

ENEE 646: Digital Computer Design

—

 The Pipelined RiSC-16

1

This paper describes a pipelined implementation of the 16-bit Ridiculously Simple Computer
(RiSC-16), a teaching ISA that is based on the Little Computer (LC-896) developed by Peter Chen
at the University of Michigan.

1. RiSC-16 Instruction Set

The RiSC-16 is an 8-register, 16-bit computer. All addresses are shortword-addresses (i.e. address
0 corresponds to the first two bytes of main memory, address 1 corresponds to the second two
bytes of main memory, etc.). Like the MIPS instruction-set architecture, by hardware convention,
register 0 will always contain the value 0. The machine enforces this: reads to register 0 always
return 0, irrespective of what has been written there. The RiSC-16 is very simple, but it is general
enough to solve complex problems. There are three machine-code instruction formats and a total
of 8 instructions. The instruction-set is given in the following table.

The instruction-set is described in more detail (including machine-code formats) in

The RiSC-16
Instruction-Set Architecture

.

Assembly-Code Format Meaning

add regA, regB, regC

R[regA] <- R[regB] + R[regC]

addi regA, regB, immed

R[regA] <- R[regB] + immed

nand regA, regB, regC

R[regA] <- ~(R[regB] & R[regC])

lui regA, immed

R[regA] <- immed & 0xffc0

sw regA, regB, immed

R[regA] -> Mem[R[regB] + immed]

lw regA, regB, immed

R[regA] <- Mem[R[regB] + immed]

bne regA, regB, immed

if (R[regA] != R[regB]) {
 PC <- PC + 1 + immed
 (if label, PC <- label)
}

jalr regA, regB

PC <- R[regB], R[regA] <- PC + 1

PSEUDO-INSTRUCTIONS:

nop

do nothing

halt

stop machine & print state

lli regA, immed

R[regA] <- R[regA] + (immed & 0x3f)

movi regA, immed

R[regA] <- immed

.fill immed

initialized data with value

immed

.space immed

zero-filled data array of size

immed

The Pipelined RiSC-16

ENEE 446: Digital Computer Design, Fall 2000
Prof. Bruce Jacob

ENEE 646: Digital Computer Design

—

 The Pipelined RiSC-16

2

2. Pipelined Implementation

A non-pipelined implementation of the RiSC-16 is described in the document

RiSC-16: Sequen-
tial Implementation

. The document shows the control flow and data flow for each instruction, as
well as the final hardware implementation that changes its dataflow based on the instruction
opcode. In that example, the entire instruction must be executed before the next clock, at which
point the results of the instruction are latched in the register file or data memory. This results in a
relatively long clock period.

The computer market is not fond of slow clocks, however. Increased clock speeds are possible as
the amount of logic between successive latches is decreased. If execution is sliced up into smaller
sub-tasks, the clock can run as fast as the longest sub-task. Theoretically, a pipeline of N stages
should run with a clock that is N times faster than a sequential implementation. For many reasons,
this theoretical limit is never reached, due to latch overhead, sub-tasks of unequal length, etc.
Nonetheless, extremely fast clock rates are possible. Slicing up the instruction execution this way
is called

pipelining

, and it is exploited to great degree in nearly every aspect of modern computer
design, from the processor core to the DRAM subsystem, to the overlapping of transactions on
memory and I/O buses, etc.

The RiSC-16 pipeline is shown in Fig. 1 on the next page. It is similar to the 5-stage DLX/MIPS
pipeline that is described in both

Hennessy & Patterson

 and

Patterson & Hennessy

, and it fixes a
few minor oversights, such as lack of forwarding to store data, lack of forwarding to comparison
logic in decode implementing the 1-instruction delay slot, etc. This pipeline adds in forwarding
for store data and eliminates branch delay slots (for the sake of simplicity). As in the DLX/MIPS,
branches are predicted not taken, though implementations of more sophisticated branch prediction
are certainly possible.

