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Optimizing Synchronization in
Multiprocessor DSP Systems
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Abstract— This paper is concerned with multiprocessor im-
plementations of embedded applications specified as iterative
dataflow programs in which synchronization overhead can be
significant. We develop techniques to alleviate this overhead by
determining a minimal set of processor synchronizations that
are essential for correct execution. Qur study is based in the
context of self-timed execution of iterative dataflow programs. An
iterative dataflow program consists of a dataflow representation
of the body of a loop that is to be iterated an indefinite number
of times; dataflow programming in this form has been studied
and applied extensively, particularly in the context of signal
processing software. Self-timed execution refers to a combined
compile-time/run-time scheduling strategy in which processors
synchronize with one another based only on interprocessor com-
munication requirements, and thus, synchronization of processors
at the end of each loop iteration does not generally occur.

We introduce a new graph-theoretic framework based on a
data structure called the synchronization graph for analyzing
and optimizing synchronization overhead in self-timed, iterative
dataflow programs. We show that the comprehensive techniques
that have been developed for removing redundant synchroniza-
tions in noniterative programs can be extended in this framework
to optimally remove redundant synchronizations in our context.
We also present an optimization that converts a feedforward
dataflow graph into a strongly connected graph in such a way
as to reduce synchronization overhead without slowing down
exeuction.

1. INTRODUCTION

NTERPROCESSOR synchronization overhead can se-

verely limit the speedup of a multiprocessor imple-
mentation. This paper develops techniques to minimize
synchronization overhead in shared-memory multiprocessor
implementations of iterative synchronous dataflow (SDF)
programs. Our study is motivated by the widespread popularity
of the SDF model in digital signal processing (DSP) design
environments and the suitability of this model for exploiting
parallelism. Our work is particularly relevant when estimates
are available for the task execution times; actual execution
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times are usually close to the corresponding estimates, but
deviations from the estimates of arbitrary magnitude can
occasionally occur due to phenomena such as cache misses
or error handling.

SDF and closely related models have been used widely in
DSP design environments, such as those described in [14],
[19], [22], and [25]. In SDF, a program is represented as a
directed graph in which the vertices, which are called actors,
represent computations, and the edges specify FIFO channels
for communication between actors. The term synchronous
refers to the requirement that the number of data values
produced (consumed) by each actor onto (from) each of its
output (input) edges is a fixed value for each firing of that actor
and is known at compile tome [16] and should not be confused
with the use of “synchronous” in synchronous languages [2].
The techniques developed in this paper assume that the input
SDF graph is homogeneous, which means that the numbers
of data values produced or consumed are identically unity.
However, since efficient techniques have been developed to
convert general SDF graphs into equivalent (for our purposes)
homogeneous SDF graphs [16], our techniques apply equally
to general SDF graphs. In the remainder of this paper, when
we refer to a dataflow graph (DFG), we imply a homogeneous
SDF graph.

Delays on DFG edges represent initial tokens and specify
dependencies between iterations of the actors in iterative exe-
cution. For example, if tokens produced by the kth execution
of actor A are consumed by the (k + 2)th execution of actor
B, then the edge (A, B) contains two delays. We represent an
edge with n delays by annotating it with the symbol “nD”
(see Fig. 1).

Multiprocessor implementation of an algorithm specified
as a DFG involves scheduling the actors. By “scheduling,”
we collectively refer to the tasks of assigning actors in the
DFG to processors, ordering execution of these actors on
each processor, and determining when each actor fires (begins
execution) such that all data precedence constraints are met.
In [17], the authors propose a scheduling taxonomy based on
which of these tasks are performed at compile time (static
strategy) and which at run time (dynamic strategy); in this
paper, we will use the same terminology that was introduced
there.

In the fully static scheduling strategy of [17], all three
scheduling tasks are performed at compile time. This strategy
involves the least possible runtime overhead. All processors
run in lock step, and no explicit synchronization is required
when they exchange data. However, this strategy assumes that
exact execution times of actors are known. Such an assumption
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is generlaly not practical. A more realistic assumption for DSP
algorithms is that good estimates for the execution times of
actors can be obtained.

Under such an assumption on timing, it is best to discard
the exact timing information from the fully static schedule
but still retain the processor assignment and actor ordering
specified by the fully static schedule. This results in the self-
timed scheduling strategy of [17]. Each processor executes
the actors assigned to it in the order specified at compile time.
Before firing an actor, a processor waits for the data needed by
that actor to become available. Thus, in self-timed scheduling,
processors are required to petform run-time synchronization
when they communicate data. Such synchronization is not
necessary in the fully static case because exact (or guaranteed
worst-case) times could be used to determine firing times of
actors such that processor synchronization is ensured. As a
result, the self-timed strategy incurs greater run-time cost than
the fully static case because of the synchronization overhead.

A straightforward implementation of a self-timed schedule
would require that for each interprocessor communication
(IPC), the sending processor ascertains that the buffer it is

Proc 3

Self-timed execution. (a) DFG “G”. (b) Schedule on four processors. (c) Self-timed execution. (d) IPC graph.

writing to is not full, and the receiver ascertains that the
buffer it is reading from is not empty. The processors suspend
execution until the appropriate condition is met. In each kind of
platform, every IPC that requires such synchronization checks
costs performance and sometimes extra hardware complexity.
Semaphore checks cost execution time on the -processors,
synchronization instructions that make use of synchronization
hardware also cost execution time, and blocking interfaces
in hardware/software implementations require more hardware
than nonblocking interfaces [10].

The main goal of this paper is to present techniques that re-
duce the rate at which processors must access shared memory
for the purpose of synchronization in embedded, shared-
memory multiprocessor implementations of iterative dataflow
programs. We assume that “good” estimates are available for
the execution times of actors and that these execution times
rarely display large variations so that self-timed scheduling
is viable for the applications under consideration. As a per-
formance metric for evaluating DFG implementations, we use
the average iteration period I (or, equivalently, the throughput
T~1) which is the average time that it takes for all the actors



BHATTACHARYYA et al.: OPTIMIZING SYNCHRONIZATION IN MULTIPROCESSOR DSP SYSTEMS

in the graph to be executed once. Thus, an optimal schedule
is one that minimizes 7.

II. RELATED WORK

Numerous research efforts have focused on constructing
efficient parallel schedules for DFG’s. For example in [5],
and [20], techniques are developed for exploiting overlapped
execution to optimize throughput, assuming zero cost for IPC.
Other work has focused on taking IPC costs into account
during scheduling [1], [18], [23], [27] while not explicitly
addressing overlapped execution, Similarly, in [9], techniques
are developed to simultaneously maximize throughput, possi-
bly using overlapped execution, and minimize buffer memory
requirements under the assumption of zero IPC cost. Our
work can be used as a post-processing step to improve
the performance of implementations that use any of these
scheduling techniques. ;
~ Among the prior work that is most relevant to this paper

is the barrier MIMD concept, which is discussed in [7].
However, the techniques of barrier MIMD do not apply to
our problem context because they assume a hardware barrier
mechanism; they assume that tight bounds on task execution
times are available; they do not address iterative, self-timed
execution, in which the execution of successive iterations
of the DFG can overlap; and because even for noniterative
execution, there appears to be no obvious correspondence
[3] between an optimal solution that uses barrier synchro-
nizations and an optimal solution that employs decoupled
synchronization checks at the sender and receiver end (directed
synchronization). '

In [26], Shaffer presents an algorithm that minimizes the
number of directed synchronizations in the self-timed exe-
cution of a DFG. However, this work, like that of Dietz
et al., does not allow the execution of successive iterations
of the DFG to overlap. It also avoids having to consider
dataflow edges that have delay. The technique that we present
for removing redundant synchronizations generalizes Shaffer’s
algorithm to handle delays and overlapped, iterative execution.
The other major technique that we present for optimizing
synchronization—handling the feedforward edges of the syn-
chronization graph—is fundamentally different from Shaffer’s
technique since it addresses issues that are specific to our more
general context of overlapped, iterative execution.

