
Computer Vision on FPGAs:
Design Methodology and its Application to Gesture Recognition

Mainak Sen*, Ivan Corretjer*, Fiorella Haim*, Sankalita Saha*, Jason Schlessman†, Shuvra S. Bhatta-
charyya*, and Wayne Wolf†

*Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD, 20742, USA.

†Department of Electrical Engineering,
Princeton University, Princeton, NJ, 08544, USA.

Abstract

In this paper we develop a design methodology for gen-
erating efficient, target specific Hardware Description Lan-
guage (HDL) code from an algorithm through the use of
coarse-grain reconfigurable dataflow graphs as a represen-
tation to guide the designer. We demonstrate this methodol-
ogy through an algorithm for gesture recognition that has
been developed previously in software [9]. Using the re-
cently introduced modeling technique of homogeneous pa-
rameterized dataflow (HPDF) [3], which effectively
captures the structure of an important class of computer vi-
sion applications, we systematically transform the gesture
recognition application into a streamlined HDL implemen-
tation, which is based on Verilog and VHDL. To demon-
strate the utility and efficiency of our approach we
synthesize the HDL implementation on the Xilinx Virtex II
FPGA. This paper describes our design methodology based
on the HPDF representation, which offers useful properties
in terms of verifying correctness and exposing perfor-
mance-enhancing transformations; discusses various chal-
lenges that we addressed in efficiently linking the HPDF-
based application representation to target-specific HDL
code; and provides experimental results pertaining to the
mapping of the gesture recognition application onto the Vir-
tex II using our methodology.

1 Background and motivation

Computer vision methods based on real-time video anal-
ysis form a challenging and increasingly important domain
for embedded system design. Due to their data-intensive na-
ture, hardware implementations for real-time video are of-
ten more desirable than corresponding software
implementations despite the relatively longer and more
complicated development processes associated with hard-
ware implementation. In this paper we propose a methodol-
ogy for systematically deriving efficient hardware
implementations for an important class of real-time video-
and image processing applications. The methodology is de-
veloped here in the context of design representations and as-

sociated application mapping techniques to guide the
hardware designer throughout the implementation process.
Additional formalization and software infrastructure may
also render it suitable for use in automated design tools. Our
approach assumes that the targeted application can be rep-
resented through a particular form of dataflow graph, called
a homogeneous parameterized dataflow (HPDF) graph. In a
previous related work, HPDF graphs have been shown to
effectively represent the behavior of a useful class of image
and video processing applications [3].

2 Related work

A number of studies have been undertaken in recent
years on the design and implementation of multimedia ap-
plications on FPGAs using formal or otherwise systematic
approaches. For example, Streams-C [4] provides compiler
technology that maps high-level, parallel C language de-
scriptions into circuit-level netlists targeted to FPGAs. To
use Streams-C effectively, the programmer needs to have
some application-specific hardware mapping expertise as
well as expertise in parallel programming under the CSP
(Communicating Sequential Process) model of computa-
tion [12]. Streams-C consists of a small number of libraries
and intrinsic functions added to a subset of C that the user
must use to derive synthesizable HDL code.

Handel-C [5] represents another important effort to-
wards developing a hardware oriented C language. Handel-
C is based on a subset of the ANSI C standard along with
extensions that support a synchronous parallel mode of op-
eration. This language also conforms to the CSP model.

Match [1] or AccelFPGA as it is called now, generates
VHDL or Verilog from an algorithm coded in MATLAB, a
programming language that is widely used for prototyping
image and video processing algorithms. AccelFPGA has
various compiler directives that the designer can use to ex-
plore the design space for optimized hardware implementa-
tion. Loop unrolling, pipelining, and user-defined memory
mapping are examples of implementation aspects that can
be coordinated through AccelFPGA directives.

0-7695-2372-2/05/$20.00 (c) 2005 IEEE

Compaan [6] is a another design tool for translating
MATLAB programs into HDL for FPGA implementation.
Compaan performs its translation through an intermediate
representation that is based on the Kahn process network
model of computation [7].