In the figure, shaded boxes represent clocked registers; thick lines represent 16-bit buses; thin
lines represent smaller data paths; and dotted lines represent control paths. The figure illustrates
how pipelining is achieved: the sub-tasks into which instruction execution has been divided are
instruction fetch, instruction decode, instruction execute, memory access, and register-file write-
back. Each of these sub-tasks, which is executed by dedicated hardware called a

pipeline stage

,
produces intermediate results that must be stored before an instruction may move on to the next
stage. By breaking up execution into smaller sub-tasks, it is possible to overlap the execution of
different sub-tasks of several different instructions simultaneously. If the intermediate results of
the various sub-tasks are not stored, they would be lost, as during the next cycle another instruc-
tion would be using the same hardware for its own sub-task. For instance, after an instruction is
fetched, it is necessary to store the fetched instruction somewhere, because the output of the
instruction memory will be different on the following cycle—the fetch stage will be fetching a
completely different instruction.

The storage locations for the intermediate results are called

pipeline registers

, and the figure illus-
trates their contents. It is common to label a pipeline register with the two stages that it divides.
Thus, the pipeline register that divides the instruction fetch (IF) and instruction decode (ID) stages
is called the

IF/ID register

; the pipeline register that divides the instruction decode (ID) and
instruction execute (EX) stages is called the

ID/EX register

; the register that divides the instruc-
tion execute (EX) and memory-access (MEM) stages is called the

EX/MEM register

; and the reg-
ister feeding the register-file writeback (WB) stage is called the

MEM/WB register

.

ENEE 646: Digital Computer Design

—

 The Pipelined RiSC-16

3

OP rT OPERAND2
ID

EX

REGISTER FILE

SRC1SRC2

TGT

OP rA rCrB

SRC1

TGT

SRC2

CTL7

rT STORE DATAOP

+1

DATA
MEMORY

ADDRDATA IN

RF WRITE DATArT

DATA OUT
CTL2 WEdmem

CTL1

WErf

FETCH
STAGE

DECODE
STAGE

EXECUTE
STAGE

MEMORY
STAGE

WRITEBACK
STAGE

L-Shift-6

MUXpc

MUXs2

MUXop2
MUXop1

MUXout

FUNCalu

Fig. 1: RiSC-16 5-stage pipeline

Pstomp

SRC2 SRC1

ALU OUTPUT

MUXalu2

MUXimm

CTL6

IF

EX

MEM

ID

MEM

WB

Pstall

CTL4

Program Counter

INSTRUCTION
MEMORY

Sign-Ext-7

OPERAND1OPERAND0

CTL5

ADD

CTL3

PC

PC

PC

PC

+1

ENEE 646: Digital Computer Design

—

 The Pipelined RiSC-16

4

Pipeline Registers

Program Counter

The address of the instruction currently being fetched.

IF/ID Register:

INSTR

The instruction to execute, with opcode, rA, rB, rC, and immediate fields.

PC

Contains the address of the instruction whose state is contained in this
pipeline register. This is used by BNE and JALR instructions and in han-
dling pipeline interrupts.

ID/EX Register:

OP

Contains the instruction opcode.

rT

Contains the instruction’s 3-bit target-register identifier, or the 3-bit binary
value 000 if the instruction has no target (e.g. SW and BNE instructions).

PC

Contains the address of the instruction whose state is contained in this
pipeline register. This is used by BNE and JALR instructions and in han-
dling pipeline interrupts.

OPERAND0

Contains the instruction’s immediate operand. If the instruction uses a
shifted or sign-extended immediate value (ADDI, LUI, LW, SW, BNE),
that value is available immediately and is stored here. In addition, the
JALR instruction uses the value PC+1 to store into the register file; because
the program counter contains the value PC+1 (relative to IDEX.pc), it can
be used for this purpose. Only in instances of JALR execution and branch
correction will PC not equal IDEX.pc+1, and in both those cases the con-
tents of the ID/EX register are invalid (the result of a STOMP event).

