skew- symmetric matrix provided
- =1 & spec (A). Note further that,

det (1 — B)~' (1 + B))



= det ((1 — B)™') det (1 + B)
= (det (1 — B))™" det (1 + B)'
= (det (1 — B))™" det (1 — B)
= 1.

Thus the range of the Cayley transform is C SO(3).

Exercise: Show that o(T' B T) = T'p(B)T for any skew symmetric B and orthogonal

matrix T, where ©(-) denotes the Cayley transform.
Remark: The parameters (b;, b2, b3) are called Rodrigues parameters.

Our next result deals with a general representation of elements of SE(3). This result,
attributed to Michel Chasles (1793-1880), says that the most general rigid motion in R® is

a helical (or screw) motion. More precisely,
Theorem [Chasles]:
Given

A b

0 1
from SE(3), there exists p € R’ such that,
(x) ‘ 1 —p|l|A b1 p M ¢

0 1 0 1 01 0 1

Where 1 denotes the 3x 3 identity matrix, c is a vector such that Ac = c and M = exp[¢S5(¢)]
where ¢ = c¢/||¢|.

Proof- For simplicity we shall assume that,

(H) Ker(A-1) = {z: (A-1)2 = 0}

is a one-dimensional vector space.

The left hand side of (%) is equal to

A Ap+b-p
0 1 )
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Thus, from (*)
A=M and Ap + b — p =¢

or(1-A)p+c=b

The problem thus reduces to finding p, ¢ such that

I-Ap+c=1b

(1.2.10) A= 0

aside: the Fredholm alternative says that a linear equation.
Qu=n~Fh

has a solution iff for all vectors w satisfying Q'w = 0, we have w'h = 0.

Apply Fredholm alternative to (1.2.10).

Equation (1.2.10) has solution (IC)) 1f f for all (f;) satisfying,

s [0 %] ]-[d

1 @4y
BIOET

we have

Now,
(1.2.12) (1-A)Yz =0
(1.2.13) z+(1-A)y=0

= z = ac for same real number o € R.
Furthermore, equation (1.2.13) is equivalent to
(1.2.14) 1-A)y = —ac.
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Apply Fredholm alternative to (1.2.14). Thus (1-A)'y = —ac has a solution ¢ff for

every z such that,
(1-A)z =0,

it follows that < z,—ac >=0.

But (1-A)z =0 = z = Fc for some g € R. Hence, <.A/5c, —ac>=0 V3 e R. Thisis

possible only if & = 0. Hence,

(1.2.15) Ker { [(1‘1*4)' (11«?,4)'“ ~ {[[gc} g€ ]R}

Clearly '
wer |07 2]+ (0)-

Thus we see that (1.2.10) is solvable and the proof of the theorem is complete.s

However, for our purposes it is necessary to find the interpretation of this result in

terms of screw motions.

Since Ker(1—A) is assumed to be one dimensional, any ¢ satisfying (1 —4)c = O can

be written as ¢ = av where v is a unit vector. Thus, suppose

()=(2)
(2)=(2)

are two solutions to (1.2.10). We see that

and

A-A)p1 —p2) = (2 — a1 v

where v € Ker(1 —A). We can verify that this equation has a solution iff a2 —a; =0 in

which case

¢ —¢c2=10 = ¢ = ¢

v,

and

P1—p2=aQu
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or

p1 = pz + av.

Thus the end points of all the vectors p;, p2, p3... lie on a certain distinguished line

whose direction is determined by the vector ¢. This is called the screw azis.
How do points on the screw axis transform?
Let z be a point on the screw axis. Then z — Az + b.

Now x = p + ac for some « € R and ¢, p satisfying (1.2.10)

Az +b= Alp + ac) + b
= Ap + adc 4+ b
= Ap + ac + b
=p+ c + ac
(from 1.2.10) =p+ (o + 1)

Thus eny point on the screw axis gets merely translated along the axis a distance
= |lp + (@ + 1)e = (p + ac)l|
= [|e]|

What about points away from the screw axis?
Suppose,
t=p + ac + w#0

Then
Az + b= A(p + ac + w) + b

=(Ap + ac + b)) + Aw
=p + (& + l)c + Aw
What if z = 07
A+ b =b=(0-A)p+c=p + ac + ¢ + Aw
= (p + ac) + (4w + ¢)
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Points away from the screw axis thus undergo both rotation and translation in general.