3 Problem definition

Rather than adapting a sequential programming lan-
guage for hardware design, as the approaches described in
Section 2 do, the approach that we pursue in this paper is
based on direct representation by the designer of application
concurrency using dataflow principles. Dataflow provides
an application modeling paradigm that is well-suited to par-
allel processing (and to other forms of implementation
streamlining) for signal, image, and video processing (DSP)
systems [13]. Furthermore, we use the dataflow representa-
tion as a conceptual tool to be used by the designer rather
than as the core of an automated translation engine for gen-
erating HDL code. This combination of a domain-specific
model of computation and its use as a conceptual design
tool rather than an automated one allows great flexibility in
streamlining higher level steps in the design process for a
particular application.

As an important front-end step in exploiting this flexibil-
ity, we employed HPDF (homogeneous parameterized data-
flow) [3] semantics to represent the behavior of the targeted
gesture recognition system. HPDF is a restricted form of
dynamic dataflow that is at an exploratory stage of develop-
ment and is not supported directly by any existing synthesis
tools. However, an HPDF-based modeling approach cap-
tures the high-level behavior of our gesture recognition ap-
plication in a manner that is highly effective for design
verification and efficient implementation. As our work in
this paper demonstrates, the HPDF-based representation is
useful to the designer in structuring the design process and
bridging the layers of algorithm and architecture, while syn-
thesis tools play the complementary role of bridging the ar-
chitecture and the target platform.

In the following two sections, we review, respectively,
the HPDF model of computation and the targeted gesture
recognition application in more detail.

4 HPDF

Homogeneous parameterized dataflow (HPDF) [3] is a
metamodeling technique that was introduced recently to
model DSP applications that involve dynamic dataflow be-
tween functional modules (actors). For some applications it
was shown to be a simpler and more powerful alternative to
a related metamodeling technique, called parameterized
dataflow [2], that was developed earlier to represent recon-
figurable dataflow graphs in a general manner.

Many applications involve actors whose data production
and consumption rates are input-dependent, and cannot be
determined at synthesis time. HPDF models this phenome-
non by encapsulating variable amounts of data into individ-
ual vectors that are passed between modules as single units
of statically-known, homogeneous “size” (a single vector
value on each production or consumption operation). In
many image and video processing applications, this simple,
widely-applicable convention of aggregating certain blocks
of variable-sized data values into vectors exposes high-lev-
el static structure that can be exploited at design time to help
validate an implementation and improves its efficiency. For
a more detailed discussion of HPDF principles, we refer the
reader to [3].

5 Description of the gesture recognition
algorithm

As a consequence of continually-improving CMOS
technology, it is now possible to develop “smart camera”
systems that not only capture images, but also process im-
age frames in sophisticated ways to extract “meaning” from
video streams.

One important application of smart cameras is gesture
recognition from video streams of human subjects. In the
gesture recognition algorithm discussed in [9], for each im-
age captured, real-time image processing is performed to
identify and track human gestures. As the flow of images is
increased, a higher level of reasoning about human gestures
becomes possible. This type of processing occurs inside the
smart camera system using advanced very large scale inte-
gration (VLSI) circuits for both low-level and high-level
processing of the information contained in the images. Fig-
ure 1 gives an overview of the smart camera gesture recog-
nition algorithm.

The functional blocks of particular interest in this paper
are the low-level processing Region, Contour, Ellipse, and
Match portions (within the dotted rectangle in Figure 1).
Each of these blocks operate at the pixel level to identify
and classify human body parts in the image and are thus

Figure 1: Block level representation of the smart cam-
era algorithm [9].

good candidates for implementation on a high performance
field-programmable gate array (FPGA).

The computational core of the block diagram in Figure 1
can be converted from being an intuitive flow diagram to a
precise behavioral representation through integration of
HPDF modeling concepts. This exposes significant patterns
of parallelism and of predictability, homogeneous vector-
dataflow as described in Section 4, which together help us
to map the application efficiently into hardware as de-
scribed below.