OPERAND1

Contains the instruction’s first register operand; this is the contents of the
register

register-file

[

rB

] or a result that has been forwarded from another
stage.

OPERAND2

Contains the instruction’s second register operand. For ADD and NAND
instructions, it is the contents of

register-file

[

rC

]. For BNE and SW instruc-
tions, it is the contents of

register-file

[

rA

]. When appropriate, it contains a
result that has been forwarded from another stage

EX/MEM Register:

OP

Contains the instruction opcode.

rT

Contains the instruction’s 3-bit target-register identifier, or the 3-bit binary
value 000 if the instruction has no target (e.g. SW and BNE instructions).

PC

If no exceptional instruction is in the pipeline, contains the address of the
instruction whose state is contained in this pipeline register. This is used to
handle pipeline interrupts.

STORE DATA

Contains the data to store to DATA MEMORY. Note that if the instruction
is not a SW, this information is not used.

ALU OUTPUT

Contains the most recent output of the ALU.

ENEE 646: Digital Computer Design

—

 The Pipelined RiSC-16

5

MEM/WB Register:

rT

Contains the instruction’s 3-bit target-register identifier, or the 3-bit binary
value 000 if the instruction has no target (e.g. SW and BNE instructions).

PC

If no exceptional instruction is in the pipeline, contains the address of the
instruction whose state is contained in this pipeline register. This is used to
handle pipeline interrupts.

RF WRITE

Contains the data that will be written to the register file on the following
cycle (provided the

rT

 register has a non-zero value).

Control Modules

These are the descriptions of the various CONTROL modules.

CTL

1

This module controls the write-enable line of the register file. If any data is to be
written to the register file, it comes from the MEM/WB register. Thus, the control
logic simply looks at the

rT

 register: if that register is zero, write-enable (WE) is
turned off. Otherwise, write-enable is turned on.

CTL

2

This module controls both the write-enable line of the data memory and the opera-
tion of MUX

out

, which feeds the RF WRITE DATA register and therefore deter-
mines what will be written to the register file on the following cycle. Thus, the only
input to the control module is the opcode of the instruction. The write-enable line of
the data memory is only set if the opcode is SW; otherwise, writing is disabled.
MUX

out

 only chooses the output of the data memory if the opcode is LW; otherwise,
the mux chooses the value of the ALU OUTPUT register in EX/MEM.

CTL

3

This module controls the operation of the ALU and the operation of MUX

alu2

, which
serves the ALU’s SRC2 input. The module’s input is the instruction opcode. The
translation from opcode to FUNC

alu

 control bus value is dependent on the ALU
design. MUX

alu2

 chooses between operand2 and immediate value; for all instruc-
tions that use immediate values (ADDI, LUI, SW, BNE, JALR), the value in
OPERAND0 is chosen. For all other instructions (ADD, NAND), the mux chooses
OPERAND2. Note that BNE has been handled by the EX stage, so the value of the
mux for a BNE is a

dont-care

 value.

CTL

4

This module controls the STOMP logic and the operation of MUX

pc

. It handles
branch mispredictions and JALR instruction execution. The module’s inputs are the
instruction opcode (after pre-processing by the STALL logic in CTL6 to ensure that
no STALL conditions are in effect) and the two register operands to be fed into the
ALU on the next cycle. Having access to these data operands allows the module to
determine if the two values are equal or not (i.e. determine if it is appropriate to cor-
rect a mispredicted branch instruction). The value of MUXpc is set as follows: if the
instruction is a BNE and the operands are not equal (or if it is determined that the
branch was mis-speculated, if more sophisticated branch prediction is implemented),
MUXpc chooses the value of the PC+1+OPERAND0 adder in the decode stage.
When this happens, the contents of the IF/ID register are overwritten with a NOP
instruction (this is a STOMP event). If the instruction in IF/ID is a JALR, MUXpc
chooses the output of MUXop1 and also enables a STOMP event. For all other
instructions and instances, MUXpc chooses the output of the PC+1 register in IF/ID
and no STOMP event occurs.

