In Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, pages

1453-1457, Pacific Grove, California, October 2006.

MODEL-BASED MAPPING OF IMAGE REGISTRATION APPLICATIONS ONTO CONFIGURABLE
HARDWARE

Yashwanth Hemaraj'?, Mainak Sen!, Raj Shekhar?, Shuvra S. Bhattacharyya!

1Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
2Departx:nent of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, Maryland, USA

ABSTRACT

This paper develops techniques for mapping rigid image
registration applications onto configurable hardware. Image regis-
tration is a computationally intensive domain that places stringent
requirements on performance and memory management effi-
ciency. Building on the framework of homogeneous parameterized
dataflow, which provides an effective formal model for design and
analysis of hardware and software for signal processing applica-
tions, we develop novel methods for representing and exploring
the hardware design space when mapping image registration algo-
rithms into configurable hardware. Our techniques result in an
efficient framework for trading off performance and configurable
hardware resource usage based on the constraints of a given regis-
tration application.

1. INTRODUCTION

Computationally intensive medical imaging applications
have proven to be amenable to hardware acceleration. However
growing data sets and a desire for real-time capabilities are placing
continued pressure on performance of such accelerators. Inhibiting
further performance of these devices is accurate modeling of the
applications. Faithful modeling of an application’s concurrency
and dependencies is critical to arriving at an efficient and reliable
implementation in hardware. In addition to exposing parallelism
effectively, dataflow concepts can provide valuable formal proper-
ties such as efficient verification of bounded memory require-
ments and deadlock-free operation.

Modeling of DSP applications based on coarse-grain data-
flow graphs is widespread in the DSP design community, and a
large and growing set of DSP design tools support such dataflow
semantics [1]. DSP applications differ in their requirements and
complexity. The dataflow interchange format (DIF) [5] provides
us with integrated support for a variety of dataflow semantics and
features, including dynamic and reconfigurable dataflow behavior.

In this paper, we propose a new approach towards imple-
mentation of image registration algorithms that captures their con-
currency and dependencies along with dynamic behavior. As a
result, designers can efficiently exploit trade-offs between area
and performance for different configurations of the circuit to cus-
tomize their final implementation based on the input characteris-
tics and the target platform. We demonstrate the value of this
approach by showing the area and computational time for a set of
possible implementations.

2. DATAFLOW MODELING

Digital signal processing applications lend themselves well
to the semantics of dataflow. Design entry methods based on data-
flow models of computation provide a natural way of describing
applications and also expose high-level application structure that
is useful for analysis, verification, and optimization of implemen-
tations [1)]. In the dataflow model of computation, the computa-
tional DSP elements (dataflow graph vertices) are called actors.
DSP designers may choose an arbitrary level of granularity for
actors. Typically, the complexity of an actor ranges from a single

1-4244-0785-0/06/$20.00

1453

operation to computation that could be expressed by up to a hun-
dred lines of C code. Actors are connected with directed edges to
indicate data (or token) movement. An edge acts as a first-in, first-
out (FIFO) queue that holds tokens that are produced by the edge’s
source actor until consumed by the edge’s sink actor. An actor may
be executed (or fired) whenever it has enough data on all its input
edges. When an actor fires, it consumes a set of input data values
and produces a set of output data values. By examining data trans-
fer patterns between actors, a schedule can be created that provides
a way to coordinate the execution of all of the actors in the data-
flow graph.

The firing semantics of actors varies between the different
forms of dataflow. The synchronous dataflow (SDF) model [6]
enforces that a given actor must consume (and produce) a prede-
termined number of tokens at each firing. This restriction allows
for strong compile time predictability properties. SDF is a rela-
tively mature form of dataflow and SDF-based hardware synthesis
has been explored in [9][13]. These restrictions imposed by SDF,
however, are too stringent for some applications, especially appli-
cations with dynamic production and consumption rates. For
example, many computer vision applications have data-dependent
rates of data transfer between actors [10], which cannot be cap-
tured in pure SDE.

