Clark School Home UMD
ECE

ECE News Story

Milchberg Lab Featured in APS Viewpoint

Milchberg Lab Featured in APS Viewpoint

Intense Laser Matter Interactions Group
Intense Laser Matter Interactions Group

The University of Maryland Intense Laser Matter Interactions Group, led by Prof. Howard Milchberg (ECE/Physics/IREAP), recently published an article in Physical Review X. Their article, "Demonstration of Long-Lived High-Power Optical Waveguides in Air" presents research demonstrating the efficient channeling of a laser beam through gas. Using their unique method, Nihal Jhajj, Eric Rosenthal, Reuven Birnbaum, Dr. Jared Wahlstrand, and Prof. Howard Milchberg were able to transmit the laser beam with a much higher average power than previously thought possible.

In APS Viewpoint, Arnaud Couairon and Stelios Tzortzakis liken the technology to those spoken of by politicians during the Cold War - "technologies that seemed to come from science fiction, including high-power laser beams for fighting remote battles in the sky." With the research being done by members of the Milchberg lab, this science fiction may just become reality (thankfully, as the reviewers suggest, for friendly purposes).

The paper demonstrates the use of "a square-shaped bundle of four intense filaments of light that leave behind a trail of hot gas. The four hot air columns expand and create a central zone of higher-density air that serves as a waveguide for subsequent pulses of light." This novel method for creating a transiet waveguide is what has allowed the group to transmit a 110-mJ pulse of green light through 70 centimeters of air.

Beyond the implications for science fiction writers, who will now have to become a little more creative with their weaponry, these findings are important for cavity-free lasing in the atmosphere and atmospheric laser communiation. According to Couairon and Tzortzakis, "the group's work could [even] lead to the successful implementation of filament-based lightning protection."


"Demonstration of Long-Lived High-Power Optical Waveguides in Air"
N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg
Phys. Rev. X 4, 011027 (2014)
Published February 26, 2014|PDF (FREE)

March 21, 2014


Prev   Next
Reviewers liken the technology to those spoken of by politicians during the Cold War - "technologies that seemed to come from science fiction, including high-power laser beams for fighting remote battles in the sky."



Current Headlines

Gomez' Team Patent Has Far Reaching Impact on Cancer Detection Technologies".

Mayergoyz's Book Recieves Outstanding Review

Flexus Living & Learning Community Honored by Women in Engineering ProActive Network

John Baras named IFAC Fellow

Cover of Nanotechnology Features Work From the Munday Lab

Alexander Barg receives NSF grant to study theoretic aspects of local data recovery

Khaligh gives keynote speech at ITEC 2016

FICO purchases alums' cyber risk startup

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts