
 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

1

 

This paper describes a sequential implementation of the 16-bit Ridiculously Simple Computer
(RiSC-16), a teaching ISA that is based on the Little Computer (LC-896) developed by Peter Chen
at the University of Michigan. 

 

1. RiSC-16 Instruction Set

 

The RiSC-16 is an 8-register, 16-bit computer. All addresses are shortword-addresses (i.e. address
0 corresponds to the first two bytes of main memory, address 1 corresponds to the second two
bytes of main memory, etc.). Like the MIPS instruction-set architecture, by hardware convention,
register 0 will always contain the value 0. The machine enforces this: reads to register 0 always
return 0, irrespective of what has been written there. The RiSC-16 is very simple, but it is general
enough to solve complex problems. There are three machine-code instruction formats and a total
of 8 instructions. The instruction-set is given in the following table.

The instruction-set is described in more detail (including machine-code formats) in 

 

The RiSC-16
Instruction-Set Architecture

 

.

 

Assembly-Code Format Meaning

 

add    regA, regB, regC

 

R[regA]  <-  R[regB]  +  R[regC]

 

addi   regA, regB, immed

 

R[regA]  <-  R[regB]  +  immed

 

nand   regA, regB, regC

 

R[regA]  <-  ~(R[regB]  &  R[regC])

 

lui    regA, immed

 

R[regA]  <-  immed & 0xffc0

 

sw     regA, regB, immed

 

R[regA]  ->  Mem[ R[regB] + immed ]

 

lw     regA, regB, immed

 

R[regA]  <-  Mem[ R[regB] + immed ]

 

bne    regA, regB, immed

 

if ( R[regA] != R[regB] ) {
     PC  <-  PC + 1 + immed
     (if label, PC  <-  label)
}

 

jalr   regA, regB

 

PC <- R[regB], R[regA] <- PC + 1

PSEUDO-INSTRUCTIONS:

 

nop

 

do nothing

 

halt

 

stop machine & print state

 

lli    regA, immed

 

R[regA] <- R[regA] + (immed & 0x3f)

 

movi   regA, immed

 

R[regA] <- immed

 

.fill  immed

 

initialized data with value 

 

immed

 

.space immed

 

zero-filled data array of size 

 

immed

 

The RiSC-16 Instruction-Set Architecture

 

ENEE 646: Digital Computer Design, Fall 2002
Prof. Bruce Jacob



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

2

 

2. RiSC-16 Instruction Control and Dataflow 

 

The following figures illustrate the flow of information for each of the instruction types for a sim-
ple sequential implementation—a scaled-down version of which has been done in discrete logic
(i.e. 4-bit TTL parts) . A final figure will put all of the instructions together into one framework.
Shaded boxes represent registers. Thick lines represent 16-bit buses.

 

ADD 

 

This figure illustrates the flow-of-control for the ADD instruction. All three ports of the register
file are used, and the write-enable bit (WE) is set for the register file. The ALU control signal is a
simple ADD function. 

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

CONTROL

WE

ADD

+1

TGT

SRC1

SRC2

SRC2 SRC1

ADD: 000 rA rB rC0000

SRC2 SRC1



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

3

 

ADDI 

 

This figure illustrates the flow-of-control for the ADD IMMEDIATE instruction. Only two ports
of the register file are used; the second source operand comes directly from the instruction word.
The write-enable bit is set for the register file. The ALU control signal is a simple ADD function. 

The Sign-Extend-7 logic extends the sign of the immediate value (as opposed to simply adding
zeroes at the top) and in so doing produces a two’s complement number. The logic looks like this:

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

CONTROL

WE

ADD

+1

TGT

SRC1

SRC1

ADDI: 001 rA rB

Sign-Extend-7

simm-7

SRC2 SRC1

23 1Bit: 067 5 41011 9 81415 13 12

001 reg A reg B simm-7 (-64 to 63)ADDI:

23 1Bit: 067 5 41011 9 81415 13 12

SRC2 OPERAND:



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

4

 

NAND 

 

This figure illustrates the flow-of-control for the BITWISE NAND instruction. All three ports of
the register file are used, and the write-enable bit is set for the register file. The ALU control signal
is a BITWISE NAND function. 

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

CONTROL

WE

NAND

+1

TGT

SRC1

SRC2

SRC2 SRC1

NAND: 010 rA rB rC0000

SRC2 SRC1



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

5

 

LUI 

 

This figure illustrates the flow-of-control for the LOAD UPPER IMMEDIATE instruction. This
instruction replaces the top ten bits of an instruction with ten bits found in the instruction word
and zeroes out the bottom six bits. Only one port of the register file is used—the write port—as all
of the bits destined for the register file are zero or come directly from the instruction word. The
write-enable bit is set for the register file. 