The front-end processing is performed by Region extrac-
tion, which accepts three images as inputs. One image has
just background regions and is used in processing the two
other images, which have foreground regions. In one of the
foreground images, Region marks areas that are of human
skin-tones, and in the other it marks areas that are of non-
skin tone. Each of the images is independent of the other, re-
vealing image-level parallelism. Additionally, within each
image the individual pixels are all independent from one
other, leading to pixel-level parallelism. Furthermore, the
operations performed are of similar complexity suggesting
that a synchronous pipeline implementation with little idle
time between stages is possible.

After separating foreground regions into two images
each containing only skin and non-skin tone regions respec-
tively, the next processing stage that occurs is Contour fol-
lowing. Here, each image is scanned linearly pixel by pixel
until one of the regions marked in the Region stage is en-
countered. For all regions in both images (i.e., regardless of
skin or non-skin tone), the contour algorithm traces out the
periphery of each region, and stores the locations of
the boundary pixels. In this way the boundary pixels mak-
ing up each region are grouped together in a list and passed
to the next stage.

The Ellipse fitting functional block processes each of the
contours of interest and characterizes their shapes through
an ellipse-fitting algorithm. The process of ellipse fitting is
imperfect and allows for tolerance in the deformations
caused during image capture (such as objects obscuring
portions of the image). At this stage each contour is pro-
cessed independent of the others revealing contour-level
parallelism.

Finally, the Graph matching functional block waits until
each contour is characterized by an ellipse before beginning
its processing. The ellipses are then classified into head, tor-
so, or hand regions based on several factors. The first stage
attempts to identify the head ellipse, which allows the algo-
rithm to gain a sense of where the other body parts should
be located relative to the head. After classifying the head el-
lipse, the algorithm proceeds to find the torso ellipse. This
is done by comparing the relative sizes and locations of el-
lipses adjacent to the head ellipse, and using the fact that the

torso is usually larger by some proportion than other regions
and that it is within the vicinity of the head. The conditions
and values used to make these determinations are part of a
piece-wise quadratic Bayesian classifier that only requires
the six characteristic parameters from each ellipse in the im-
age [9].

6 Modeling of algorithm

We initially prototyped the gesture recognition algo-
rithm through HPDF representation in Ptolemy II [8], a
widely-used software tool for experimenting with new
models of computation and integrating different models of
computation. This prototype was developed to validate our
HPDF-based representation of the application, simulate its
functional correctness, and provide a reference to guide the
mapping of the application into hardware. In the top-level,
the HPDF application representation contains four hierar-
chical actors (actors that represent nested subsystems) —
Region, Contour, Ellipse and Match — as shown in Figure
2. The symbols on the edges represent the numbers of data
values produced and consumed on each execution of the ac-
tor. Here and are parameterized data transfer rates that
are not known statically. Furthermore, the rates can vary
during execution subject to certain technical restrictions
that are imposed by the HPDF model [3].

By examining the HPDF graph in conjunction with the
intra-actor specifications (the actors were specified using
Java in our Ptolemy II prototype), we derived a more de-
tailed representation as a major step in our hardware map-
ping process. This representation is illustrated across Figurex y,()

n p

Figure 2: HPDF model of the application with param-
eterized token production and consumption rates
where R is region, C contour, E ellipse and M Match.

n p

Figure 3: Region is shown to be broken into a four
stage pipeline process.

3 and Figure 4. Figure 3 gives a schematic model of Region.
As in general dataflow diagrams, the round nodes (, ,

, , and) represent computations, and the edges rep-
resent unidirectional data communication. The square
nodes represent image buffers or memory, and the diamond
nodes on edges represent initial data values (or equivalent-
ly, delays in the associated data streams). The representa-
tion of Figure 3 reveals that even though buffers Image1
and Image3 are being read and written into, the reading and
writing occur in a mutually non-interfering way. Further-
more, separating the two buffers makes the four stage pipe-
line implementation a natural choice.