III. TERMINOLOGY

We represent a DFG by an ordered pair (V, E), where V is
the set of vertices, and F is the set of edges. The source vertex,
sink vertex, and delay of an edge e are denoted src(e), snk(e),
and delay(e).

A path in (V,E) is a finite, nonempty sequence
(e1,e9,+--,en), where each e; is a member of E, and
snk(er) = src(es),snk(e2) = src(es), -+, snk(e,_1) =
src(en ). A path that is directed from some vertex to itself is
called a cycle, and a fundamental cycle is a cycle of which
no proper subsequence is a cycle. If p = (ej,ea, -+, €,) is
a path in (V, E); we define the path delay of p, which is
denoted Delay(p), by Delay(p) = £, delay(e;). Between
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any two vertices x,y € V, either there is no path from z to
y or there exists a minimum-delay path from z to y. That
is, if there is a path from z to y, then there exists a path p
from z to y such that Delay(p') > Delay(p) for all paths p’
directed from z to y. Given a DFG G, and vertices z,y, we
define pa(z,y) to be oo if there is no path from z to y and
equal to the path delay of a minimum-delay path from z to
y if there exists a path from z to y.

A DFG (V,E) is strongly connected if for each pair of
distinct vertices z,y there is a path directed from x to y and
there is a path directed from y to x. A strongly connected
component (SCC) of (V, E) is a strongly connected subset
V' C V such that no strongly connected subset of V' properly
contains V’. If V' is an SCC, its associated subgraph is also
called an SCC. An SCC V' of a DFG (V, E) is a source SCC if
Ve € E, (snk(e) € V') = (src(e) € V'); V' is a sink SCC if
(src(e) € V') = (snk(e) € V'). An edge e is a feedforward
edge of (V, E) if it is not contained in an SCC; an edge that
is contained in an SCC is called a feedback edge.

We denote the number of elements in a finite set S by |S|.
In addition, if r is a real number, then we denote the smallest
integer that is greater than or equal to r by [r]. Finally, if z,y
are vertices in (V, E), we define d,,(z, y) to represent an edge
(that is not necessarily in £) whose source and sink vertices
are z and y, respectively, and whose delay is n.

IV. ANALYSIS OF SELF-TIMED EXECUTION

Fig. 1(c) illustrates the self-timed execution of the four-
processor schedule in Fig. 1(a) and (b) (IPC is ignored here).
If the timing estimates are accurate, the schedule execution
settles into a repeating pattern spanning two iterations of G,
and the average estimated iteration period is seven time units,
In this section, we develop an analytical model to study such
an execution of a self-timed schedule.

A. Interprocessor Communication Modeling Graph

We model a self-timed schedule using a DFG G =
(V, Eipc) derived from the original SDF graph G = (V, E)
and the given self-timed schedule. The graph G, which we
will refer to as the interprocessor communication modellilng
graph, or IPC graph for short, models the fact that actors of
G assigned to the same processor execute sequentially, and it
models constraints due to interprocessor communication. For
example, the self-timed schedule in Fig. 1(b) can be modeled
by the IPC graph in Fig. 1(d). The rest of this subsection
describes the construction of the IPC graph in detail.

The IPC graph has the same vertex set V as G, corre-
sponding to the set of actors in GG. The self-timed schedule
specifies the actors assigned to each processor and the order
in whcih they execute. For example, in Fig. 1, processor 1
executes A and then E repeatedly. We model this in G;,.
by drawing a cycle around the vertices corresponding to A
and E and placing a delay on the edge from E to A. The
delay-free edge from A to F represents the fact that the kth
execution of A precedes the kth execution of E, and the edge
from E to A with a delay represents the fact that the kth
execution of A can occur only after the (K — 1)th exeuc-
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tion of £ has completed. Thus, if actors vy, ve,: -, v, are
assigned to the same processor in that order, then G, would
have a cycle ((v1; v2), (v2,v3), s (Un—1, V), (Un,v1)), With
delay((v,,v1)) = 1. If there are P processors in the schedule,
then we have P such cycles corresponding to each processor.

As mentioned before, edges in G that cross processor bound-
aries after scheduling represent interprocessor communication.
We will call such edges IPC edges. Instead of explicitly
introducing special send and receive primitives at the ends
of the IPC edges, we will model these operations as part of
the sending and receiving actors themselves. For example, in
Fig. 1, data produced by actor B is sent from processor 2
to processor 1; instead of inserting explicit communication
primitives in the schedule, we model the send within actor B,
and we model the receive as part of actor F.

For each IPC edge in G, we add an IPC edge e in G, be-
tween the same actors. We also set the delay on this edge equal
to the delay delay(e) on the corresponding edge in G. An IPC
edge represents a buffer implemented in shared memory, and
initial tokens on the IPC edge are used to initialize the shared
buffer. In a straightforward self-timed implementation, each
such IPC edge would also be a synchronization point between
the two communicating processors.

The TPC graph has the same semantics as a DFG, and its ex-
ecution models the execution of the corresponding self-timed
schedule. The following definitions are useful to formally state
the constraints represented by the IPC graph. Time is modeled
as an integer that can be viewed as a multiple of a base clock.

Definition 1: The function start(v,k) € Z* (nonnegative
integer) represents the time at which the kth execution of
the actor v starts in the self-timed schedule. The function
end(v,k) € Z7 represents the time at which the kth exe-
cution of the actor v ends, and v produces data tokens at its
output edges. Since we are interested in the kth execution of
each actor for k = 1,2,3,---, we set start(v,k) = 0 and
end(v,k) = 0 for k < 0 as the “initial conditions.”

Per the semantics of a DFG, each edge (vj,v;) of Gipe
represents the following data dependency constraint:

start(vs, k) > end(v;, k — delay((v;,vs))),
V(vj,v;) € Eipe, Yk > delay(vg,v;). (1)

This is because each actor consumes one token from each
of its input edges when it fires. Since there are already
delay(e) tokens on each incoming edge e of actor v, another
k — delay(e) tokens must be produced on e before the kth
execution of v can begin. Thus, the actor src(e) must have
completed its (k — delay(e))th execution before v can begin
its kth execution. The constraints in (1) are due both to IPC
edges (representing synchronization between processors) and
to edges that represent serialization of actors assigned to the
same Processor.