Compared to ADDI, the immediate-manipulation logic for LUI is slightly different; the logic for
Left-Shift-6 looks like this:

The second argument to the ALU (SRC2) is ignored; this is accomplished by setting the ALU
control to be PASS1, which sends through the first argument unchanged. This same ALU control
will be used for the JALR instruction as well. One could alternatively zero-extend the immediate
value and use a SHIFT input to the ALU while inputting the value ‘6’ at the other ALU-input.
However, the illustrated mechanism seems slightly less complicated.

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

CONTROL

WE

PASS1

+1

TGT
LLI: 011 rA

Left-Shift-6

imm-10

SRC2 SRC1

23 1Bit: 067 5 41011 9 81415 13 12

011 reg A imm-10 (0 to 1023)LUI:

23 1Bit: 067 5 41011 9 81415 13 12

SRC1 OPERAND:

ZERO



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

6

 

SW 

 

This figure illustrates the flow-of-control for the STORE DATA WORD instruction. Only two
ports of the register file are used; the register file’s write port (TGT) is not used. The SRC2 output
port does not feed the ALU (as it normally does), but rather the DATA input of data memory. This
is the value to be written to memory. The second ALU input is an immediate value that comes
directly from the instruction word.

The write-enable bit is set for data memory but not for the register file. The ALU control signal is
a simple ADD function. The result of the ALU ADD goes to the ADDR port of data memory,
which responds by latching the data word at the specified address. 

Note that the rA field of the instruction, which is normally tied to the register file’s TGT specifier,
is instead tied to the SRC2 specifier. 

The Sign-Extend-7 logic extends the sign of the immediate value (as opposed to simply adding
zeroes at the top) and in so doing produces a two’s complement number. The logic looks like this: 

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

CONTROL

WE=0

ADD

+1

SRC1

Sign-Extend-7

SW: 100 rA rB simm-7

DATA

MEMORY

ADDR

SRC1

WE

SRC2 DATA

SRC2

SRC2 SRC1

23 1Bit: 067 5 41011 9 81415 13 12

101 reg A reg B simm-7 (-64 to 63)SW:

23 1Bit: 067 5 41011 9 81415 13 12

SRC2 OPERAND:



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

7

 

LW 

 

This figure illustrates the flow-of-control for the LOAD DATA WORD instruction. Only two ports
of the register file are used; the second source operand comes directly from the instruction word.
The write-enable bit is set for the register file but not for data memory. The ALU control signal is
a simple ADD function. The result of the ALU ADD does not go to the register file but rather to
the ADDR port of data memory, which responds by reading out the corresponding data word. This
value is stored in the register file.

As in SW, the Sign-Extend-7 logic extends the sign of the immediate value (as opposed to simply
adding zeroes at the top) and in so doing produces a two’s complement number. 

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

CONTROL

WE

ADD

+1

TGT

SRC1

SRC1

Sign-Extend-7

LW: 101 rA rB simm-7

DATA

MEMORY

ADDR

WE=0
SRC2 SRC1

23 1Bit: 067 5 41011 9 81415 13 12

100 reg A reg B simm-7 (-64 to 63)LW:

23 1Bit: 067 5 41011 9 81415 13 12

SRC2 OPERAND:



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

8

 

BNE 

 

This figure illustrates the flow-of-control for the BRANCH-IF-NOT-EQUAL instruction. Like
STORE DATA WORD instruction, it does not write a result to the register file. Two values are
read from the register file and compared. The ALU control signal is a request for a test of equality
(labeled EQ? in the diagram). If the ALU does not support an equality test, a SUBTRACT signal
can be used, as most ALUs do have a 1-bit output signal that indicates a zero-value result: the two
combined produce the same results as an EQ signal. 

The result of the comparison determines which of two values are to be placed into the program
counter. If the two values in the register file are 

 

equal

 

, the value to be latched in the program
counter is the sum 

 

PC + 1

 

(which is the normal program counter update value). If the two values read from the register file
are 

 

NOT equal

 

, the value to be latched in the program counter is the sum

 

PC + 1 + (sign-extended immediate value)

 

(note that the sign extension is just like in LW and SW). We have shown a small portion of the
CONTROL module: that portion controlling the PC mux. The choice between PC+1 and
PC+1+IMM is represented by an AND of the negated EQ! output of the ALU and a signal that
represents CONDITIONAL BRANCH (i.e. the 3-bit opcode is BNE:110). Thus, if the opcode is a

 

conditional branch

 

 and the two values are 

 

not equal

 

, choose PC+1+IMM, otherwise choose
PC+1.