In Contour (Figure 4), the dotted edges represent condi-
tional data transfer. In each such conditional edge, zero or
one data item can be produced by the source actor depend-
ing on its input data. More specifically, in Figure 4 there
will either be one data value produced on the edge between
A and B or on the self looped edge, and the other edge will
have zero data items produced. The representation of Figure
4 and its data transfer properties motivated us to map the as-
sociated functionality into a four stage, self-timed process.

The ellipse module utilizes floating-point operations to
fit ellipses to the various contours. The original C code al-
gorithm uses a moment-based initialization procedure along
with trigonometric and square root calculations. The initial-
ization procedure computes the averages of the selected
contours pixel locations and uses these averages to compute
the various moments. The total computation cost is:

,
where is the number of pixels in the contour, and each
term represents the cost of performing operation .
In an effort to save hardware and reduce complexity, the
following transformation was applied to simplify the result-
ing hardware to calculate the averages and moments:

and similarly for and . The computation com-
plexity after the transformation is:

.
Comparing this with the expression for the previous ver-

sion of the algorithm, we observe a savings of , which
increases linearly with the number of contour pixels, at the
expense of a fixed overhead . This amounts to a
large overall savings for practical image sizes.

Further optimizations that were performed on the el-
lipse-fitting implementation included splitting the calcula-
tions up into separate stages. This allowed for certain
common values to be computed in earlier stages and reused
in later stages to remove unnecessary computations.

The characterization of ellipses in Match is accom-
plished in a serial manner, in particular, information about
previously identified ellipses is used in the characterization
of future ellipses. Our functional prototype of the matching
process clearly showed this dependency of later stages on
previous stages. The hardware implementation that we de-
rived is similar to that of Contour, and employs a a six-stage
self-timed process to efficiently handle the less predictable
communication behavior.

7 Experimental setup

The target FPGA board chosen for this application is the
multimedia and microblaze development board from Xil-
inx. The board can act as a platform to develop a wide vari-
ety of applications such as image processing and ASIC
prototyping. It features the XC2V2000 device of the Virtex
II family of FPGAs.

Some of the more important features of the board include
the following.
• Five external, independent 512Kx36 bit ZBT RAMs
• A video encoder-decoder.
• An audio codec.
• Support for PAL/NTSC TV input/output.
• On-board ethernet support.
• An RS-232 port.
• Two PS-2 serial ports.
• A JTAG port.
• A System ACE-controller and Compact Flash storage

device to program the FPGA.

7.1 ZBT memory

One of the key features of this board is its set of five ful-
ly-independent banks of 512k x 32 ZBT RAM [11] with a
maximum clock rate of 130 MHz. These memory devices
support a 36-bit data bus, but pinout limitations on the
FPGA prevent the use of the four parity bits. The banks op-
erate completely independently of one another, as the con-
trol signals, address and data busses and clock are unique to
each bank with no sharing of signals between the banks.
The byte write capability is fully supported as it is the burst-

A B
C D E

5nC+ 6nC- 3nC* 5C/+ + +

n
COP OP

mxx
xi x–()2

n

i 1=

n

∑
 
 
 
  xi()2

n

i 1=

n

∑ x()2
–

 
 
 
 

⇒=

mxy myy

5nC+ 3nC* 9C/ 3C- 3C*+ + + +

3nC-

4C/ 3C*+

Figure 4: Contour shown to have conditional edges
and serial execution. Implemented as a four stage self-
timed process.

mode, in which the sequence starts with an externally sup-
plied address.

Due to the size of the images, we needed to store them
using these external RAMs. A memory controller module
was written in Verilog, simulated, synthesized, and down-
loaded onto the board. We then successfully integrated this
module with the Region module.