To accommodate more applications, other forms of dataflow
have more flexible firing rules (i.e., rules for determining when
actors can execute). A cyclo-static dataflow (CSDF) [2] graph can
accommodate multi-phase actors that exhibit different consump-
tion and production rates during different phases provided they
adhere to statically-known periodic patterns. However, this model
still does not permit data-dependent production or consumption
patterns. Homogeneous parameterized dataflow (HPDF) [11] per-
mits actor behavior to adapt in a structured way through dynami-
cally-adjusted parameter values. HPDF actors may change their
production and consumption rates at run-time in between succes-
sive iterations of the graph, but at any given point in time, any
HPDF edge will have the same data production and consumption
rates for its respective sink and source actors. The restricted form
of data-dependent behavior supported by HPDF permits useful
modeling flexibility, and also provides for efficient scheduling and
resource allocation for actors, as well as verification of bounded
memory requirements and deadlock avoidance. Furthermore, since
HPDF is a meta-modeling technique, hierarchical actors in an
HPDF model can be refined using any dataflow modeling seman-
tics that provides a well-defined notion of subsystem iteration. For
example, a hierarchical HPDF actor can have SDF, CSDF, or
HPDF actors as its constituent modules.

3. IMAGE REGISTRATION

Image registration is the process of aligning two images that
represent the same feature. Image registration can be thought of as
a mapping function F:I — R that accepts an image to be mapped
(also called the floating image /) and returns the image trans-
formed such that it can map directly onto another image (also
called the reference image R). Medical image registration concen-
trates on aligning two or more images that represent the same anat-

omy from different angles, scales, or offsets. The images may be
obtained at different times or using different imaging modalities
such as magnetic resonance imaging (MRI), computed tomo-gra-
phy (CT), positron emission tomography (PET), single photon
emission computed tomography (SPECT) and ultrasound. Image
registration is an important tool in merging and comparing images
obtained from this diversity of sources. Real-time image registra-
tion is essential in the medical field for enabling image guided
treatment procedures and pre-operative treatment planning.

The various algorithms proposed for image registration can
be broadly classified under two categories: rigid and elastic. A
rigid registration can be approximated by a superposition of rota-
tion, translation, scaling and shear. An elastic transformation on
the other hand is based on nonlinear continuous transformations,
and is implemented by finding separate transformation parameters
for a set of control points.

3-dimensional image registration is of particular interest to
the medical community. The ability to register a 3D image allows
features to transform in multiple axes. A variety of techniques
have been employed to solve this registration problem. Voxel sim-
ilarity-based algorithms compute a similarity metric for each voxel
in an image and this approach performs better than feature-based
approaches [4]. The most commonly used similarity-based tech-
nique is mutual information based image registration. Mutual
information (MI) based image registration can be very robust and
can work with multi-modal images effectively. Figure 1 describes
the process of image registration based on MI computation.

3.1 Mutual information based image registration

Mutual information-based image registration relies on the
maximization of the mutual information between two images.
Mutual information is a function of two 3-D images and a transfor-
mation between them. The transformation matrix contains the
information about the rotation, scaling shear, and translations that
need to be applied to one of the images in order to map it com-
pletely to the other image. A cost function based on the mutual
information is calculated from the individual and joint histograms.
The transformation that maximizes the cost function is the opti-
mum transformation. The goal of the image registration applica-
tion is to find the transformation T such that

T = argmax;MI(RI(x, y, z), FI(T(x, y, 2))) ,
where R is the reference image and FI is the floating image.

F:oa!invg image

\/r\

Transformation |«

Reference Image

Optirmzation
Algorthin
F Y

Mutual
information

T ransformed Image]

e

Fig 1. Image registration based on mutual information.