To model execution times of actors, we associate execution
time t(v) with each vertex of the IPC graph; ¢(v) assigns
a positive integer execution time to each actor v (again, the
actual execution time can be interpreted as ¢(v) cycles of a
base clock), and #(v) includes the time taken to execute all
IPC operations (sends and receives) that the actor v performs.
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Now, we can substitute end(v;, k) = start(v;, k) + t(v;) in
(1) to obtain

start(vi, k) > start(vj, k — delay((vj,v;))) + t(v;)
for each edge (vj,v;) in Gyp,. )

In the self-timed schedule, actors fire as soon.as data is
available at all their input edges. Such an “as soon as possible”
(ASAP) firing pattern implies

start(vi, k) = max({start(v;, k — delay((v;, v;)))
+1(v)|(v),vi) € Eipe}). 3)

The TPC graph can also be looked upon as a timed marked
graph [21] or Reiter’s computation graph [24]. The same
properties hold for it, and we state some of ‘the relevant
properties here. See [24] for proofs of Lemmas 1 and 3 and
[3] for a proof of Lemma 2. ‘

Lemma 1 [24]: Every cycle C in the IPC graph has a path
delay of at least one if and only if the static- scedule it is
constructed from is free of deadlock. That is, for each cycle
C, Delay(C) > 0.

Lemma 2 [3]: The number of tokens in any cycle of the
IPC graph is always conserved over all possible valid firings
of actors in the graph and is equal to the path delay of that
cycle.

Lemma 3: The asymptotic iteration period for a strongly
connected IPC graph GG when actors execute as soon as data
is available at all inputs is given by [24]:

> Hw)

max vis onC ) (4)

T =
cycleCinG Delay(c)

Note that Delay(c) >0 from Lemma 1.

The quotient in (4) is called the cycle mean of the cycle
C. The entire quantity on the right-hand side of (4) is called
the “maximum cycle mean” of the strongly connected TPC
graph G. If the IPC graph contains more than one SCC,
then different SCC’s may have different iteration periods,
depending on their individual maximum cycle means. In such
a case, the iteration period of the overall graph (and, hence,
the self-timed schedule) is the maximum over the maximum
cycle means of all the SCC’s of Gy, because thé execution of
the schedule is constrained by the slowest component in the
system. Henceforth, we will define the maximum cycle mean
as follows. ‘

Definition 2: The maximum cycle mean of an IPC graph
Gipc, which is denoted by Ayax, is the maximal cycle mean
over all SCC’s of Gy, that is

> o)

vison(C

Delay(C)

Amax = max
cycleCin Gipe

A cycle in Gp; whose cycle mean is Amay is called a critical
cycle of Gy Thus, the throughput of the system of processors
executing a particular self-timed schedule is equal to the
corresponding 1/An.x value.
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For example, in Fig. 1(d), G has one SCC, and its
maximal cycle mean is seven time units. This corresponds to
the critical cycle ((B, E), (E,I),(I,G), (G, B)). We have not
included IPC costs in this calculation, but these can be included
in a straightforward manner by adding the send and receive
costs to the corresponding actors performing these operations.

The maximum cycle mean can be calculated in time
O(|V||Eipe|logy(|V| 4+ D +1t)),, where D and T are such that
delay(e) < D Ve € E;y, and t(v) < T Vv € V [15].

B. Execution Time Estimates

If we only have execution time estimates available instead of
exact values, and we set ¢(v) in the previous section to be these
estimated values, then we obtain the estimated iteration period
by calculating Ap,ax. Henceforth, we will assume that we know
the estimated throughput 1 [ .5 calculated by setting the ¢(v)
values to the available timing estimates.

In the transformations that we present in the rest of the
paper, we will preserve the estimated throughput by preserving

the maximum cycle mean of G,,. with each t(v) set to the

estimated execution time of v. In the absence of more precise
timing information, this is the best we can hope to do.

C. Strongly Connected Components and Buffer Size Bounds

In dataflow semantics, the edges between actors represent
infinite buffers. Accordingly, the edges of the IPC graph are
potentially buffers of infinite size. However, from Lemma 2,
the number of tokens on each feedback edge (an edge that
belongs to an SCC and, hence, to some cycle) during the
execution of the IPC graph is bounded above by a constant.
We will call this constant the self-timed buffer bound of that
edge, and for a feedback edge e, we will represent this bound
by Bji(e). Lemma 2 yields the following self-timed buffer
bound:

Bys(e) = min({ Delay(C)|C is a cycle that contains e}).
&)

Feedforward edges have no such bound on buffer size;
therefore, for practical implementations, we need to impose
a bound on the sizes of these edges. For example, Fig. 2(a)
shows an IPC graph where the IPC edge (A, B) could be
unbounded when the execution time of A is less than that of
B, for example. In practice, we need to bound the buffer size
of such an edge; we will denote such an “imposed” bound
for a feedforward edge e by Bys(e). Since the effect of
placing such a restriction includes “artificially” constraining
src(e) from getting more than By (e) invocations ahead of
snk(e), its effect on the estimated throughput can be modeled
by adding the reverse edge d.,(snk(e), src(e)), where m =
Bys(e) — delay(e), to Gip [grey edge in Fig. 2(b)]. Since
adding this edge introduces a new cycle in G;,., it may reduce
the estimated throughput; to prevent such a reduction, By (e)
must be chosen large enough so that the maximum cycle mean
remains unchanged upon adding d,,,(snk(e), src(e)).

Sizing buffers optimally such that the maximum cycle mean
remains unchanged has been studied by Kung et al. in [13],
where the authors propose an integer linear programming
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Fig. 2. IPC graph with a feedforward edge. (a) Original graph. (b) Imposing
bounded buffers.

formulation of the problem, with the number of constraints
equal to the number of fundamental cycles in the DFG (which
is potentially an exponential number of constraints).

An efficient albeit suboptimal procedure to determine By
is to note that if

Bff(e) 2 ’V(Z t(x)> //\maxl ©6)
) eV

holds for each feedforward edge e, then the maximum cycle
mean of the resulting graph does not exceed Apa.x. This is
because the reverse edge that gets added as a result of imposing
a buffer bound on e introduces new cycles; the maximum
execution time along any such newly introduced cycle can be
at most ¥, ey t(2); hence, adding the number of delays given
by (6) guarantees no change in the maximum cycle mean.

Then, doing a binary search on By (e) for each feedforward
edge, computing the maximum cycle mean at each search step,
and ascertaining that it is less than Ay results in a buffer
assignment for the feedforward edges. Although this procedure
is efficient, it is suboptimal because the order that the edges e
are chosen is arbitrary and may effect the quality of the final
solution. However, as we will see in Section IX, imposing
such a bound By is a naive approach for bounding buffer
sizes and, in terms of synchronization costs, there is a better
technique for bounding buffers. Thus, in our final algorithm,
we will not, in fact, find it necessary to use or compute these
bounds B Ffe

V. SYNCHRONIZATION MODEL

A. Synchronization Protocols

We define two basic synchronization protocols for an IPC
edge based on whether or not the length of the corresponding
buffer is guaranteed to be bounded from the analysis presented
in the previous section. Given an IPC graph G and an IPC
edge e in G, if the length of the corresponding buffer is
not bounded, that is, if e is a feedforward edge of G, then
we apply a synchronization protocol called unbounded buffer
synchronization (UBS), which guarantees that a) an invocation
of snk(e) never attempts to read data from the buffer unless
the buffer contains at least one token; and b) an invocation of
src(e) never attempts to write data into the buffer unless the
number of tokens in the buffer is less than some prespecified
limit Bz (e), which is the amount of memory allocated to the
buffer, as discussed in Section IV-C.