7.2 RS-232

In order to communicate between the host PC and the
board, we chose to use the RS-232 protocol. We adapted a
RS232 controller core with a wishbone interface and con-
figurable baud rate [14] [15] to write images from the PC to
the memory. The board acts as a DCE device; we imple-
mented the physical communication using a straight-
through three wire cable (pins 2, 3 and 5) and used the Win-
dows Hyperterminal utility to test it. This interface was suc-
cessfully integrated to the Region and Memory Controller
modules and tested in the board.

Figure 5 illustrates the overall experimental setup, in-
cluding the interactions between the PC and the multimedia
board, and between the board and the HDL modules.

8 Design Tradeoffs and Optimizations

There were various design decisions made during imple-
mentation of the algorithm, some of which were specific to
the algorithm at hand. In this section, we explore in more
detail the tradeoffs that were present in the important design
space associated with memory layout. We also present a
step-by-step optimization that we performed on one of the

design modules for reducing its resource requirements on
the FPGA.

8.1 Memory layout tradeoffs

The board memory resources are consumed by the stor-
ing of the images. Each of the 5 ZBT RAM banks can store
512 K words that are 32 bits long, for a total storage capac-
ity of 10 Mbytes. Given that each pixel requires one byte of
storage and that there are 384 x 240 pixels per image, 90
Kbytes of memory are required to store each image. The
first module, Region, has 3 images as inputs, and 2 images
as outputs. These two images are scanned serially in the sec-
ond module, Contour. The total amount of memory needed
for image storing is then 450 Kbytes, less than 5% of the ex-
ternal memory available on board. However, reorganization
of the images in the memory can dramatically change the
number of memory access cycles performed and the num-
ber of banks used. These trade-offs also affect the total pow-
er consumption.

Several strategies are possible for storing the images in
the memory. The simplest one (Case 1) would be to store
each of the five images in a different memory bank, using
90 K addresses and the first byte of each word. In this way,
the 5 images can be accessed in the same clock cycle (Fig-
ure 6a). However, we can minimize the number of memory
banks used by exploiting the identical order in which the
reading and writing of the images occurs (Case 2). Thus, we
can store the images in only two blocks, using each of the
bytes of a memory word for a different image, and still ac-
cess all the images in the same clock cycle (Figure 6b).

On the other hand, a more efficient configuration in or-
der to minimize the number of memory access cycles (Case
3) would be to store each image in a different bank, but us-
ing the four bytes of each memory word consecutively (Fig-
ure 6c). Other configurations are possible, for example,
(Case 4) we can have two images per bank, storing 2 pixels
of each image in the same word (Figure 6d). Table 2 sum-
marizes the number of banks and memory access cycles
needed for each of these configurations.

Case 3 appears to be the most convenient memory orga-
nization form. Here, the time associated to the images read-
ing and writing is 69120 memory access cycles, and the
total number of memory access cycles is also the lowest,
161280. This reduced number of memory access cycles
suggests that power consumption will also be relatively low
in this configuration. Figure 6 illustrates all the cases we
discussed.

8.2 Floating point optimizations

Floating-point operations are used throughout the imple-
mentation of the Ellipse and Match functional blocks. The

Figure 5: The overall setup showing interaction
between various modules of our design and compo-
nents of the multimedia board.

Ellipse functional block processes the location of ev-
ery pixel that is along the border of a contour. From these
locations averages, moments, and rotation parameters are
derived that characterize a fitted ellipse to the particular
contour. Due to the non-uniform shape of the contours, the
ellipse fitting is imperfect and introduces some approxima-
tion error. By representing the parameters using floating
point values, the approximations made have more precision
than if integer values were used. To further motivate the
need for floating point numbers, the Match functional block
uses these approximations to classify each ellipse as a head,
torso, or hand. To do so, the relative locations, sizes, and
other parameters are processed to within some hard-coded
tolerances for classification. As an example the algorithm
considers two ellipses, one being around times larger
than the other, within a distance of each other to be clas-
sified as a head/torso pair. It is because of the approxima-
tions and tolerances used by the algorithm that floating-

point representations are desirable as they allow the algo-
rithm to operate with imperfect information and still pro-
duce reasonable results.