What is the pitch? (Symbol k is used for pitch).

By definition, the pitch & is the ratio = translational motion along screw axis / rotation

in radians. In the present case,

: el
h = pitch= —
¢
<l
cos™ {3 [tr (4) — 1]}
A bY. . . .
If o 1) isapure translation, then 4 = 1. We then say that pitch = o>. If b = 0 then

(1.2.10) has the only solution p = 0 = c. Thus pitch = ||¢||/6 =0/0 = 0.

We choose to write the r.h.s of the statement of Chasles theorem in the form.

(1.2.16) [escp[a(S)S(v)] h,lv}

Where v is the unit vector satisfying Av = v and h = pitch. The matrix in (1.2.16) is

known as the screw matriz associated to the given element of SE(3).

The screw matrix is completely specified by specifving ¢,h and the 2 parameters
determining the unit vector v. To specify (g i’) completely we need in addition to
specify the vector p.

However since p is constrained to lie on & line (the screw axis), we only obtain 2
more parameters. Thus, Chasles’ theorem gives us a particular choice of siz parameters for

determining an element of SE(3).

We will see in the next section that a line in 3 dimensional space is completely de-
termined by 4 parameters called the true line coordinates, so we can also view Chasles’

theorem as saying that SE(3) is parametrized by;

4 true coordinates of the screw axis
1 pitch parameter h
1 angle parameter ¢
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1.3 Homogenous Coordinates:

A Points: The position of a point. in 3 dimensional space can be uniquely defined by
the ratios of four coordinates z,y, z,t and conversely, these ratios define a point uniquely.
We assume that not all z,y, z,t are simultaneously zero. One can identify the cartesian
coordinatee;, as (7,4, %) assuming t # 0. The point defined by (2,y,z.0) is considered to
be the point at infinity and is denoted as oo. Clearly (z,y, z,t) and (Az. Ay, Az, At) denote
the same point for all A # 0. This is the extent of nonuniqueness in the homogeneous
coordinates (z,y,z,t). We often use the notation P(z.y.-.#) to donate a point P with

homogeneous coordinates (z,y, z,t).

Suppose A (z1,y1,21,%) and B (z2,y2, z2,1) are two given points. We define the line
AB to consist of the points P(z,y, z,t) for which values of the ratio A/y can be found such
that

(1.3.1) T = Az + pr2; oy = Ay + py2;
z = A+ uzs; t = Aty + pts.

Every value of A\/u determines one and only one point, which is called a point of the
line AB. In particular 4 = 0 determines A and A = 0 determines B. The two values A, u
cannot vanish simultaneously. In a compact form we can write the previous system of 4

equations as;

(1.3.2) P =)A +uB

or more symmetrically,

(1.3.3) AA + uB+vP =0

(note: an expression of the form APy + ... + A\, P, = 0 is called a syzygy).
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Let A(z1,vy1,21,%1), B(r2,y2,22,%2) and C{z3.ys,23,%3) be three given non-colinear
points (thus they are not in syzygy). We define the plane ABC to consist of the points
P(z,y,z,t) for which values of the ratios A : u : v can be found such that:

T =)\I1 +,u.1'2 + vy

Y = Ayr + py2 + vys

(1.3.4) z=An 4+ ue +uvy
t = Aty + pts + vis.

Every set of values A : i : v (not all zero) determines one and only one point which
is called a point of the plane ABC. In particular, p = v = 0 determines 4. A = v = 0

determines B, and x4 = A = 0 determines C. The corresponding syzygy is:

(1.3.5) P =)A + 4B +vC.

The coordinates of P satisfy the determinantal relation:

I, I I3
i Y2 Y3 0
Z1 2 Z3
iy ta 1

(1.3.6)

o+ oW R

B Line Geometry: Let Py (z1,v1,21,t1) and Py, (z2,y2,22,t2) be two distinct points.

We define from their coordinates the six numbers,

(1.3.7) I=I1 tg — I t1; m = y1t2 - Y2 tl: n =21t2 — 2P fl

] t - . o
l=y1220 — y2z1;, M = 2122 — 22215 N =T1Y2 — Z2h1-
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We prove first that the ratios of these six numbers are unaltered if the points Py and

P are replaced by any two points Py and Py of the line p joining them.

