Examples of Smooth Manifolds

1. Unit sphere \(S^2 = \{ (x, y, z) : x^2 + y^2 + z^2 = 1 \} \)

\[W_1 = \{ (x, y) : x^2 + y^2 < 1 \} \subset \mathbb{R}^2 \]

\[\eta : W_1 \rightarrow S^2 \]

\((x, y) \rightarrow (x, y, \sqrt{1-x^2-y^2}) \)

is a diffeomorphism of \(W_1 \) onto the region \(z > 0 \) of \(S^2 \) — i.e., a local parametrization.

By interchanging the roles of \(x, y, z \) and changing the signs of the variables, we obtain parametrizations of the regions \(x > 0, y > 0, z < 0, y < 0 \) and \(z < 0 \). Since these cover \(S^2 \), it follows that \(S^2 \) is a smooth manifold. \(\square \) [We have checked condition 1]

[What about condition 2?]

2. \(\mathbb{R}^k \) is itself a differentiable manifold.

\(W = \mathbb{R}^k \)

\(\eta = \text{identity map} \).

3. Let \(M^k \) be a smooth manifold.

Let \(U \) be an open subset of \(M^k \).

Then \(U \) is also a manifold, an open submanifold of dimension \(k \).
Proof: $p \times p$ Matrices A determinant $\neq 0$ open C all $p \times p$ matrices $\in \mathbb{R}^F$