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ABSTRACT

In this paper, we develop new multiclass classification

algorithms for detecting people and vehicles by fusing data

from a multimodal, unattended ground sensor node. The spe-

cific types of sensors that we apply in this work are acous-

tic and seismic sensors. We investigate two alternative ap-

proaches to multiclass classification in this context — the

first is based on applying Dempster-Shafer Theory to perform

score-level fusion, and the second involves the accumulation

of local similarity evidences derived from a feature-level fu-

sion model that combines both modalities. We experiment

with the proposed algorithms using different datasets obtained

from acoustic and seismic sensors in various outdoor environ-

ments, and evaluate the performance of the two algorithms

in terms of receiver operating characteristic and classifica-

tion accuracy. Our results demonstrate overall superiority of

the proposed new feature-level fusion approach for multiclass

discrimination among people, vehicles and noise.

Index Terms— Sensor fusion, multiclass classification,

target detection, tracking.

1. INTRODUCTION

Detection and classification of people and vehicles in outdoor

environments is important in various applications related to

defense, border patrol, and surveillance. For example, such
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capabilities help to guard specific regions against enemy in-

trusion and attack, and to protect borders between countries.

In these applications, acoustic and seismic sensors are fre-

quently employed because of their power efficiency and re-

duced computational requirements compared to other sensing

modalities, such as image-based sensing.

Signals from acoustic and seismic sensors have different

spectral characteristics in the presence of people and vehicles.

This diversity in sensor response provides potential for greater

accuracy when signals from both modalities are fused as op-

posed to solutions that employ only acoustic or only seismic

sensors. Voices of people typically generate acoustic signals

in the range of 200–800 Hz, while footsteps of people gen-

erate seismic signals in the range of 1.9–2.79 Hz [1]. For

vehicles, Altmann [2] analyzes spectral characteristics of sets

of signals collected from acoustic and seismic sensors. This

analysis reveals similarities and differences in signal char-

acteristics between the two modalities along with their in-

fluences from factors that include the engine rotation rate,

number of engine cylinders, vehicle speed, and track element

length (for tracked vehicles).

In this paper, we investigate fusion algorithms for multi-

class classification among people, vehicles, and noise (the ab-

sence of people or vehicles) using signals from acoustic and

seismic sensors. We develop and comparatively evaluate two

different multiclass algorithms, a score-level fusion algorithm

that is based on Dempster-Shafer Theory (DST), and an accu-

mulative algorithm that exploits feature-level fusion. Through

an extensive experimental comparison, we demonstrate that

our feature-level fusion algorithm achieves significantly bet-

ter classification performance compared to the DST-based ap-

proach.

A distinguishing aspect of our work is our focus on fu-

sion techniques for multiclass classification using both acous-

tic and seismic signals. This complements related prior work

that has investigated binary classification using acoustic and

seismic signal processing, but has not addressed multiclass

classification problems (e.g., see [3]). Also, previous work

on multiclass classifiers for people, vehicles, and noise (e.g.,

see [4, 5] has emphasized use of acoustic signals. In contrast



to these works, this paper contributes fusion techniques for

classification using both acoustic and seismic signals.

2. RELATED WORK

Various algorithms can be applied naturally to multiclass clas-

sification problems. These include k-nearest neighbor [6], de-

cision trees [7,8], neural networks [9], and naive Bayes classi-

fiers [10]. Other algorithms convert a multiclass problem into

a set of binary classification problems, which are then solved

using more powerful binary classifiers. The techniques that

we develop belong to this second class of algorithms. We de-

compose our targeted multiclass classification problem into

three binary classification problems — noise vs. person, noise

vs. vehicle, and person vs. vehicle.

A fusion architecture for distinguishing between people

and animals using different ultrasonic, seismic and passive

infrared sensors is proposed in [3]. In this work, the decisions

of different binary classifiers are fused to detect targets (peo-

ple/animals), and to distinguish between the people and ani-

mal classes whenever a target is detected. Our work differs

from this work in that we incorporate a feature-level fusion

approach; we address multiclass classification among noise,

people, and vehicle classes; and we employ acoustic and seis-

mic sensor types.

