Lecture 3	ENEE 664	5 pring 2004	P. S. 1400	husprand
	ations			
For the	homogeneous adjoin	system x(t) =	ACTIXCE) we	have
		(t) p(t).		
From d It	(p'(t) x(t))	= p(t) x(t)	+ p(+) x(+)	
		= (-A'(+1 p(+1))'.	x(4) + p(t)	ACEIXCE
it follows	that p'c	$= 0$ $(t) \times (t) = p'(c)$	to) Z(to) +	4 + .
		$t) = \underbrace{\overline{\Phi}}_{-A'}(t)$		
	/	(t, t6) X(t6) =		
	-A'	[[[] [6]]	pico) Leco,	
Since this	is true	for arbitran	x(to), p(to	s) it
Since thin follows that	is true	for arbitrary $ (t,t_0) = A $	X(to), plt.	t t
Suice thin follows that	is true t,	for arbitran (to to a constant) (to to a constant)	11 +	o) it
Suice thin follows that	$ \frac{\Phi}{A} $	for arbitrary	2(to), p(to	et
Since thin follows that	is true $ \frac{\Phi}{A}(t, t) $ $ \frac{\Phi}{A}(t, t) $ we also \hat{X}	for arbitrary $ \begin{array}{ccc} $	2(to), p(to	et
Since thin follows that	is true $ \frac{\Phi}{A}(t, t) $ $ \frac{\Phi}{A}(t, t) $ we also \hat{X}	for arbitrary	2(to), p(to	et
Since thin follows that	is true $ \frac{\Phi}{A}(t, t) $ $ \frac{\Phi}{A}(t, t) $ we also \hat{X}	for arbitrary $f(t) = \frac{1}{A} (t, t_0) = \frac{1}{A} (t, t_0) = \frac{1}{A} (t, t_0)$ are a corollary $f(t) = \frac{1}{A} (t, t_0) = $	$\chi(t_0)$, $\phi(t_0)$ $\chi(t_0)$ $\chi(t_0)$ $\chi(t_0)$	et
Since thin follows that	is true $ \frac{\Phi}{A}(t, t) $ $ \frac{\Phi}{A}(t, t) $ we also \hat{X}	for arbitrary $f(t) = \frac{1}{A} (t, t_0) = \frac{1}{A} $	2(to), p(to 1 + o, t) + (t, to)) (t, to))	et

Canonical Equations Consider the limear time-varying system (causuical equation) $\begin{pmatrix} \dot{x}(t) \\ \dot{p}(t) \end{pmatrix} = \begin{pmatrix} A(t) & -B(t)B(t) \\ -L(t) & -A'(t) \end{pmatrix} \begin{pmatrix} \chi(t) \\ p(t) \end{pmatrix} \qquad (C)$ evolving on \mathbb{R}^{2n} . (Assume $L(t) \equiv L'(t)$). Let H(t,x,p)denste the function $H: \mathbb{R} \times \mathbb{R}^{2n} \longrightarrow \mathbb{R}$ $(t, z, p) \mapsto H(t, x, p)$ = 1 x L(t) x + p A (t) x - 1 p B(+) B(+) p Define the gradient of H, $\nabla H = \begin{pmatrix} \frac{\partial H}{\partial z} \\ \frac{\partial H}{\partial p} \end{pmatrix}$. $\nabla H = \begin{pmatrix} L(t) & A'(t) \\ A(t) & -B(t)B(t) \end{pmatrix} \begin{pmatrix} x \\ p \end{pmatrix}$ We are then rewrite the given system (c) in $\begin{pmatrix} x \\ p \end{pmatrix} = J VH \quad \text{where} \quad J = \begin{pmatrix} 0 & \text{d} \\ -\text{d} & 0 \end{pmatrix}$ is a skew-symmetric wertible matrix. Along trajectories of (C) the derivative of H as.r.t. time can be computed using chair rule: $\frac{\partial H}{\partial t} = \frac{\partial H}{\partial t} + \frac{n}{2} \frac{\partial H}{\partial x_i} \dot{x_i} + \frac{\partial H}{\partial \phi} \dot{\phi}_i$ $= \frac{\partial H}{\partial t} + (\nabla H) \dot{(\dot{x})} = \frac{\partial H}{\partial t} + (\nabla H) J \nabla H$