On the other hand, if the topology of the IPC graph guar-
antees that the buffer length for e is bounded by some value
B ﬂ,(e) (which is the self-timed buffer bound of e), then we
use a simpler protocol called bounded buffer synchronization
(BBS) that only explicitly ensures a) above. Below, we outline
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the mechanics of the two synchronization protocols that we
have defined.

1) BBS: In this mechanism, a write pointer wr(e) for e
is maintained on the processor that executes src(e), a read
pointer rd(e) for e is maintained on the processor that executes
snk(e), and a copy of wr(e) is maintained in some shared
memory location sv(e). The pointers rd(e) and wr(e) are
initialized to zero and delay(e), respectively. Just after each
execution of src(e), the new data value produced onto e is
written into the shared memory buffer for e at offset wr(e) and
is updated by the following operation: wr(e) — (wr(e) + 1)
mod Byy(e). sv(e) is updated to contain the new value
of wr(e). Just before each execution of snk(e), the value
contained in sv(e) is repeatedly examined until it is found to
be not equal to rd(e). Then, the data value residing at offset
rd(e) of the shared memory buffer for e is read, and rd(e) is
updated by the operation rd(e) — (rd(e) + 1) mod By (e).

2) UBS: This mechanism also uses the read/write pointers
rd(e) and wr(e), and these are initialized the same way;
however, rather than maintaining a copy of wr(e) in the shared
memory location sv(e), we maintain a count [initialized to
delay(e)] of the number of unread tokens that currently reside
in the buffer. Just after src(e) executes, svu(e) is repeatedly
examined until its value is found to be less than Bys(e);
then, the new data value produced onto e is written into the
shared memory buffer for e at offset wr(e), wr(e) is updated
as in BBS (except that the new value is not written to shared
memory), and the count in sv(e) is incremented. Just before
each execution of snk(e), the value contained in suv(e) is
repeatedly examined until it is found to be nonzero, then, the
data value residing at offset rd(e) of the shared memory buffer
for e is read, the count in sv(e) is decremented, and rd(e) is
updated as in BBS.

Note that in the case of edges for which By;(e) is too
large to be practically implementable, smaller bounds must be
imposed, using a protocol identical to UBS.

B. The Synchronization Graph G5 = (V, E;)

An IPC edge in G represents two functions:
1) reading and writing of data values into the buffer rep-
resented by that edge
2) synchronization between the sender and the receiver,
~ which could be implemented with UBS or BBS.

We find it useful to differentiate these two functions by
creating another graph called the synchronization graph (G)
in which edges between actors assigned to different processors,
which are called synchronization edges, represent synchroniza-
tion constraints only. Recall from Section IV-A that an IPC
edge (v;, v;) of G,y represents the synchronization constraint

start(vs, k) > end(vj, k — delay((vj, vi)))
Vk > delay(vj, v;). @)

Initially, the synchronization graph is identical to the IPC
graph because every IPC edge represents a synchronization
point. However; we will modify the synchronization graph
in certain “valid” ways (which will be defined shortly) by
adding some edges and deleting some others. At the end of
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our optimizations, the synchronization graph may look very
different from the IPC graph; it is of the form (V, (. —
F + F)), where F is the set of edges deleted from. the
IPC graph, and F” is the set of edges added to‘it. At this
point, the IPC edges in &, rerpesent buffer activity and must
be implemented as buffers in shared memory, ‘whereas the
synchronization edges represent synchronization constraints
and are implemented using UBS and BBS. If there is an IPC
edge as well as a synchronization edge between the same pair
of actors, then the synchronization protocol is executed before
the buffers corresponding to the IPC edge are accessed in order
to ensure sender-receiver synchronization. On the other hand,
if there is an TPC edge between two actors in the IPC graph
but there is no synchronization edge between the two, then no
synchronization needs to be done before accessing the shared
buffer. If there is a synchronization edge between two actors
but no IPC edge, then no shared buffer is allocated between the
two actors; only the corresponding synchronization protocol
is invoked. ,

All transformations that we perform on G/, must respect the
synchronization constraints implied by G,.. If we ensure this,
then we only need to implement the synchronization edges of
the optimized synchronization graph. The following theorem
underlies the validity of the main techniques that we will
present in this paper.

Theorem 1: The synchronization constraints in.a synchro-
nization graph G; = (V,£;) imply the synchronization
constraints of the synchronization graph G = (V, Es) if for
each edge ¢ that is present in Gy but not in Gy there is a
minimum delay path from src(e) to snk(e) in Gy that has
total delay of at most delay(e), that is, the following condition
holds: Ve € Eg,e ¢ Ey,pg, (srcle),snk(e)) < delay(e).
{(Note that since the vertex sets for the two graphs are identical,
it is meaningful to refer to src(e) and snk(e) as being vertices
of Gy, even though ¢ € Fs,e ¢ Ey.)

First, we prove the following lemma.

Lemma 4: If p = (e1,e3, -, e,) is a path in G, then

start(snk(er), k) > end(sre(er), k — Delay(p)).

Proof: The following constraints-hold along such a path
p [per (7)]

start(snk(er), k) > end(src(er), k — delay(er)).  (8)
Similarly '

start(snk(e2), k) > end(src(ez), k — delay(ez)).
Noting that src(ez) = snk(e1), we obtain start(snk(esz), k)
> end(snk(er), k — delay(es)). '

Causality implies end(v, k) > start(v, k); therefore, we get

start(snk(ez2), k) > start(snk(er), k — delay(ez)).  (9)
Substituting (8) in (9) ‘ ‘

- start(snk(esz), k) > end(src(er), k— delay(es) — delay(eq)).

Continuing along p in this manner, it can easily be verified that
start(snk(ey), k) > end(src(eq), k — delay(eyn)

— delay(eq—1) — -+ ~ delay(ey))
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that is

start(snk(en), k) > end(sre(er), k — Delay(p)). QE.D.

Proof of Theorem 1: If ¢ € Ey,e € Ey, then the synchro-
nization constraint due to the edge & holds in both graphs.
However, for each ¢ € Fs,e ¢ E;, we need to show that the
constraint due to ¢

start(snk(e), k) > end(src(z), k — delay(e)) (10)

holds in Gy, provided pg, (src(e), snk(e)) < delay(e), which
implies there is at least one path p = (ey,ea, -+, €,) from
sre(e) to snk(e) in Gy (sre(er) = sre(e) and snk(e,) =
snk(e)) such that Delay(p) < delay(e).