Dempster-Shafer Theory (DST) [11] is a common ap-

proach used for late fusion, where information from multi-

ple classifiers are combined to produce a single output. For

example, Lee et al. [12] apply DST to integrate decisions of

classification and detection, and demonstrate that this integra-

tion improves the performance of both classification and de-

tection. Wu et al. [13] propose general methods for fusing the

signals from multiple sensors to perform binary classification

tasks.

Accumulative methods, like the Hough transform [14],

have demonstrated excellent performance in a wide range

of pattern recognition problems, including image registration

[15] and biometrics [16]. The methods used in [15, 16] ac-

cumulate local similarity evidences (i.e. probabilities), which

are provided by explicitly estimating the probability density

function (pdf) over the feature space. The disadvantages of

explicitly computing a pdf are efficiency and scalability.

As discussed in Section 1, the key distinguishing aspect of

our work in this paper compared to related work in the liter-

ature is our joint consideration of seismic signal processing,

acoustic signal processing, and multiclass classification for

border patrol and related sensor network applications. Addi-

tionally, we propose an accumulative fusion framework where

the pdf is learned implicitly through an SVM.

3. FUSION FRAMEWORK

In this section, we propose two fusion algorithms for mul-

ticlass classification using signals from an acoustic-seismic

node. The first is an adaptation to score-level fusion using

DST for multiclass classification. We view this approach as

a baseline in our experiments to assess our second approach,

which is the main fusion approach that is presented in this

paper. This second approach involves the accumulation of

similarity evidences derived from a local feature-level fusion

model. We refer to this second approach as Accumulation of

Local Feature-level Fusion Scores (ALFFS).

3.1. Cepstral Analysis and SVM Classification

For both acoustic and seismic signals in the baseline (DST-

based) and ALFFS approaches, we employ cepstral analysis

for feature extraction [17]. We extract cepstral coefficients

using the feature extraction method described in [4, 18]. In

cepstral analysis, DC components are removed, low order co-

efficients characterize the slow spectrum variation, and higher

order coefficients characterize the fundamental frequency.

For each sensing modality, we select the first 50 cepstral

coefficients for training and testing. We apply SVM classi-

fiers [19,20] with polynomial kernels for binary classification

using the extracted features for each modality. The integration

of multimodal features and SVM classifiers in the baseline

and ALFFS fusion architectures is illustrated in Figure 1(a)

and Figure 1(b), respectively. In Section 3.2 and Section 3.3,

we elaborate on the design of these two alternative fusion ar-

chitectures.

In Figure 1 and throughout the remainder of this paper,

we abbreviate “noise”, “person”, and “vehicle” — the three

available decision classes — by N , P , and V , respectively.

We denote the set of all available decision classes as ∆ =
{N,P, V }.

3.2. Baseline Fusion Architecture

In our baseline fusion architecture, we adapt score-level fu-

sion with DST to perform multiclass classification. For each

distinct pair of decision classes (DPDC), we employ DST fu-

sion without weights as in [13]. Specifically, suppose that we

have a pair of binary SVM classifiers Z[ρ] = {Cα[ρ], Cσ[ρ]}
that discriminate between the two elements of a DPDC ρ =
{X,Y } ⊂ ∆ based on signals of type α and σ, where α and σ

represent the acoustic and seismic sensing modalities, respec-

tively. Then based on DST, the score S(Z,A) associated with

classifier pair Z and decision class A ∈ ρ can be expressed as

S(Z,A) =
Belief A
Belief

¬A

=

∑

Eρ,α∩Eρ,σ=A

Eρ,αEρ,σ

∑

Eρ,α∩Eρ,σ=¬A

Eρ,αEρ,σ

. (1)

Here, ¬A is the element of ρ other than A. Additionally,

Eρ,x denotes the evidence associated with ρ that is derived

from sensing modality x ∈ {α, σ}. The value of Eρ,x for
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Fig. 1: Illustration of the baseline (a) and ALFFS (b) fusion architectures.

each modality x can be derived from the scores of the two

associated SVM classifiers.