3.2 Computation of mutual information
Mutual information is calculated from individual and joint
entropies using the following equations:
MI(RI, FI) = H(RI) + H(FI) - H(RI, FI),
H(RI) = -Lpp(a)logpg(a) ,H(FI) = —Xpg(a)logpr(a),
and H(RI, FI) = ~Ipg; g/a, b)logpg; p/(a, b),)

where H(RI), H(FI), H(RI, FI) and MI(RI, FI) are the refer-
ence image entropy, floating image entropy, joint entropy and
mutual information between the two images for a given transfor-
mation respectively.

The mutual histogram represents the joint intensity distribu-
tion. The joint voxel intensity probability, pg, p/a, b) is the
probability of a voxel in the reference image having an intensity a
and the corresponding voxel for a particular transformation T in
the floating image having an intensity b, can be obtained from the
mutual histogram of the two images.

The individual voxel intensity probabilities are the histo-
grams of the reference and floating images in the region of overlap
of the two images for the applied transformation. The individual
histograms can be computed by taking the row sum and the col-
umn sum of the joint histogram.

The calculation of mutual information starts with the accu-
mulation of the mutual histogram values to the mutual histogram
memory while every coordinate is being transformed (MH update
stage). This is followed by the MI calculation stage where the val-
ues stored in the mutual histogram memory are used to find the
individual and joint entropies described above. Thus the overall
calculation of mutual information is a memory intensive task.
Since the access of the MH memory is dependent on the intensity
values of the floating and the reference images, standard cache
based memory architectures do not accelerate the calculation.

In the MH update stage, voxel coordinates are multiplied by
the transformation matrix and the resultant coordinates obtained
are used to update the joint histogram. Since the new coordinates
do not always coincide with the location of a voxel in the reference
image, interpolation schemes need to be employed. In the trilinear
interpolation scheme, the new value of the floating image
FI(x',y', Z') is calculated based on the amount of offset the new
coordinates (x', ¥, z') have from the nearest voxel position. How-
ever this scheme makes the MH sparse and hence ineffective in MI
calculation. Maes et al. [7] showed that the partial volume interpo-
lation scheme does not cause such unpredictable variations in the
MH values as the transformation matrix changes. This method
accumulates the eight interpolation weights directly into the
mutual histogram instead of calculating a resultant intensity level
and increment that intensity level's MH count by one, as in trilin-
ear interpolation. Thus the partial volume interpolation scheme
ensures a smooth transition in the MH memory and hence causes
smooth MI changes for various transformations applied.

Constructing the mutual histogram, the first step in mutual
information calculation, involves performing partial volume inter-
polation n times, where n is less than or equal to the number of
voxels in the reference image. The number of operations in the
second step, the calculation of mutual information, is a function of
the size of the mutual histogram, which is less than the size of the
image making the first step the performance bottleneck.

It has been shown that the size of the mutual histogram can
be selected as 64 x 64 for 8 -bit images. By doing so, we can
obtain a very good density of MH values while at the same time
preserving the variation along the different entries.

At current microprocessor speeds, the time of mutual histo-
gram calculation for 3-D images is dominated almost exclusively

1454

by the memory access time [3]. Around 25 memory accesses are
needed to perform partial volume interpolation per voxel of the
reference image: 1 to access the reference image voxel, 8 to access
the 8-voxel neighborhood in the floating image and 16 accesses to
the mutual histogram memory (8 reads to get the old value and 8
writes to write back the updated value). Accesses to the reference
image are sequential and standard caching techniques can be used.
The mutual histogram memory has a small size and thus accesses
to it also have high locality of reference. However, the floating
image is accessed in a direction across the image that depends on
the transformation being applied. Unless there is no rotation com-
ponent, this direction is not parallel to the direction in which vox-
els are stored, hence accesses have poor locality and are not suited
to memory-burst accesses or memory-caching schemes.