From Lemma 4, the existence of such a path p implies

start(snk(e,), k) > end(src(er), k — Delay(p)).
That is

start(snk(e), k) > end(src(e), k — Delay(p)). 11
If Delay(p) < delay(e), then end(src(e),k — Delay(p)) >
end(src(e), k — delay(e)). Substituting this in (11), we obtain

start(snk(e), k) > end(src(e), k — delay(¢)).

The above relation is identical to (10), and this proves the
theorem. QE.D.

Theorem 1 motivates the following definition.

Definition 3: If G1 = (V,E;) and Gy = (V,E») are
synchronization graphs with the same vertex set, we say
that G preserves G if Ve € FEj,e ¢ Fj, we have
pa, (sre(e), snk(e)) < delay(e).

Thus, Theorem 1 states that the synchronization constraints
of (V, E1) imply the synchronization constraints of (V, Es) if
(V, Eq) preserves (V, Es). '

Given an IPC graph G, and a synchronization graph G,
such that G, preserves G, if we implement the synchro-
nizations corresponding to the synchronization edges of G,
then, because the synchronization edges alone determine the
interaction between processors, the iteration period of the
resulting system is determined by the maximal cycle mean
of G,.

C. Computing Buffer Bounds from G and G .

After all the optimizations are complete, we have a final
synchronization graph that preserves Gj,.. Since the synchro-
nization edges in G, are the ones that are finally implemented,
it is advantageous to calculate the self-timed buffer bounds as
a final step after all the transformations on G, are complete
instead of deriving the bounds from G,.. This is because
addition of the edges F’ may reduce these buffer bounds. It is
easily verified that removal of the edges (F') cannot change the
buffer bounds in (§) as long as the synchronizations in G,
are preserved. The following theorem tells us how to compute
the self-timed buffer bounds from G;,.
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Fig. 3. Example of a redundant synchronization edge.

Theorem 2: 1If GG, preserves G;p. and the synchronization
edges in G are implemented, then for each feedback IPC edge
e in Gy, the self-timed buffer bound of e (Byy(e)), which
is an upper bound on the number of data tokens that can ever
be present on e, is given by

Byi(e) = pa,(snk(e), src(e)) + delay(e).

Proof: By Lemma 4, if there is a path p from snk(e) to
src(e) in Gy, then

start(src(e), k) > end(snk(e), k — Delay(p)).

Taking p to be an arbitrary minimum-delay path from snk(e)
to src(e) in G, we get

start(src(e), k) > end(snk(e), k — pg, (snk(e), src(e))).

That is, src(e) cannot be more than pg, (snk(e), src(e)) iter-
ations “ahead” of snk(e). Thus, there can never be more than
pc.(snk(e), sre(e)) tokens in excess of the initial number
of tokens on e. Since the initial number of tokens on e is
delay(e), the size of the buffer corresponding to e is bounded
above by Byy(e) = pg, (snk(e), src(e)) + delay(e). QE.D.

The quantities p¢, (snk(e), src(e)) can be computed using
Dijkstra’s algorithm [6] to solve the all-pairs shortest path
problem on the synchronization graph in time O(|V|®). Thus,
the Byy(e) values can be computed in O(|V|3) time.

VI. PROBLEM STATEMENT

We refer to each access of the shared memory “synchroniza-
tion variable” sv(e) by src(e) and snk(e) as a synchronization
access' to shared memory. If synchronization for e is im-
plemented using UBS, then we see that on average, four
synchronization accesses are required for e in each DFG
iteration period, whereas BBS implies two synchronization
accesses per iteration period. We define the synchronization
cost of a synchronization graph G to be the average number
of synchronization accesses required per iteration period. Thus,
if ngs denotes the number of synchronization edges in G,
that are feedforward edges and ny, denotes the number

INote that in our measure of the number of shared memory accesses
required for synchronization, we neglect the accesses to shared memory that
are performed while the sink actor is waiting for the required data to become
available or the source actor is waiting for an “empty slot” in the buffer.
The number of acceses required to perform these “busy-wait” or “spin-lock”
operations is dependent on the exact relative execution times of the actor
invocations. Since, in our problem context, this information is not generally
available to us, we use the best case number of accesses, which is the number
of shared memory accesses required for synchronization assuming that IPC
data on an edge is always produced before the corresponding sink invocation
attempts to execute, as an approximation.
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Function RemoveRedundantSynchs

JEEE TRANSACTIONS ON:SIGNAL PROCESSING, VOL. 45, NO. 6, JUNE 1997

Input: A synchronization graph G, = (V, E) such that I CE is the set of synchronization

edges.

Qutput: The synchronization graph G,* = (V,(E-E,)) , where E, is the set of redundant

synchronization edges in G, .

1. Compute pG:(x, y) for each ordered pair of vertices in G, .

2. Initialize: E, = @ .
3.Foreachec ]

For each output edge e, of src(e) except for e
If delay(e,)+ pG:( snk(e,), snk(e)) < delay(e)

Then
E, = E, U {e}
Break
End if
End For
End For

4. Return (V,(E-E,)) .

I exit the innermost enclosing For loop */

Fig. 4. . Algorithm that optimally removes redundant synchronization edges.

of synchronization edges that are feedback edges, then the
synchronization cost of G can be expressed as (4nyr+2n4p).

In the remainder of this paper, we present two mechanisms
to minimize the synchronization cost—removal of redundant
synchronization edges and conversion of a synchronization
graph that is not strongly connected into one that is strongly
connected.

VII. REMOVING REDUNDANT SYNCHRONIZATIONS

Formally, a synchronization edge is redundant in a syn-
chronization graph G if its removal yields a synchronization
graph that preserves G. Equivalently, from Definition 3, a
synchronization edge e is redundant in the- synchronization
graph G if there is a path p # (e) in G directed from src(e)
to snk(e) such that Delay(p) < delay(e).

Thus, the synchronization function associated with a redun-
dant synchronization edge “comes for free” as a by product
of other synchronizations. Fig. 3 shows an example of a
redundant synchronization edge. Here, before executing actor
D, the processor that executes {A, B,C.D} does not need
to synchronize with the processor that executes { £, F, G, H}
because due to the synchronization edge x1, the corresponding
invocation of F' must complete before each invocation of D
begins. Thus, zo iS redundant.

The following theorem establishes that the order in which
we remove redundant synchronization edges is not important.

Theorem 3: Suppose that G, = (V, E) is a synchronization
graph, e; and e, are distinct redundant synchronization edges
in G, and G, = (V, E — {e;}). Then e, is redundant in G,.

Proof: Since es is redundant G, there is a path p # (e2)
directed from src(es) to snk(es) such that

Delay(p) < delay(es). (12)

Similarly, there is a path p’ # (e;) contained in both G and

G, that is directed from src(e;) to snk(e;) and satisfies

Delay(p') < delay(ey). (13)

Now, if p does not contain e, then p exists in és, and we
are done. Otherwise, let p' = (x1,Z2, -, Ty); observe
that p is of the form p = (Y1, Y2, Yk—1,€1, Yks Ykt 1s-* >
ym)» and define p// = (2117212, e yYh=1,L1,%2,5 s Ty Yk
Yki1s**Ym). Clearly, p” is a path from src(ez) to snk(es)
in G,. In addition

Delay(p") = Z delay(z;) + Z delay(y;)
= Delay(p’) + (Delay(p) — delay(er))
< Delay(p) (from (13))

< delay(es) (from (12)). QE.D.