Equation 1 can be viewed as a standard DST-based ap-

proach to binary classification (for discrimination between

A and ¬A) using SVM-based binary classifier subsystems.

We extend this approach to multiclass classification by in-

stantiating 3 different pairs of SVM classifiers {Z[ρ] | ρ ∈
{{N,P}, {N, V }, {P, V }}, where each of these classifier

pairs is connected to a fusion subsystem that operates based

on Equation 1. The results from these 3 fusion subsystems

are then combined using voting, as illustrated in Figure 1(a).

Similar to [21, 22], the voting method chooses the class that

is classified most frequently by the three SVMs.

3.3. ALFFS

Our ALFFS approach is motivated by the significant differ-

ences in spectral characteristics between acoustic and seismic

signals. To systematically incorporate these different charac-

teristics into the multiclass classification process, ALFFS ap-

plies concatenated features that are derived from both acous-

tic and seismic inputs.

Algorithm 1 presents a pseudocode representation of the

ALFFS approach. In the signal processing system represented

in Algorithm 1, the subscripts α and σ are used to repre-

sent correspondence with acoustic and seismic signals, re-

spectively, as in Section 3.2. The input to the system consists

of data frames (segments of contiguous signal samples) Γα

and Γσ , and two parameters wn and wr, which respectively

specify the number of windows and the ratio of inter-window

overlap that are to be employed when processing the input

frames. The two signals Γα and Γσ are corresponding acous-

tic and seismic signals, meaning the two modalities observe

the same activity.

Algorithm 1: A pseudocode representation of the

ALFFS approach.

Input : Γα, Γσ , wn, wr

Output: Class

1 Dα(1), Dα(2), . . . , Dα(wn)←Window (Γα, wn, wr)
2 Dσ(1), Dσ(2), . . . , Dσ(wn)←Window (Γσ, wn, wr)
3 for i = 1 to wn do

4 Fα(i)← fcepstral(Dα(i))
5 Fσ(i)← fcepstral(Dσ(i))
6 Fconcat(i)← fconcat(Fα(i), Fσ(i))

7 end

8 for p ∈ {{N,P}, {N, V }, {P, V }} do

9 for j = 1 to wn do

10 Scorep(j)← SVM p(Fconcat(j))
11 end

12 κ(p)← Scorep(1)+Scorep(2)+ . . .+Scorep(wn)
13 R(p)← fdec,p(κ(p))

14 end

15 Class ← fvoting(R({N,P}), R({N, V }), R({P, V }))

In the first two steps of Algorithm 1, a windowing func-

tion Window decomposes the input data frames into overlap-

ping windows consisting of wn samples each, where the ratio

of overlap is determined by the parameter wr. The function

fcepstral is a function that returns cepstral features for a given

window of signal samples. The concatenation of acoustic and

seismic features for each window is performed by the func-

tion fconcat .

The outer for loop (line 8) iterates through all relevant

DPDCs. For each DPDC p and window index j, the algo-
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Fig. 2: ROC curves for multiclass classification.

rithm computes a binary classification score Scorep(j) by ap-

plying an SVM classifier SVM p that is trained specifically

for DPDC p. Line 12 then accumulates all of the scores

for the given DPDC p to provide a single composite score

κ(p) across all windows and both sensing modalities. This

composite score is then thresholded by the decision function

fdec,p to produce the decision R(p) associated with DPDC p.

In our experiments, we use a common threshold of 0 for all

three decision functions {fdec,p}.

The three decisions {R(x)} are then operated on using a

voting process, represented by the function fvoting , to pro-

duce the final multiclass classification result Class . We use

the same voting process here as in the adapted DST approach

of Section 3.2.