Speedup of the algorithm can be obtained by using pipelined
architectures and also by using paralle] architectures [3]. Since the
majority of the registration execution time is spent on calculating
the mutual histogram, accelerating mutual histogram calculation
has been the focus of our work. The aim of this paper is to use
dataflow graphs to describe the inherent concurrency in applica-
tions, analyze the bottleneck areas, and use dataflow graph trans-
formations to exploit potential areas that can be parallelized.

3.3 Optimization

The image registration algorithm calculates the transforma-
tion matrix for which the mutual information between the images
is maximum. Initially, a small number of test transformations are
applied. The values of these transformations and the MI values are
stored in an optimizer. The optimizer outputs the values of the new
transformation depending on the values of the mutual histogram in
the previous iterations. Optimization of the transformation param-
eters depends on the nature of the images and the amount of mis-
alignment between the two images. In the downhill simplex
optimization method, which provides fast convergence, in order to
optimize a transformation with m parameters, the optimizer needs
to store (m+ 1) previous values. There is a trade-off between the
convergence time and the complexity of the optimizer.

4. APPLICATION MODELING

In this section, we construct a hierarchical dataflow repre-
sentation of the MI-based image registration algorithm and we use
the HPDF meta-modeling approach integrated with CSDF for
modeling lower-level, multi-phase interactions between actors.
Figure 2 shows our top level HPDF model of the application.
Here, “(m+1)D” represen{s (m+ 1) units of delay; each unit of
delay is analogous to the z operator in signal processing, and is
typically implemented by placing an initial data value on the corre-
sponding dataflow edge. The MI actor consumes one data value
(token) on every execution. This token contains co-ordinates of the
reference image and the floating image. After s executions, each
consuming one token (coordinate values in this case), where s
denotes the size of the image, the MI actor produces the entropy
between the reference and floating images. This value is then sent
to the optimizer as a single token.

The optimizer, which stores the previous (m + 1) values to
perform a simplex optimization of an m -parameter transformation

N/

L]

Fig 2. Top level model of image registration application.

vector, sends m tokens to the MI actor. Since m can vary depend-
ing on the number of parameters used to represent the desired
transformation, the associated edge represents a variable-rate edge
of the HPDF graph. A valid schedule for this HPDF graph is
(se)Bx. @

The internal representation of the hierarchical MI actor is
shown in Figure 3. Here, “Reference Image” (A) consumes one
token (coordinates) and produces one token (intensity values at the
input coordinates), and “Coordinate Transform” (B) produces one
token, which represents the transformed coordinates. If this voxel
is valid (i.e., the voxel coordinate falls within the floating image
coordinates boundary), it is passed on to the “Weight Calculator”
(D) and “Floating Image” (E).

Now since all voxels may not be valid, r tokens (r <) are
produced from the “Is Valid” (C) actor. This actor also produces
r tokens on the edge that connects it to “MH Memory” (G) —
specifically, it passes a token from A only if a valid voxel results
from the transformation on input coordinates. For every input
token in D and E, eight output tokens are produced on both the
outgoing edges. The corresponding eight intensity locations in the
G are updated based on the tokens produced by D .

After all coordinates are processed, which occurs during the
the first 87 phases of the MH Memory actor or equivalently after
s phases of the B actor, one token of size ¢ X g is sent to the
“Decomposer”(Z), which in turn sends out g X g tokens to the
“Entropy Calculator” (H) actor. H consumes all of these tokens,
and produces a single token that contains the entropy value corre-
sponding to the transformation applied based on equations given in
eqn. 1. We added the Z mainly for ease of representation of the
application in dataflow and it was subsumed by G in the final
hardware implementation. A valid schedule (ordering of execu-
tion) for the mutual information subsystenibased on Figure 3 is

(sABC)(rDE(8FG))Y{(q"ZH) .

In this paper, we describe our schedules as looped schedules
which is a compact form of representing the execution order of
actors. A looped schedule of the form (nTT,...T,,) represents n
successive repetitions of the execution sequence TT,...T, ,
where each T, is either an actor or another looped schedule (to
express nested looped schedules).