Theorem 3 tells us that we can avoid implementing syn-
chronization for all redundant synchronization edges since
the “redundancies” are not interdependent. Thus, an optimal
removal of redundant synchronizations can be obtained by
applying a straightforward algorithm that successively tests
the synchronization edges for redundancy in some arbitrary
sequence and since shortest path computation is a tractable
problem, we can expect such a solution to be practical.

Fig. 4 presents an efficient algorithm based on the ideas
presented above for optimal removal of redundant synchro-
nization edges. In this algorithm, we first compute the path
delay of a minimum delay path from z to y for each ordered
pair of vertices (x,y); here, we -assign a path delay of co
whenever there is no path from z to y. This computation
is equivalent to solving an instance of the well-known all
points shortest paths problem [6]. Then, we examine each
synchronization edge e—in some arbitrary sequence—and
determine whether or:not there is a path from some successor
v of src(e) [other than snk(e)] to snk(e) that has a path delay
that does not exceed (delay(e) — delay(sre(e), v)). It is easily



BHATTACHARYYA er al.: OPTIMIZING SYNCHRONIZATION IN MULTIPROCESSOR DSP SYSTEMS

verified that this check is equivalent to checking whether or
not e is redundant [3].

From the definition of a redundant synchronization edge,
it is easily verified that given a redundant synchronization
edge e, in G, and two arbitrary vertices z,y € V, if we let
G, = (V,(E—{e,})), then pé. (@, y) = pg (,y). Thus, none
of the minimum-delay path values computed in Step 1 need
to be recalculated after removing a redundant synchronization
edge in Step 3.

In [3], it is shown that RemoveRedundantSynchs attains a
time complexity of O(|V|2log,(|V|) + (|[V||E|) if we use a
modification of Dijkstra’s algorithm described in [6] for Step 1.

VIII. COMPARISON WITH SHAFFER’S APPROACH

In [26], Shaffer presents an algorithm that minimizes the
number of directed synchronizations in the self-timed exe-
cution of a DFG under the (implicit) assumption that the
execution of successive iterations of the DFG are not allowed
to overlap. In Shaffer’s technique, a construction identical to
our synchronization graph is used, with the exception that there
is no feedback edge connecting the last actor executed on a
procesor to the first actor executed on the same processor, and
edges that have delays are ignored since only intraiteration
dependencies are significant. Thus, Shaffer’s synchronization
graph is acyclic. RemoveRedundantSynchs can be viewed as an
extension of Shaffer’s algorithm to handle self-timed, iterative
execution of a DFG.

Fig. 5 shows a DFG that arises from a four-channel mul-
tiresolution QMEF filter bank, and Fig. 5(b) shows a self-timed
schedule for this DFG. For elaboration on the derivation of
this DFG from the original SDF graph, see [3] and [16]. The
synchronization graph that corresponds to Fig. 5(a) and (b)
is shown in Fig. 5(c). If we apply Shaffer’s method, which
considers only those synchronization edges that do not have
delay, we can eliminate the need for explicit synchronization
along only one of the eight synchronization edges—edge
(A1, Bs). In contrast, if we apply RemoveRedundantSynchs,
we can detect the redundancy of (A;, By) as well as four
additional edges: (A3, B1), (A4, B1), (B2, F1), and (By, Es).
The synchronization graph that results from applying Re-

moveRedunndantSynchs is shown in Fig. 5(d). The number of |

synchronization edges is reduced from 8 to 3.

IX. DERIVING A STRONGLY
CONNECTED SYNCHRONIZATION GRAPH

Earlier, we defined two synchronization protocols: BBS,
which has a cost of two synchronization accesses per iteration
period, and UBS, which has a cost of four synchronization
accesses. We pay the increased overhead of UBS whenever the
associated edge is a feedforward edge of the synchronization
graph G,.

One alternative to implementing UBS for a feedforward
edge e is to add synchronization edges to GG, so that e becomes
encapsulated in an SCC; such a transformation would allow e
to be implemented with BBS. We have developed an efficient
technique to perform such a graph transformation in such a
way that the net synchronization cost is minimized, the impact
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Proc. 1A, Ay, B, C;, D, E|, F |, F,

Proc. 2A,, Ay, By, Ey Fy F,y

®)

@

Fig. 5. Application of RemoveRedundaniSynchs to a multiresolution QMF
filter bank.

on the self-timed buffer bounds of the IPC edges is optimized,
and the estimated throughput is not degraded. This technique
is similar in spirit to the one in [30], where the concept
of converting a DFG that contains feedforward edges into a
strongly connected graph has been studied in the context of
retiming. ,

Fig. 6 presents our algorithm for transforming a synchro-
nization graph that is not strongly connected into a strongly
connected graph. This algorithm simply “chains together” the
source SCC’s and, similarly, chains together the sink SCC’s.
The construction is completed by connecting the first SCC of
the “source chain” to the last SCC of the sink chain with an
edge that we call the sink-source edge. From each source or
sink SCC, the algorithm selects a vertex that has minimum
execution time to be the chain “link” corresponding to that
SCC. Minimum execution time vertices are chosen in an
attempt to minimize the amount of delay that must be inserted
on the new edges to preserve the estimed throughput of the
original graph.

The following theorem establishes that a solution computed
by Convert-to-SC-graph always has a synchronization cost that
is no greater than that of the original synchronization graph:



1614,

Function Convert-to-SC-graph

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 6, JUNE 1997

Input: A synchronization graph G that is not strongly connected.
Output: A strongly connected graph obtained by adding edges between the SCCs of G.

1. Generate an ordering C,, C,, ..., C,, of the source SCCs of G, and similarly, generate
an ordering D, D,, ..., D, of the sink SCCs of G.
2. Select a vertex v, € C,; that minimizes #(*) over C,.

3.Fori=2,3...m

« Select a vertex v; € C; that minimizes #(*) over C;.

* Instantiate the edge dy(v;_,, v,).
End For

4. Select a vertex w; € D, that minimizes 1(*) over D, .

5. Fori=23..,n

* Select a vertex w; € D, that minimizes #(*) over D,.

* Instantiate the edge dy(w;_,, w;).
End For
6. Instantiate the edge dy(w,, v,).

Fig. 6. Algorithm for converting a synchronization graph that is not strongly connected into a strongly connected graph.

Theorem 4: Suppose that G is a synchronization graph
and that G is the graph that results from applying algorithm
Convert-to-SC-graph to G. Then, the synchronization cost of
@G is less than or equal to the synchronization cost of G.