ENEE 646: Digital Computer Design — The Pipelined RiSC-16

6

CTL5 This module handles data forwarding; it controls the operation of MUXop1 and
MUXop2, the two muxes responsible for forwarding data from pipeline registers fur-
ther down the pipe. The control module’s input includes the register identifiers from
the instruction currently in the decode stage: fields rB and either rA or rC (the rA/rC
value is take from the output of MUXs2, which represents the appropriate register
specifier). The rest of the module’s inputs are the rT identifiers of the previous three
instructions. The control module compares each of the current instruction’s input
register operands against the output of the previous three instructions. If it is deter-
mined that any of the previous three instructions write to any of the registers that the
current instruction uses as operands, and if the register specifier in question is non-
zero, the data is forwarded from the appropriate pipeline register, giving priority to
instructions in higher stages (instructions nearer in time to the current instruction).
Note that, if the opcode field of the instruction in the decode stage is not considered,
this control module will always forward data based on two register operands; this
means that, in the case of the LUI instruction, one of those operands will be invalid.
However, because that operand will never be used, forwarding data will not produce
incorrect behavior. An optimization could be to consider the opcode to eliminate the
activation of unnecessary forwarding paths such as this.

CTL6 This module handles the load-use and branch-dependency interlocks and STALL
logic (i.e. it sets the opcode OP and register target rT in ID/EX). Its inputs are the
opcode and register operand specifiers of the instruction currently in the decode
stage (held in the IF/ID register) and the opcode and target register rT of the instruc-
tion in the execute stage. If the instruction currently in the execute stage (held in the
ID/EX register) is a LW and targets any register that the instruction in decode uses as
a source register, a STALL event is created. The control module’s outputs are the OP,
rT, and s2 fields of the ID/EX register, and the Pstall signal, which directs the PC and
IF/ID pipeline registers to not latch new values on the next cycle but to retain their
values instead. On a pipeline stall, the instructions in the fetch and decode stages are
held up, and the rest of the instructions in the pipeline are allowed to move ahead; to
fill the created hole, a NOP instruction is placed in the ID/EX register. This amounts
to putting an ADD opcode with target register r0 into the OP and rT fields of ID/EX.
The module produces a value for the rT register in ID/EX as follows: if the instruc-
tion in IF/ID is a type that targets the register file (ADD, ADDI, NAND, LUI, LW,
JALR), the value of rA is passed on to the rT register. For SW and BNE instructions,
the binary value 000 is passed, indicating that the instruction does not store a value
in the register file (this works because r0 is a read-only target).

CTL7 This module controls the operation of MUXimm, the mux responsible for the con-
tents of the OPERAND0 field of the ID/EX register, and MUXs2, the mux responsi-
ble for choosing between the rA and rC instruction fields for specifying the second
register operand. The control module’s input is the opcode of the instruction cur-
rently in the decode stage. MUXimm chooses between the sign-extended immediate
value (to be used for ADDI, LW, SW, and BNE instructions), the left-shifted imme-
diate value (to be used for LUI instructions), and the value PC+1 (to be used for
JALR instructions); note that, instead of using a dedicated adder to generate the
value of PC+1, the equivalent value can be taken directly from the main program
counter (proof of correctness is left to the reader). MUXs2 chooses rC for ADD and
NAND instructions; it chooses rA for all others. The control module simplifies the
logic for CTL5 by eliminating the need for CTL5 to look at both rA and rC and
choose, based on OP.

ENEE 646: Digital Computer Design — The Pipelined RiSC-16

7

Control Signals
There are a number of control signals that change the direction and flow of data in the pipeline.
These are the signals that the various CONTROL modules export:

FUNCalu This signal instructs the ALU to perform a given function.