Looking more closely at B, we see that it has an additional
input edge on which takes in the initial m tokens from the “Opti-
mizer” (B) but produces no output. Figure 3 only represents the
steady-state behavior of mutual information subsystem for sim-
plicity. Figure 4 represents the initialization and the steady-state
behavior of Coordinate Transform - where the initial m tokens are
used to calculate the new transformation matrix and hence it

Fig 3. Dataflow model of mutual information subsystem.

1455

updates the values inside the actor without producing any data.
Hence the schedule of the whole mutual information subsystem —
considering the initial and steady-state behavior of B — is:

(mB)(sABC)(rDE(8FG))(qZZH) . 3)

Figure 5 shows a parameterized dataflow model of the H .
“Row Sum” ([) executes once every time it gets one row (g ele-
ments) to produce one token, but the “Column Sum” (L) can only
produce an output for every input after it has already received
g% (g—1) elements corresponding to (g—1) rows. There are
many valid schedules that can be proposed for Figure 5. Since a
valid schedule for H is quite complex, we derive it step-by-step
— the graph has three distinct paths, the upper path (involving
Z,1,J, K) would have a schedule (¢(gZ)IJ)K, the middle path
(involving Z,L,N, 0O) would have a schedule
(q(g—-1)ZL)(gZLN)O, and the lowerzpart of the graph (involv-
ing Z, T, U) would have a schedule (¢"ZT)U . Combining these,
one possible valid schedule for the H subsystem is:

(q-1(qZLT)IJ)(qZTLN)IJKOUYV . 4)

Modeling of H exposes very large buffering overhead.

Combining eqn. 3 and eqn. 4, the schedule for the mutual
information subsystem becomes:
(mB)(sABC)Y(rDE(BFG))(q—-1(gZLT)IT)(qZTLN)IJKOQUYV (5)
and taking eqn. 2 also into account, the schedule for the whole
image registration algorithm can be derived by replacing o with
eqn. S.

Interestingly, the model described above shows potential for
parallel hardware mapping at various levels of abstraction. For
example, extensive “intra-voxel” (within the processing structure

Fig 4. Initial and steady-state modeling of Coordinate

Transform.

1 (f:)@(q’(«rlm@l) 1 ooy Mg/ asier\L 1 At
\s':“/ ™ @ m

@

w

4/ ra\L
=/

)

Fig 5. Parameterized “Entropy Calculator”.

Fig 6. Parallel architecture for MH update.

for a single voxel) parallelism is possible for F and G . From Fig-
ure 3, we can see a data-rate mismatch between D, F;and E, G.
This naturally suggests a parallel architecture as shown in Figure 6
where multiple copies (eight in the illustration as the data-rates are
mismatched by a factor of eight) of an actor can be created for a
parallel implementation. We also note that the resultant graph in
Figure 6 becomes HPDF as all the parameterized actors now have
the same production and consumption rates and hence fire at the
same rate. The dataflow model also exposes inter-voxel parallel-
ism, (as input actors A and B have s distinct phases where s is
the number of voxels in the image), which leads to another set of
useful parallel implementation considerations.

We develop an architecture in this paper that applies intra-
voxel parallelism based on input characteristics.

5. EXPERIMENTAL SETUP

We explored in detail the effect on the application of having
a parallel architecture as suggested by the dataflow model
described above. In this paper, we extensively study the exploita-
tion of intra-voxel parallelism. Thus, we varied the degree of par-
allelism as shown in Figure 6 and studied the resulting relationship
between performance and area. We also noted that the percentage
of voxels that fall in the valid range after a transformation by the
“Coordinate Transform” greatly influences the runtime of the
algorithm. Hence, we studied our system performance by varying
the percentage of valid voxels (PVV) for a given transformation.