Proof: Recall that in a connected graph (V*, E*) |E*|
must exceed (|V*| — 2) [6]. Thus, the number of feedforward
edges ny must satisfy (n; >n. — 2), where n, is the number
of SCC’s. Now, the number of new edges introduced by
Convert-to-SC-graph is equal t0 (ngn + Nsnr — 1), wWhere
Nsre 18 the number of source SCC’s, and 14, is the number
of sink SCC’s, and consequently, the number of synchro-
nization accesses per iteration period Sy that is required to
implement the edges introduced by Convert-to-SC-graph is
(2X (Ngpe+Tsnk — 1)), Whereas the number of synchronization
accesses S_ eliminated by Convert-to-SC-graph (by allowing
the feedforward edges of the original synchronization graph
to be implemented with BBS rather than UBS) equals 2n;.
It follows that the net change (S — S_) in the number of
synchronization accesses satisfies ' »

(S+ — S_) =2(nsre + Ngnie — 1) = 2nf < 2(ne — 1 — ny)
<2(n.-1-=1{(n,—1)),

and thus, (S4 - S5_) < 0. QED.

Fig. 7 shows the synchronization graph topology that re-
sults from a four-processor schedule of a synthesizer for
plucked-string musical instruments in seven voices based on
the Karplus—Strong technique. This graph contains n; = 6
synchronization edges (the black edges), all of which are feed-
forward edges; therefore, the synchronization costis 4n; = 24.
Since the graph has one source SCC and one sink SCC, only
one edge is added by Convert-to-SC-graph (shown by the grey,
dashed edge), and adding this edge reduces the synchronization
cost to 2n; + 2 = 14, which is a 42% savings.

One issue remains to be addressed in the conversion of a
synchronization graph G into a strongly connected graph Gy
the proper insertion-of delays so that G, is not deadlocked

Fig. 7. Solution obtained by Converi-to-SC-graph when applied to a
four-processor schedule of a synthesizer for musical instruments based on
the Karplus-Strong technique.

and does not have lower estimated throughput than G;. The
location (edge) and magnitude of the delays that we add are
significant since (from Theorem 2) they affect the self-timed
buffer bounds of the IPC edges. Since the self-timed buffer
bounds determine the amount of memory that we allocate for
the corresponding buffers, it is desirable to prevent deadlock
and decrease in estimated throughput in such a way that we
minimize the sum of the self-timed buffer bounds over all IPC
edges. In this section, we present an efficient algorithm for
addressing this goal. Our algorithm produces-an optimal result
if G has only one source SCC or only one sink SCC; in other
cases, the algorithm must be viewed as a heuristic.

We will use the following notation in the remainder of

this section: if G = (V, E) is a DFG, (eg,e1,--,€n—1) is 2
sequence of distinct members of E, and Ag,Aq, -, Ap_q €
{0,1,--+,00}. Then, Gleg — Ag, - ,enm1 — Apn_i]
denotes the DFG (V,((E — {eg,e1, " €n_1}) U
{ep,€1, -+ eh_1})), where each e, is defined by

src(el) = src(e;), snk(e}) = snk(e;), and delay(e]) = A;.
Thus, Gleo — Ao,- -y en—1 — Ap_y] is simply the DFG
that results from “changing the delay” on each e; to the
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Function DetermineDelays

Input: Synchronization graphs G, = (V, E) and Gs , where és is the graph computed by Con-
vert-to-SC-graph when applied to- G, . The ordering of source SCCs generated in Step 2 of
Convert-to-SC-graph is denoted C,,C,, ...,C,,. For i = 1,2, ..m~-1, e; denotes the edge
instantiated by Convert-to-SC-graph from a vertex in C; to a vertex in C,, , . The sink-source
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edge instantiated by Convert-to-SC-graph is denoted ¢, .

Output: Non-negative integers dg, d,, ...
és[eo —d .

X, = Gleg =, o, €y, = ]
Aua= BellmanFord(X,)

max

dyy = K): t(x))/Amax-I

[ 4
Fori=0,1,..,m-1
; = MinDelay(X;, e; \,,;,» d,,5)
X;o1 = Xle;~ 5]
End For
Return dy, 5,, ..., d,,_1-

Function MinDelay( X, e, A, B)

,d, _, such that the estimated throughput of

.,e,_; —d,_,] equals the estimated throughput of G,.

/" compute the max. cycle mean of G, */

/* an upper bound on the delay required for any e, */

I* fix the delay on ¢, to be d; */

Input: A synchronization graph X, an edge ¢ in X, a positive real number X, and a positive

integer B.

Output: Assuming X[e — B] has estimated throughput no less than A , determine the mini-

mum d € {0, 1, ..., B} such that the estimated throughput of X[e — d] is no less than A

Perform a binary search in the range {[0,1,..,B] to find the minimum value of
re {0, 1, ..., B} such that BellmanFordX{e — r]) returns a value less than or equal to A.

Return this minimum value of r.

Fig. 8. Algorithm for determining the delays on the edges introduced by Convert-t0-SC-graph. This algorithm assumes the original synchronization

graph has only one sink SCC.

corresponding new delay value A;. In addition, if G is
a strongly connected synchronization graph that preserves
Gipe, an IPC sink-source path in G is a minimum-delay
path in G directed from snk(e) to src(e), where e is an
IPC edge (in Gp.).

Fig. 8 outlines the restricted version of our algorithm that
applies when the synchronization graph G, has exactly one
sink SCC. Here, BellmanFord is assumed to be an algorithm
that takes a synchronization graph Z as input and applies the
Bellman—Ford algorithm discussed in [15, pp. 94-97] to return
the cycle mean of the critical cycle in Z; if one or more cycles
exist that have zero path delay, then BellmanFord returns co.

Algorithm DetermineDelays is based on the observa-
tions that the set of IPC sink-source paths introduced by
Convert-to-SC-graph can be partitioned into m nonempty
subsets Py, P1,---,Pn-1 such that each member of PB;
contains eg, ey, --,e;> and contains no other members of
{eo,e1, ++,em—1}, and similarly, the set of fundamental
cycles introduced by DetermineDelays can be partitioned
into Wy, Wy, .-, W,,_1 such that each member of W,

2See Fig. 8 for the specification of what the e;s represent.

contains eq,ep,---,¢e; and contains no other members of

{60, €1, ", em_l}.

By construction, a nonzero delay on any of the edges
€o, €1, "+, €; “contributes to reducing the cycle means of all
members of W,.”” Algorithm DetermineDelays starts (iteration
1 = 0 of the For loop) by determining the minimum delay &
on eq that is required to ensure that none of the cycles in W
has a cycle mean that exceeds the maximum cycle mean A .y
of G;. Then (in iteration i = 1), the algorithm determines the
minimum delay §; on e; that is required to guarantee that no
member of W has a cycle mean that exceeds Amayx, assuming
that delay(eg) = dp.

Now, if delay(eq) = b, delay(e1) = §; and §; >0, then
for any positive integer £ < 41, k units of delay can be
“transferred from ey to eq” without violating the property that
no member of (W, U W) contains a cycle whose cycle mean
exceeds A ... However, such a transformation increases the
path delay of each member of P, while leaving the path delay
of each member of P; unchanged, and thus, from Theorem
2, such a transformation cannot reduce the self-timed buffer
bound of any IPC edge. Furthermore, apart from transferring
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Fig. 9. Example used to illustrate a solution obtained by algorithm Deter-
mineDelays.

delay from e to eg, the only other change that can be made
to delay(eq) or delay(ey), without introducing a member of
(WoUW;) whose cycle mean exceeds Amax, is to increase one
or both of these values by some positive integer amount(s).
Clearly, such a change cannot reduce the self-timed buffer
bound on any IPC edge.