For our implementation, we used the IEEE 1076.3
Working Group floating-point packages, which are free and
easily available from [10]. These packages have been under
development for some time, have been tested by the IEEE
Working Group, and are on a fast track to becoming IEEE
standards. Efficient synthesis of floating point packages in-
volved the evaluation of floating-point precision required
by the smart camera algorithm. The C code version of the
algorithm utilizes variables of type double, which repre-
sent 64-bit floating-point numbers. Utilizing the floating-
point library mentioned before, we were able to vary the
size of the floating-point numbers to see how the loss in pre-
cision affected the algorithm outputs as well as the area of
the resulting synthesized design.

We reduced the number of bits used in the floating-point
number representation and performed a series of simula-
tions to determine the loss in accuracy relative to the origi-
nal 64-bit algorithm. Figure 7 shows the resulting RMS for
various sizes of floating-point numbers. For the smart cam-
era algorithm, we found that the range from 20 to 18 bit
floating-point number representations gave sufficient accu-
racy and any lower precision (such as 16-bit) caused a dra-
matic increase in the errors. The values that are most
affected by the loss in precision are rotX, aX, and to some
extent aY. These values depend on the computation of the
arctangent function. As the precision is lowered, small vari-
ations cause large changes in the output of arctangent. The
dxAvg and dyAvg parameters are not as affected by the loss
in precision as the only computations they require are addi-
tion and division. Table 1 presents the area in number of
look-up tables required for each of the floating-point num-
ber representations. As expected, when we reduce the num-
ber of bits, the area of the resulting design decreases, but at
the cost of lost precision.

Figure 6: Image storage distribution a) Case1: Each
image in a separate bank using only first byte of first
90K words b) Case2: Three images in bank 0 and two
in bank 1 c) Case3: Each image in separate bank but
all four bytes used in each word, using 22.5K words
d) Case4: Images stored in three banks, each using 2
bytes of the first 45K words

x y,()

X
Y

Table 1: Synthesis results

Number of
bits

Area (in
LUTs)

32-bit 110092

21-bit 54944

20-bit 46951

18-bit 41088

16-bit 23923

9 Some simulation outputs

In this section, we present some representative simula-
tion results from the HDL modules. Figure 8 and Figure 9
show the outputs of the first two blocks after they were im-
plemented in HDL.We used Modelsim XE II 5.8c for HDL
simulation, Synplify Pro 7.7.1 for synthesis of modules that
used floating point and Xilinx ISE 6.2 for rest of the synthe-
sis and for downloading the bitstream into the FPGA. Fig-
ure 10 illustrates the Modelsim simulation and shows
signals on various input and output lines of one ZBT mem-
ory bank when it is being written with four different data
items into four bytes of address zero.

10 Conclusions

 In this paper, we have developed and applied a novel de-
sign methodology for effective platform-specific FPGA im-

plementation of computer vision applications. In this work,
we applied the homogeneous parameterized dataflow graph
(HPDF) representation format to model a gesture recogni-
tion algorithm that exhibits dynamically-varying data pro-
duction and consumption rates between certain pairs of key
functional components. The top level HPDF model and sub-
sequent intermediate representations that we derived from
this model naturally suggested efficient hardware architec-
tures (e.g., synchronous pipelined, self-timed, or a combi-
nation) for implementation of the main subsystems. The
HDL code for the four modules of the algorithm was devel-
oped following these suggested architectures. The modules
were verified for correctness, and synthesized to target a
multimedia board from Xilinx. Memory management and
floating point handling also played a major role in our de-
sign process. We explored various trade-offs in these di-
mensions and integrated our findings seamlessly with the
architectural decisions described above.

Acknowledgement
This research was supported by grant number 0325119

from the U. S. National Science Foundation.

References
[1] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim, and R.