5.1 Degree of parallelism

When E in Figure 3 is provided with the base address in the
floating image space, the actor generates the floating image values
(corresponding to the neighborhoods) and provides it to the mutual
histogram memory for updating the mutual histogram with the
weights generated by the weight calculator actor. When we have
just one set of actors (floating image, weight calculator and the
mutual histogram memory), it takes eight firings of this set of
actors (corresponding to the values of the eight neighborhood)
before the next input can be processed by the coordinate transform
actor. However, if we have two copies of the above set of actors,
then each set can process four neighborhoods each. Similarly if we
have four (or eight) copies, then each set can process two (or one)
neighborhood(s) each. This would mean that the number of firings
of each set of actors becomes 4, 2 (or 1) respectively. As updat-
ing the mutual histogram is a crucial part of the algorithm, such
parallel execution should result in significant improvement of the
whole application.

However, the parallel configurations result in extra FPGA
resources and extra external memory. The memory requirement
also increases with increasing image size.

5.2 Relationship between PVV and performance

We implemented our system as a self-timed system, so each
actor is sent a ‘ready’ signal by the actors preceding it.

When the transformed coordinate falls in the valid region,
there are eight firings of the actor set (F and G in Figure 3).
However when C does not generate a signal (indicating that for
the given input coordinates, the transformation produces coordi-
nates outside of the valid coordinate boundary), the iteration of the
graph stops for those input coordinates and the next token is pro-
cessed by the coordinate transform actor indicating a new itera-
tion. For our implementation, any isolated invalid signal causes a
two cycle penalty, but consecutive invalid signals cause only one
cycle penalty for each invalid signals.

5.3 Implementation
We implemented each actor in Verilog. The Verilog code

1456

was simulated for functional correctness and synthesis was per-
formed targeting the Altera StratixII EP2S15F484C5 device. The
code was synthesized for different degrees of parallelism of the
floating image and weight calculator actor.

6. RESULTS

In this section, we present hardware synthesis results for var-
ious proposed configurations of the image registration application.
The results are obtained using the QuartusII synthesis tool from
Altera for the StratixII family of FPGA (Stratix EP2S15F484C5).
Table 1 presents the synthesis results for various configurations -
the columns represent the number of parallel datapaths for MH
Update actor and rows represent in order — external memory
required, logic circuitry in the MH update actor, DSP elements for
the MI actor, logic circuitry of the MI actor, and maximum fre-
quency of operation for the MI actor. Table 1 assumes that PVV is
100%. Figure 7 shows the area (measured by the number of logic
cell registers in the circuit without considering the external mem-
ory) and performance (measured by the number of execution
cycles) trade-off curve when we vary the number of parallel datap-
aths in the MH update actor for different validity rates in trans-
formed voxels. The trend in all of the above mentioned cases
reflect that the number of execution cycles decreases with increas-
ing amounts of parallel data paths, although the corresponding
area increases. We notice that the PVV is an important metric for
performance. The relative performance gain at lower PVV values
by increasing the number of parallel data-paths is less than the per-

ey o <l B 3o] e
External Memory 256kb | 512kb | 1Mb 2Mp
LC Registers in FPGA | 427 576 871 1463
DSP Elements 30 30 30 30
(::mm“ﬂ}":) 598 878 1439 | 2588
Wax ""t';::)"""‘"“ 74 72.2 74 70.1

Table 1 Synthesis resuits for the whole system for different
configurations of the MH Update actor.

540
500 | QD 8 pacalle! datapatns O 100%valid | |
* 90% valid
O 50% valid
smr 6 10%valid | |

mo}

S 4604k

e S
ol .

420 \\
i AN
400 F ’; AN 1 datapath
= A
| : L L L L
3%.2 04 06 0B 1 1.2 1.4 16 18 2 22
Number of Clock Cyclas < 10°

Fig 7. Area versus clock cycles for different PVV values
for different numbers of datapaths.

formance gain at higher values of PVV.