4. EXPERIMENTS

In this section, we present an experimental evaluation of the

Adapted DST and ALFFS approaches, which were intro-

duced in Section 3.2 and Section 3.3, respectively. In our

evaluation, we employ 4 different datasets, which we refer to

as Datasets #1–#4. Datasets #1–#3 were collected on Spesutie

Island at the Aberdeen Proving Grounds in Maryland, USA

during July 28–30, 2015. These three datasets were collected

from different sensors installed in different locations and at

different times of day. Further details about Datasets #1–#3

can be found in [23]. Dataset #4 was collected at the US Army

Research Laboratory, Adelphi, Maryland, USA on Septem-

ber 16, 2013. Datasets #1–#3 were collected from soil, while

Dataset #4 was collected from asphalt. Each dataset contains

1000 data frames, where each frame contains 6 seconds of

acoustic and seismic data sampled at 4096Hz.

For training and testing, we used input data segments

(IDSs) that each consist of 500 contiguous data frames from

one of the four datasets. For training, we randomly ex-

tracted 50 different IDSs from Dataset #1 using the MAT-

LAB crossvalind function. Similarly, for testing, we

used crossvalind to extract 50 different IDS from each

of the four available datasets. Thus, we employed 50 IDSs

for training, and 200 IDSs for testing. We refer to the set of

Test ID Acoustic Seismic DST ALFFS

#1 64.5731 59.3908 66.2605 86.0842

#2 61.3988 57.8397 60.3166 73.8357

#3 56.9138 51.7074 57.2305 73.3988

#4 53.0541 67.2345 61.3026 76.9379

avg. 58.9850 59.0431 61.2776 77.5642

Table 1: Accuracy comparison (%).

50 IDS used for testing that we extracted from each Dataset

#X as “Test ID #X”. For ALFFS, we used wn = 50 and

wr = 0.4.

To evaluate classification performance, we compared the

Adapted DST and ALFFS approaches in terms of their mea-

sured ROC curves and accuracy levels. Among the different

ways to compute ROC curves for multiclass problems, we

employed the method discussed in [24], which is suitable for

multiclass classifiers that are composed of binary classifiers.

In this method, the multiclass ROC curve is computed by av-

eraging the ROC curves across the corresponding set of pair-

wise (1-to-1) classifiers. Figure 2 and Table 1 show the mea-

sured ROC curves and accuracy levels, respectively. From

these results, we see that the Adapted DST approach shows no

significant performance improvement compared to the single-

modality classifiers. In contrast, ALFFS exhibits significant

improvements compared to the single-modality classifiers, as

well as the Adapted DST approach. Specifically, ALFFS

achives 0.9076, 0.8389, 0.8059, and 0.7120 true positive rate

when operating at 0.2 false positive rate for Test ID #1-#4, re-

spectively. Whereas, the baseline approach achieves 0.5858,

0.6278, 0.5070, and 0.3188 at the same false positive rate.

Thus, ALFFS achieves fewer false alarms, even when only

using a single seismic and single acoustic source. The results

in Table 1 show that ALFFS achieves an absoulte improve-

ment of 16.3% (relative improvement of 26.6%) in accuracy

compared to the baseline fusion on average.



5. CONCLUSION

In this paper, we have introduced an algorithm, called Accu-

mulation of Local Feature-level Fusion Scores (ALFFS), for

multiclass classification among people, vehicles, and noise

using a single unattended ground sensor node. ALFFS op-

erates by extracting cepstral features, applying feature-level

fusion, and applying a bank of support vector machines across

sets of concatenated features that are extracted from overlap-

ping windows of the multimodal input signals. We have also

introduced an adaptation to our targeted multiclass classifica-

tion problem of sensor fusion based on Dempster-Shafer The-

ory (DST). Through extensive experiments, we have demon-

strated that ALFFS achieves an average of 16.3% (26.6%)

absolute (relative) improvement over the adapted DST ap-

proach. Moreover, ALFFS achieves a significant reduction

in the number of false alarms compared to the adapted DST

approach (and the individual modalites).
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