Bus-Based Multiprocessors

Shared Memory Model:

\[P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow \ldots \]

Shared Memory Implementation:

\[\text{CPU core} \rightarrow \text{Physical Memory (DRAMs)} \]
\[\text{CPU core} \rightarrow \text{Memory Controller} \]
\[\text{Bridge} \rightarrow \text{to I/O subsystem} \]
Cache Coherence Problem

(Assume writeback caches)

1. \(P_1 \) performs \text{ld} A
2. \(P_1 \) performs \text{st} A
 \(\rightarrow \) A is dirty in \(P_1 \)'s cache
3. \(P_2 \) performs \text{ld} A

\(\rightarrow P_2 \) loads stale copy of A from memory.

(Assume write through caches)

1. \(P_1 \) performs \text{ld} A
2. \(P_2 \) performs \text{ld} A
3. \(P_1 \) performs \text{st} A
4. \(P_2 \) performs \text{ld} A

\(\rightarrow P_2 \) loads stale copy of A from cache.
Memory Consistency Model

⇒ When sequential consistency is broken.

Sequentially consistent order:

- \(P_1 \) writes \(A = 1 \)
- \(P_1 \) writes \(X = 1 \)
- \(P_2 \) reads \(X = 1 \)
- \(P_2 \) reads \(A = 1 \)
- \(P_2 \) writes \(B = A = 1 \)

⇒ Caches reorder writes.
- \(P_1 \) order: \(A = 1, X = 1 \)
- \(P_2 \) order: \(X = 1, A = 1 \)

Assume write back caches:

1. \(P_1 \) writes \(A = 1 \)
2. \(P_1 \) writes \(X = 1 \)
3. \(X \) is written back to memory
4. \(P_2 \) reads \(X = 1 \)
5. \(P_2 \) reads \(A = 0 \)
6. \(P_3 \) writes \(B = A = 0 \)
Snoopy Cache Coherence Buses

Cache Bus

Main Memory

Snoopy Cache Coherence Hardware

state tag data

... ...

state tag data

Snoopy Cache Coherence Hardware
Bus-Based Write Invalidate

Diagram:
- Invalid
 - Write miss
 - Remote write miss
- Exclusive (dirty, only copy)
 - Read hit
 - Write hit
 - Remote read miss
- Shared (clean, multiple copies)
 - Remote read miss
 - Remote write hit/miss

Transitions:
- Processor-induced transitions
- Bus-induced transitions
Read Miss:
--place request on bus
--reply from memory --> exclusive
--reply from cache --> shared state

Read hit:
--no change

Bus read miss:
--Exclusive --> shared, provide copy
--Shared --> shared, provide copy
--Modified --> shared, provide copy, writeback to memory

Write Miss:
--place request on bus
--reply from memory --> Modified
--reply from cache --> Modified

Write hit:
--Exclusive --> modified
--Shared --> modified, place request on bus
--Modified --> modified

Bus write hit:
--Shared --> invalid
--Exclusive (impossible)
--Modified (impossible)