Q1) I want to build an adder that can be used both as an adder and a subtracter (just like figure 5.6 in the book). I go to a electronic hardware store and find that they have full adders, decoders, and gates, or gates, not gates but no XOR/XNOR gates. How do we build an n-bit adder/subtracter using the components available.

Q2) Build the following functions using a 3-input Decoder
 a) $F(x,y,z) = \Sigma m(1,3,4)$
 b) $F(x,y) = \Sigma m(0,3)$ (note that the decoder has 3 inputs and this function has 2 inputs. You cannot leave the third input of the decoder hanging, you should assign it some value)

Q3) Build a 3 input decoder with enable using 2 input decoders with enable. (Hint: Try to build an inverter using a 2 input decoder)