Note that the rA field of the instruction, which is normally tied to the register file’s TGT specifier,
is instead tied to the SRC2 specifier. 

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

CONTROL

WE=0

EQ?

+1

SRC1

SRC2

SRC2 SRC1

BNE: 110 rA rB simm-7

EQ!

Sign-Ext-7

ADD

BR SRC2 SRC1



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

9

 

JALR 

 

This figure illustrates the flow-of-control for the JUMP-AND-LINK-THROUGH-REGISTER
instruction. This function uses two of the register file’s three ports. A value is read from the regis-
ter file and placed directly into the program counter, and the sum

 

PC + 1

 

(which is normally latched into the program counter) is written to a specified register in the regis-
ter file. 

The ALU signal is a PASS signal for the SRC1 operand—the ALU is instructed to perform no
function, only pass the SRC1 operand directly through. This value is written into the program
counter. 

PASS1

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

CONTROL

WE

+1

SRC1

SRC1

JALR: 111 rA rB 0000000
TGT

SRC2 SRC1



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

10

 

Putting it All Together

 

This diagram combines all of the previous data and control paths into one complete framework.
To accommodate all control and data paths, there are a number of muxes that choose the direction
of data flow. These muxes are operated by the CONTROL module, which depends on only two
inputs:

1. the 3-bit OPCODE of the instruction; and

2. the 1-bit EQ! signal from the ALU (which, for the BNE instruction, indicates that the two 
operands are equal—for all other instructions this signal is ignored). 

The CONTROL module is essentially a decoder. It takes these input signals in and sets a number
of outgoing signals that control the ALU, a host of multiplexers, and the write functions of the
register file and data memory. At the beginning of every cycle, a new program counter value is
latched, which causes a new instruction word to be read out and a new opcode to be sent to the

MUXalu2

Sign-Extend-7

Left-Shift-6

FUNCalu

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

WErf

+1

SRC1

SRC1

OP rA rC
TGT

WEdmem

DATA

MEMORY

rB

SRC2 ADDRDATA IN

EQ!

SRC2

Sign-Ext-7

ADD

TGT

MUXtgt

MUXrf

MUXpc

MUXalu1

CONTROL

DATA OUT

SRC2 SRC1



 
ENEE 646: Digital Computer Design 

 
—

 
 The RiSC-16 Instruction-Set Architecture

11

 

CONTROL module. The CONTROL module simply sets the control lines as appropriate for the
instruction, and all of the control and data paths are set up: after delays through the register file,
the ALU, the data memory, and the corresponding muxes, all of the signals stabilize. At this point,
the newly produced values are latched (in the register file, the data memory and/or the program
counter), and the new program counter causes a new instruction to be read from the instruction
memory.

These are the signals that the CONTROL module exports:

 

FUNC

 

alu

 

This signal instructs the ALU to perform a given function.

 

MUX

 

alu1

 

This 1-bit signal controls the mux connected to the SRC1 input of the ALU. The
mux chooses between the SRC1 output of the register file and the left-shifted imme-
diate value (to be used for LUI instructions).

 

MUX

 

alu2

 

This 1-bit signal controls the mux connected to the SRC2 input of the ALU. The
mux chooses between the SRC2 output of the register file and sign-extended imme-
diate value (to be used for ADDI, LW, and SW instructions).

 

MUX

 

pc

 

This 2-bit signal controls the mux connected the program counter. The mux chooses
between the output of the ALU, the output of the +1 adder that produces the sum
PC+1 on every cycle

 

MUX

 

rf

 

This 1-bit signal controls the mux connected to the register file’s SRC2 operand
specifier, a 3-bit signal that determines which of the registers will be read out onto
the 16-bit SRC2 data output port. The mux chooses between the rA and rC fields of
the instruction word. 

 

MUX

 

tgt

 

This 2-bit signal controls the mux connected to the register file’s 16-bit TGT data
input port, which carries the data to be written to the register file (provided the write-
enable bit of the register file is set). The mux chooses between the output of the
ALU, the output of the data memory, and the output of the +1 adder tied to the pro-
gram counter. 

 

WE

 

rf

 

This 1-bit signal enables or disables the write port of the register file. If the signal is
high, the register file can write a result. If it is low, writing is blocked. 

 

WE

 

dmem

 

This 1-bit signal enables or disables the write port of the data memory. If the signal
is high, the data memory can write a result. If it is low, writing is blocked. 


