Homework Set 3 (ENEE664 - spring 2014) - due 02/19/2014; In problem compute for alpha = 1 and 2 (write general code - include your code with solutions as a printout)
Problem 1
For the time invariant system

$$
\dot{x}=A x+B u+c v
$$

with a known disturbance $V(t)$, soggest/derive control that drives the system from $\left(x_{0}, 0\right)$ to
$(0, T)$ aud minimizes

$$
\eta=\int_{0}^{T} u^{\prime}(\sigma) u(\sigma) d \sigma
$$

state any needed hypotheses clearly.

Problem 2
Complete the proof the necessary couditrown theorem in Lecture Notes 3 (page 5 , part (c)).

Problem 3
Consider the problem of finding an optimal control for the system: $\dot{x}=-\alpha x+u>0$; st $\eta=\int_{0}^{1}\left(x^{2}+u^{2}\right) d t+x^{2}(1) ;$ with initial $x(0)=1$. Use a numerical abtrach basel on canonical equation (and MATLAB) to investigate this problem. what is the optimal value $\eta_{\min }$?