Uribe, Automatic Conversion of Floating-point MATLAB
Programs into Fixed-point FPGA based Hardware Design,
Proceedings of the 41st Annual Conference on Design Auto-
mation, pp. 484-487, 2004.

[2] B. Bhattacharya and S. S. Bhattacharyya. Quasi-static sched-
uling of reconfigurable dataflow graphs for DSP systems. In
Proceedings of the International Workshop on Rapid System
Prototyping, pages 84-89, Paris, France, June 2000.

[3] M.Sen, S. S. Bhattacharyya, T. Lv, W. Wolf. Modeling Im-
age Processing Systems with Homogeneous Parameterized
Dataflow Graphs. ICASSP 2005.

[4] M. Gokhale et. al. Stream-oriented FPGA computing in the
Streams-C High Level Language. In IEEE international sym-
posium on Field-Programmable Custom Computing Ma-
chines.

Figure 7: Comparison of percentage RMS error for dif-
ferent length floating point representations normalized
to 64-bit floating point representation.

RMS Errors Relative to 64-bit

0

20

40

60

80

100

120

140

32-bit 21-bit 20-bit 18-bit 16-bit

Pe
rc

en
ta

ge
 (%

)

aX aY

dxAvg dyAvg

rotX

Region

Figure 8: HDL representation of Region transforms
the image on the left to the output on the right.

Contour

Figure 9: Actual transformation to the image done
by HDL representation of Contour.

Figure 10: Modelsim simulation screenshot of 4 dif-
ferent data items being written into 4 bytes of addr 0.

[5] S. Chappell, C. Sullivan. Handel-C for co-processing & co-
design of Field Programmable System on Chip. White paper,
Sept 2002.

[6] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere. Com-
paan: Deriving Process Networks from Matlab for Embedded
Signal Processing Architectures. Presented at the 8th Interna-
tional Workshop on Hardware/Software Codesign
(CODES'00), May 2000, San Diego. CA.

[7] G. Kahn. The semantics of a simple language for parallel pro-
gramming. In Proceedings of the IFIP Congress, 1974.

[8] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.
Neuendorffer, S. Sachs, Y. Xiong. Taming heterogeneity -
the ptolemy approach. Proceedings of the IEEE, January
2003.

[9] W. Wolf, B. Ozer, T. Lv. Smart cameras as embedded sys-
tems. IEEE Computer Magazine Vol 35, Iss 9, Sept 2002,
Pages 48-53.

[10] IEEE Working Group, http://www.eda.org/vhdl-200x/vhdl-
200x-ft/packages/files.html.

[11] Data-sheet for ZBT memory,http://www.samsung.com/Prod-
ucts/Semiconductor/SRAM/SyncSRAM/NtRAM_FT_n_PP/
16Mbit/K7N163631B/ds_k7n16xx31b_rev04.pdf

[12] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[13] S. Sriram and S. S. Bhattacharyya. Embedded Multiproces-
sors: Scheduling and Synchronization. Marcel Dekker, Inc.,
2000.

[14] http://jonathan-lawrence.co.uk/vhdl-march.php?p=2
[15] http://www.opencores.org/projects.cgi/web/miniuart2/over-

view.

Table 2: Comparison of different memory layout strategies

Configura-
tion

Banks Used Read
cycles-
Region

Write
cycles-
Region

Read
cycles-
Contour

Total non-
overlap-

ping cycles

Total num-
ber of
cycles

Case 1 5 92160X3 92160X2 184320X1 276480 645120

Case2 2 92160X1 92160X1 184320X1 276480 368640

Case3 5 23040X3 23040X2 46080X1 69120 161280

Case4 3 46080X2 46080X1 92160X1 138240 230400

	Select a link below
	Return to Main Menu
	Return to Previous View

	In Proceedings of the IEEE Workshop on Embedded Computer Vision, San Diego, California, June 2005: In Proceedings of the IEEE Workshop on Embedded Computer Vision, San Diego, California, June 2005