A dynamically-reconfigurable FPGA implementation was
proposed based on the PVV metric in [8). We considered inter-
voxel parallelism along with intra-voxel parallelism, and we
developed a comparison of the associated performance gains in

[8].
7. CONCLUSION

In this paper, we have proposed a model-based mapping of
an image registration algorithm onto configurable hardware. Both
inter- and intra-voxel parallelism is exposed by the carefully-
deigned dataflow model of the application. We explored various
levels of intra-voxel parallelism and presented area-performance
trade-offs for different parallel configurations. Our experiments
quantify how increasing the number of parallel data-paths results
in increased area but decreased runtime. Also we show that the
percentage of valid voxels (PVV) is an important metric in explor-
ing the design space.

8. ACKNOWLEDGEMENTS

The authors are grateful to Dr. William Plishker for his
reviews and insightful suggestions for this paper.

9. REFERENCES

[1] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software syn-
thesis and code generation for DSP. IEEE Trans. on Circuits and Sys-
tems — II: Analog and Digital Signal Processing, 47(9):849-875,
September 2000.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete.
Cyclo-static dataflow. I[EEE Trans. on Signal Processing, 44(2):397-
408, February 1996.

[3] C. Castro-Pareja, J M. Jagadeesh, and R. Shekhar. FAIR: A hard-
ware architecture for real-time 3-d image registration. I[EEE Trans.
on Information Technology in Biomedicine, 7(4):426-434, 2003.

[4] M. Holden, D. Hill, E. Denton, J. Jarosz, T. Cox, T. Rohlfing, J.
Goodey, and D. Hawkes. Voxel similarity measures for 3D serial MR
brain image registration. /EEE Trans. on Medical Imaging, pages 94-
102, 2000.

[5] C. Hsu, F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya.
DIF: An interchange format for dataflow-based design tools. In
Proc. of the International Workshop on Systems, Architectures, Mod-
eling, and Simulation, pages 423-432, July 2004.

[6] E. Lee and D. Messerschmitt. Synchronous Data Flow. Procs of
the IEEE, September 1987.

[7]1 F. Maes, D. Vandermeulen and P. Suetens, Medical image regis-
tration using mutual information, Proc. IEEE 19, 1699 (2003).

[8] M. Sen, Y. Hemaraj, S. S. Bhattacharyya, and R. Shekhar. Recon-
figurable image registration on FPGA platforms. In Proc. of IEEE
Biomedical Circuits and Systems Conference, November 2006.

[91 M. Sen and S. S. Bhattacharyya. Systematic exploitation of data
parallelism in hardware synthesis of DSP applications. In Procs of
the International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages V-229-V-232, May 2004.

[10] M. Sen, I. Corretjer, F. Haim, S. Saha, J. Schlessman, S. S.
Bhattacharyya, and W. Wolf. Computer vision on FPGAs: Design
methodology and its application to gesture recognition. In Proc.
IEEE Workshop on Embedded Computer Vision, pages CD-ROM
version, 8 pages, San Diego, California, June 2005.

[11] M. Sen, S. S. Bhattacharyya, T. Lv, and W. Wolf. Modeling
image processing systems with homogeneous parameterized data-
flow graphs. In Proc. International Conference on Acoustics,
Speech, and Signal Processing, pages V-133-V-136, March 2005.
[12] R. Shekhar R, V. Zagrodsky, C. R. Castro-Pareja, V. Walimbe,
and J. M. Jagadeesh. High-speed registration of three- and four-
dimensional medical images by using voxel similarity. RadioGraph-
ics, 23(6):1673-1681, 2003.

[13] M. Williamson. Synthesis of Parallel Hardware Implementa-
tions from Synchronous Dataflow Graph Specifications. Ph.D. The-
sis, University of California at Berkeley, May 1998.

1457

