Homework Set 3 (ENEE664 – spring 2014) – due 02/19/2014; In problem3 compute for alpha = 1 and 2 (write general code – include your code with solutions as a printout)

Problem 1

For the	time invariant system
	2 = A x + B x + C v
with a	known disturbance V(t), soggest/derive
control -	that drives the system from (x0,0) to
(0, T)	and minimizes
	7 = 5 u(0) u(0) do
state o	my needed hypotheses clearly.

Problem 2

Problem 3

Consider the toolden of finding an optimal control for the system:
$$\dot{x} = -\alpha' x + u$$
 $\alpha' > 0$; st $\dot{y} = \int_{0}^{\infty} (x^{2} + u^{2}) dt + \chi_{1}^{2}(1)$; with initial $\chi(0) = 1$.

Use a numerical approach based on causuical equations (and MATLAB) to invertigate this toolden:

What is the optimal value \dot{y} \dot{y}