MUXop1 This 2-bit signal controls the mux connected to the OPERAND1 component of the
ID/EX register, which ultimately feeds into the ALU. The mux chooses between the
SRC1 output of the register file and the outputs of the previous three instructions,
coming from the ALU, the mux at the end of the memory stage, and the RF WRITE
DATA component of the MEM/WB register (a value destined for the register file).

MUXop2 This 2-bit signal controls the mux connected to the OPERAND2 component of the
ID/EX register, which ultimately feeds into the ALU (unless overridden by an imme-
diate value). The mux chooses between the SRC2 output of the register file and the
outputs of the previous three instructions, coming from the ALU, the mux at the end
of the memory stage, and the RF WRITE DATA component of the MEM/WB regis-
ter (a value destined for the register file).

MUXalu2 This 1-bit signal controls the mux connected to the SRC2 ALU input. The mux
chooses between a register output and “operand0,” which is either an immediate
value derived from the instruction word or the value PC+1. The value of “operand0”
is chosen for ADDI, LUI, LW, SW, and JALR instructions, and the register operand
is chosen for all others (ADD, NAND, BNE).

MUXimm This 2-bit signal controls the mux connected to the OPERAND0 component of the
ID/EX register. The mux chooses between the sign-extended immediate value (to be
used for ADDI, LW, SW, and JALR instructions), the left-shifted immediate value
(to be used for LUI instructions), and the value PC+1 (for JALR instructions).

MUXout This 1-bit signal controls the mux connected to the RF WRITE DATA component of
the MEM/WB register, which holds the data to be written to the register file on the
following cycle (provided the write-enable bit of the register file is set). The mux
chooses between the output of the ALU and the output of the data memory (for LW
instructions).

MUXpc This 2-bit signal controls the mux connected the PC. The mux chooses between the
output of the decode stage’s MUXop1 multiplexor (to be used for JALR instructions),
the PC+1+OPERAND0 adder in the decode stage (for instances of BNE instructions
that are taken, or branch mispredicts if speculative execution is implemented), and
the output of the dedicated adder that produces the sum PC+1 every cycle.

MUXs2 This 1-bit signal controls the mux connected to the register file’s SRC2 operand
specifier, a 3-bit signal that determines which of the registers will be read out onto
the 16-bit SRC2 data output port. The mux chooses between the rA and rC fields of
the instruction word: rC is chosen for ADD and NAND instructions.

Pstall The pipeline stall signal. This 1-bit signal indicates that the PC and IF/ID pipeline
registers should not latch new data on the next clock edge but instead retain their cur-
rent contents. The signal causes a pipeline stall event, during which the instructions
in the execute and later stages are allowed to move forward one stage, but the top-
most two instructions (in fetch and decode stages) are held back, and a NOP instruc-
tion is inserted into the ID/EX register.

ENEE 646: Digital Computer Design — The Pipelined RiSC-16

8

Pstomp The pipeline stomp signal. This 1-bit signal indicates that the IF/ID pipeline register
should not latch the fetched instruction on the next clock but should instead latch a
NOP instruction. This is used to implement a branch-taken event (or branch-mispre-
dict event, if speculative execution is implemented), in which a branch instruction
(either BNE or JALR) in the decode stage changes the direction of control flow.

WErf This 1-bit signal enables or disables the write port of the register file. If the signal is
high, the register file can write a result. If it is low, writing is blocked. It is high for
ADD, ADDI, NAND, LUI, LW, and JALR instructions.

WEdmem This 1-bit signal enables or disables the write port of the data memory. If the signal
is high, the data memory can write a result. If it is low, writing is blocked. It is high
for SW instructions.