Since I is skew, the second term on the right is identically zero. I -f fauther, the parameters A, B, L are time-invariant, there 2# =0 and d#=0 => H = contant. What are communical equations (C) good for? For one thing, so hing Riccati equations. Leuma 1 for (C). Partition into blocks: $\bar{\Phi} = \begin{pmatrix} \bar{\Psi}_{11} & \bar{\Psi}_{12} \\ \bar{\Psi}_{21} & \bar{\Psi}_{22} \end{pmatrix}$ of size $h \times h$. Then: (a) If $\Pi(t, Q, t_1) = (\Phi_{22}(t, t_0) - Q = (t_1, t))_f$ or equivelently, if $(Q \bar{\Psi}_{ii}(t_i,t) - \bar{\Phi}(t_i,t))$ (b) IT $(t,Q,t_1) = (\bar{\Phi}(t,t_1) + \bar{\Phi}(t,t_1)Q)(\bar{\Phi}(t,t_1) + \bar{\Phi}(t,t_1)Q)^{-1}$ then Tilty, Q, ty) = Q and, TI satisfies the Riccati equation, TI = -ATT -TIA + TIBB'TT -L anuwing that the indicated linesses exist. Prosf: Let, $[X(t), -P(t)] \triangleq [Q, -1] \begin{bmatrix} \overline{\Psi}_{i}(t_{i},t) & \overline{\Psi}_{i}(t_{i},t) \end{bmatrix}$ $\underline{\underline{\Psi}}_{i}(t_{i},t) & \underline{\underline{\Psi}}_{i}(t_{i},t) \end{bmatrix}$ clearly, in part (a) above, the 7.4.5 = P-1(t) x(t).

```
To verify that T_1(t,Q,t_1) = P'(t) \times (t)
                                                                                    Satisfies
the Riccati Equation, differentiate.
\frac{d(P^{-1}X)}{dt} = -P^{-1}PP^{-1}X + P^{-1}X
     Trom the definition of [x P] we see
               [x, -PJ] = [q, -1] \frac{d}{dt} \mathcal{I}(t_1, t)
                                = [Q, -1] \underset{\overline{4}t}{d} \overline{Q}(t, t_i)
                               = [Q, -1] (- \vec{\Phi}(t, t_i)) \vec{d} \vec{\Phi}(t, t_i) \vec{\Phi}(t, t_i)
                               = -[Q, -1] \underline{\Phi}(t_i, t) \begin{pmatrix} A(t_i) & -B(t_i) B(t_i) \\ -L(t_i) & -A'(t_i) \end{pmatrix}
                            = - \left[ X, -P \right] \begin{pmatrix} A & -88' \\ -L & -A' \end{pmatrix}
A - P L
    \Rightarrow \dot{x} = -xA - PL
            P = - XBB' + PA'
=> & (P-1x) = - P-1 (- x BB'+PA') P-1x + P-(-XA-PL)
                            = P-1x BB'P-1x - A' P-1x - P-1x A - L
which is what we set out to prove.

The P'(t) \times (t) = Q since \overline{\Phi}(t_1, t_1) = \begin{pmatrix} \underline{u} & 0 \\ 0 & \underline{u} \end{pmatrix}
 Proof of part (b)

Define \begin{pmatrix} \tilde{x}(t) \\ \tilde{p}(t) \end{pmatrix} = \begin{pmatrix} \bar{\Phi}_{ll}(t,t_l) \\ \bar{\Phi}_{ll}(t,t_l) \end{pmatrix} \begin{pmatrix} \underline{A} \\ \bar{Q} \end{pmatrix}.
clearly, in part (6) chove r.h.s = P(+) X(+) -1. Pent
of the steps similar to the steps in part (a) proof. 1
```

Romark Matrices of the firm $P = \begin{pmatrix} A & Q \\ R & -A' \end{pmatrix}$ where each of the blocks is nxn and Q=Q', R=R' are called infinitesimally symplectic or hamiltonian matrices. They satisfy the identity. PJ + JP = 0 Necessary Conditions for Optimality Theorem For the system x(t) = A(t) x(t) + B(t) u(t) x(to) = xo, let u(t) be one of the following controls (a) U(t) = - B(t) \overline{F}(tot)\overline{\xi} where \overline{\xi} satisfies $W(t_0,t_1)$ = $\chi_0 - \frac{\overline{\Phi}}{A}(t_0,t_1)\chi_1$ (b) (c, (t) = -B(t) TI(t, Q, t,)x(t) TT(t) = - A(t) TT(t,Q,t1) - TI(t,Q,t1) A(t) - L(t) + TILE, Q, t,) B(+) B(+) TI(t, Q, t,) $T(t_1,Q,t_1)=Q$ and L(t) = L(t) + t (c) u2(t) = - B(t) TI(t, K1, t1) x(t) + V(t) $\dot{\pi} = -A'TI - TIA + TIBB'TI =$ $\Pi(t_1,K_1,t_1)=K_1$ and V such that it minimizes $\dot{x}(t) = (Att) - B(t) B(t) \Pi(t, K, t_i) x(t)$ $\chi(t_0) = \chi_0; \quad \chi(t_i) = \chi_i$ I vios vios do for

Thou, there exists a vector function \$14, (the co-state Such that $\begin{pmatrix} \dot{x} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} A & -33' \\ -L & -A' \end{pmatrix} \begin{pmatrix} x \\ p \end{pmatrix}$. X(to) = X0 and (16) = - B(t) p(t) Proof (a) Let $p(t) = \bar{f}(t_0, t)$ Then p = - A (t) p with \$ = } (from page 1 of this lecture) Substituting up in the state equation, we get $\dot{x} = Ax - BB'p$ Picking L = 0 ensures that p = - A'p = -Lx- A'p This completes the forest of part cas. (b) Let p (t) = TT (t, Q, t,) x (t) Then substituting u, in the state equation are get, $\bar{x} = Ax - BB'p$ We need to show $\bar{p} = -Lx - A'p$ Differentiate $\Pi(t,Q,t_1)x(t)$ to get, $\dot{p} = \Pi x + \Pi \dot{x} = (-A'\Pi - \Pi A - L)x$ $+ \Pi BB'\Pi$ $+ \Pi (Ax = BB'\Pi x)$

= -A/p - LxThe boundary condition on To turns into p(t,) = Qx(t,). (c) Left as an exercise 1 Romark we post pone documin of the infinite honizon optimal control publicum and associated objetimic Riccati equations. Usuay the Commical Equations From proof of part (a) of the Theorem, it is clow that solving (c) for (xo, Po), initial conditions, sweeps out a bundle of state /co-state trajectiones as p is varied. Only p 5-t W(toti) to = x - Ittoti) x, will produce trajectory / trajectories satisfying and-point Conditions. End-point error anowated to a given to con be used to correct to - Similar remarks apply to corses (b) & (c). Analogues of (c) play a central note in general optimal control problems. (not necessarily linear systems with quadratic cost functionals), We will uncounter these