In fact, if:

(1.3.8) P, = AP, + 4P,

P, = I/I-)l + 5f)2

then it is easy to show that,

(1.3.9) (182 — £981) = (A6 — pv)(x1ty — 22t))

(hiz —§221) = (A —pv)(y122 —y221)

etc., and the result is immediate.

Thus the ratios of the six numbers I,m,n,!’, m', n' are suitable as coordinates for a

line, because:

(1) if the line is given, the ratios of the numbers are determined.

(11} if the ratios are given then the line is determined uniquely.

We therefore call these numbers the coordinates of the line. They are also called the
Plicker coordinates of the line after the German geometer Julius Plicker who invented
them in 1865.

Note that the six coordinates of a line cannot be taken at random. They must satisfy

the relation.

(1.3.10) W+mm +nn’ =0.

Proof of Relation 1.3.10:



Suppose that one line p is defined by two points P {(z1,¥1.21,12) and Ps (22 Y2, 22, t2)
another line ¢ is defined by the points @y (X;,Y7,21,71,) and Q2 (X2.Y3,Z2,73). The
Plucker coordinates for p and q are respectively (¢,m,n, ¢',m’',n’)and (L. M. N,L'. M' N').
It can be verified that

Iy n1o5a1 b
(1 3 11) T2 Y2 23 t? _ ILI ll'L + '1/.[’ ’\I \-I lﬂ\r
3. X, Y, 2y Tl + mM +m' M 4+ nN 4+ n'l
1 4\:2 Yz Z2 T2

Now set Py = Q; and P, = Q2. Then the left hand side of (1.3.11) in zero since two
pairs of rows the matrix are equal. The r.h.s. of (1.3.11) is 2(1I' + mm’ + nn'). Hence we
have shown that 1.3.10 holds.=

Theorem 1.3.1: If two lines whose coordinates are (I,m,n.'.m',n') and (L. M. N. L. M,
N') intersect, then IL' + V'L +mM' +m'M +nN' + n'N =0.

Proof: If the lines intersect the points Py, P2, Q;, Q2 defined above are coplanar and the
result follows from equation (1.3.6). The converse of theorem 1.3.1 is also true. The proof

is left to the reader.m

Definition 1.3.1: Given two lines (lj,m1,n1,l},m],n}.,) and (l2,m2,n2, 5, mb,nh) we
call the quantity wiz2 = LI} + [lf + mym} + mam) + ninl + n2n)), the mutual invariant

of the two lines.

This quantity w;2 has a significant physical interpretation ( as virtual werk) in our later

discussion of equilibrium analysis of rigid bodies subject to external forces and torques.

Remark (1.3.1) The coordinates (I, m,n,I',m’,n') and (A, Am, An,Al', Am', An') denote
the same line. This together with (1.3.10) implies that there is a 4 parameter family of

lines in 3-space.

Remark (1.3.2) For a line (I,m,n,l',m',n') to be finite, at least one of [.m,n must
be nonzero. QOtherwise the line is said to be at oo . When !',m',n’ all vanish, the
line passes through the origin. The line at oo perpendicular to the = axis is given by
(0,0,0,0,0,1). Given a finite line (a, b, ¢,d, e, f) the line at oo perpendicular to this line is
given by (0,0,0,a,b,¢,).



Remark (1.3.3) From eqn. (1.3.10) it follows that a line in 3-space can be viewed as a

point of a quadric in 5-dimensional space. This is the famous Plicker quadric.
C. A line as the intersection of two planes

A line may be defined as the intersection of 2 planes,
Piiajz+bhy+caz+dit=0

Py:asz + by +caz+dat =0
Then (the) line coordinates of the line of intersection of the two planes Py and P; is given
by the relations:

l=bicg — bycy; m =cyaz — caay; n = arbs — aaby;

"= a) dg - agdl', m-’ = bldg - bgdl; n." = Cldg - C'Zdl

D. Interpretation of Plucker Coordinates

Consider the line in 3-space as in the adjoining figure. The line segment g = PQ can be
said to have a moment about the origin 0 as j'x V= ) x[ where | = directed L from 0 to
the line. If P = (z,,y1,21,t1) and @ = (z2,y2, 72,12) then the formula (1.3.7) determines
(up to a scale factor) the vector 5~ ({,m,n) and its moment g x [~ (I’,m',n"). This can

be easily checked from the definition of the vector cross-product and is left to the reader.
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