Not Included
The design does not cover a number of issues involved in real-world implementations, including
data caches, instruction caches, data- and instruction-cache misses, support for precise interrupts,
or branch prediction more sophisticated than predict-not-taken (which is what the design imple-
ments). More sophisticated branch prediction is possible, requiring a few simple things. First, the
IF/ID register needs a few extra bits holding branch-prediction state, including BranchPredic-
torIndex, PredictedDirection, TakenDirection, as well as the 16-bit TakenBranchTarget. It is
important to retain this information as well as the PC through to the decode stage so that either a
taken branch or a non-taken branch could be corrected if it is determined that either the choice of
direction or the target itself was a misprediction. Note that, if the target is not known at prediction
time, it might be that the direction predicted is taken, but because the branch cannot actually be
taken without a predicted target, the prediction will be ignored. Also, note that the PC cannot be
used during later stages as the branch-predictor index (as it is during fetch). Thus, to update the
predictor’s saturating counter, it is necessary to retain the branch-predictor table index or indices
for this purpose.

Additional Logic
The Left-Shift-6 and Sign-Extend-7 logic components are identical to those described in the doc-
ument RiSC-16: Sequential Implementation. Sign-Extend-7 extends the sign of the immediate
value (as opposed to simply adding zeroes at the top) and in so doing produces a two’s comple-
ment number. It is used for ADDI, LW, SW, and BNE instructions. Its logic looks like this:

Left-Shift-6 is used for the LUI instruction and its logic looks like this:

23 1Bit: 067 5 41011 9 81415 13 12

simm-7 (-64 to 63)

SRC2 OPERAND:

23 1Bit: 067 5 41011 9 81415 13 12

imm-10 (0 to 1023)

SRC1 OPERAND:

ZERO

ENEE 646: Digital Computer Design — The Pipelined RiSC-16

9

3. Support for Precise Interrupts
Though the implementation of precise interrupts is not specified directly, the hooks are there,
largely by the fact that the program counter is preserved down the entire pipeline. There are at
least two possibilities for implementation:

1. Interrupts can be handled in much the same manner as STOMP logic: the program counter is
redirected, and a subset of the instructions in the pipe are wiped out. The only difference
would be that the subset of instructions to stomp would be determined dynamically. For
instance, if the interrupt is for an invalid opcode (not applicable in this instruction-set, but
good for an example), it can be determined in the decode stage—and instructions in the exe-
cute, memory, and writeback stages would be allowed to finish. If the interrupt is for some-
thing like divide-by-zero (also not applicable here), it would be determined in the execute
stage, and only instructions in the memory and writeback stages would be allowed to commit.
Instructions in the fetch and decode stages would be turned into NOPs. If the data-memory
access uses an invalid address, only the instruction in the writeback stage would be allowed to
commit. In addition, the implementation would need logic to resolve multiple simultaneous
interrupts, giving priority to those further down the pipe. This also implies that the PC of the
instruction must be carried down the pipe until the latest stage in which it is possible to cause
an interrupt (e.g. up to and including the memory-access stage).

2. Interrupts can also be handled in much the same way as a system with a reorder buffer: at the
time of instruction commit. This means recognizing that an exceptional situation has occurred,
holding that information with the instruction state (i.e. in the pipeline registers), and acting on
it during the writeback stage—only in the writeback stage. Thus, in addition to extra fields in
the pipeline register to hold interrupt type, the MEM/WB register also needs a copy of the pro-
gram counter.

The primary differences between the two scenarios are simplicity and performance. The first
scheme acts upon exceptional conditions as soon as they are detected, thereby saving a few cycles
per interrupt, but it must also handle situations where an older instruction causes an interrupt after
a newer instruction causes its own. In this case, the pipeline would be in the process of handling
the newer instruction’s exception when the older instruction’s exception is detected. The pipeline
must abort the interrupt-handler-in-progress and redirect control to handle the exception that was
detected second but should be handled first (in program order). Thus, the first scheme requires a
bit more logic.

For more details on the transfer of control in exceptional situations, see the document RiSC-16
System Architecture.