Thus, we see that the values &y and §; computed by
DetermineDelays for delay(eq) and delay(e:1), respectively,
optimally ensure that no member of (W U W1) has a cy-
cle mean that exceeds Ap.x. After computing these values,
DetermineDelays computes the minimum delay 8, on ey that
is required for all members of W, to have cycle means less
than or equal to Ayax, assuming that delay(eg) = 6o and
that delay(e;) = &;. Given the configuration (delay(eq) =
8o, delay(e1) = 61, delay(ea) = 82), transferring delay from
eg to ey increases the path delay of all members of P; while
leaving the path delay of each member of (PyUP2) unchanged;
transferring delay from es to eq increases the path delay across
(Py U Py) while leaving the path delay across P> unchanged.
Thus, by an argument similar to that given to establish the
optimality of (8o,8;) with respect to (Wy U W1), we can
deduce the following:

1) The values computed by DetermmeDelays for the delays

on eg, €1, es guarantee that no member of (Wo U Wy U
W3) has a cycle mean that exceeds Amax.

2) For any other assignment of delays (&f,87,685) to
(eg,e1,e2) that preserves the estimated throughput
across (Wo U W1 U W) and for any IPC edge e
such that an IPC sink-source path of e is contained in
(PgUPUP,), the self-timed buffer bound of e under the
assignment (8}, §7,65) is greater than or equal to self-
timed buffer bound of e under the assignment (8¢, 81, 82)
computed by iterations ¢ = 0, 1,2 of DetermineDelays.

After extending this analysis successively to each of the
remaining iterations i = 3,4,---,m — 1 of the for loop in
DetermineDelays, we arrive at the following result.

Theorem 5: Suppose that G is a synchronization graph that
has exactly one sink SCC; let G, and (eo, €15y €m—1) be
as'in Fig. 8; let (dg,dy, -+ ,dm—1) be the result of applying
DetermineDelays to G4 and Gs, and let (df, dj, -, d;n 1) be
any sequence of m nonnegative integers such that G, [eg —

0y yem—1 — dp,_;] has the same- estimated through-
put as G,. Then, @(G leg — dy,+ - rem—1 — dipy]) =
®(Gyleq — do, -+, em—1 — dm—1]), where ®(X) is the sum
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of the self-timed buffer bounds over all IPC edges in Gy
induced by the synchronization graph X.

Fig. 9 illustrates a solution obtained from DetermineDelays.
Here, we assume that ¢(v) = 1 for each vertex v, and we
assume that the set of IPC eges is {e, ey }. The grey-dashed
edges are the edges added by Coﬁvert—to-SC-graph. We see
that Apax is determined by the cycle in the sink SCC of the
original graph; inspection of this cycle yields Ay.x = 4. In
addition, the set Wy, which is the set O/f fundamental cycles
that contain ey and do not contain e;, consists of a single
cycle ¢q that contains three edges. By inspection of this cycle,
we see that the minimum delay on e required to guarantee
that its cycle mean does not exceed Anyax is 1. Thus, the
i = 0 iteration of the For loop in DetermineDelays computes
8o = 1. Next, we see that Wj consists of a single cycle that
contains five edges, and two delays must be present on this
cycle for its cycle mean to be less than or equal to Aax.
Since one delay has been placed on eg, DetermineDelays
computes §; = 1 in the i = 1 iteration of the For loop.
Thus, the solution determined by DetermineDelays for Fig. 9
is (60,61) = (1,1); the resulting self-timed buffer bounds of
e, and ey are, respectively, 1 and 2, and ® =241 = 3.

Algorithm DetermineDelays can easily be modified to op-
timally handle general graphs that have only one source
SCC. Here, the algorithm specification remains essentially
the same, with the exception that for 7 = 1,2,---,(m —
1), e; denotes the edge directed from -a vertex in Dy,.; to
a vertex in D,,_;y1, where Dy, Dy, ---, Dy, is the ordering
of sink SCC’s generated in Step 2 of the corresponding
invocation of Convert-to-SC-graph (eq still denotes the sink-
source edge instatiated by Convert-to-SC-graph). By adapting
the argument of Theorem 5, it is easily verified that when it is
applicable, this modified algorithm always yields an optlmal
solution.

As far as we are aware, there is no straightforward extension
of DetermineDelays to general graphs (multiple source SCC’s

‘and multiple sink SCC’s) that is guaranteed to yield optimal

solutions. Some fundamental -difficulties in deriving such an
extension are explained in [3].

However, DetermineDelays can. be extended to. yield
heuristics for the general case in which the original syn-
chronization graph G, contains more than one source SCC
and more-than one sink SCC. For example, if (ay, aa, -, ax)
denote edges that were instantiated by Convert-to-SC-graph
“between” the source SCC’s—with each a; representing the
ith edge created—and similarly, (by,bs,---,b;) denote the
sequence of edges instantiated between the sink SCC’s,
then algorithm DetermineDelays can. be applied with the
modification that m = k + 1+ 1, and (eg, €1, *,€m—1) =
(es,a1,a2, -+ ,0k, by, bi—1,---,b1), where-e, is the sink-
source edge from Convert-to-SC-graph.

It should be noted that practical synchronization graphs
frequently contain either a single source SCC or a single
SCC, or both—such as the example of Fig. 7. Thus, Deter-
mineDelays, together with its counterpart for graphs that have
a single source SCC, form a widely applicable solution. for
optimally determining the delays on the edges created by
Convert-to-SC-graph.
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Function SynchronizationOptimize
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Input: A DFG G and a self-timed schedule for this DFG.
Output: Gy, G, and {Bg(e)|e isan IPC edge in Gy} -

1. Extract G;,. from G and the given parallel schedule (which specifies actor assignment to
processors and the order in which each actor executes on a processor)

2.8et G, = Gipc
3. G, = RemoveRedundantSynchs(G,)
4. G, = Convert-to-SC-graph(G,)

5. G, = DetermineDelays(G,)

I Initially, each IPC edge is also a synchronization edge */

/* Remove the synchronization edges that have become redundant as a result of Step 4. */

6. G, = RemoveRedundantSynchs(G;)

7. Calculate buffer sizes Bg(e) for each IPC edge e in Gipe (to be used for BBS):
— Compute pcs(snk(e), src(e)), and set Bg(e) = pcs(snk(e), src(e)) + delay(e).

Fig. 10. Complete synchronization optimization algorithm.

If we assume that there exist constants 7" and D such that
t{(v) < T for all v and delay(e) < D for all edges e, then it
can be shown that DetermineDelays—and any of the variations
of DetermineDelays defined above—has O(|V|*(log,(|V]))?)
time complexity.

Although the issue of deadlock does not explicitly arise in
DetermineDelays, the algorithm does guarantee that the output
graph is not deadlocked, assuming that the input graph is
not deadlocked. This is because (from Lemma 1) deadlock
is equivalent to the existence of a cycle that has zero path
delay and is thus equivalent to an infinite maximum cycle
mean. Since DetermineDelays does not increase the maximum
cycle mean, the algorithm cannot convert a graph that is not
deadlocked into a deadlocked graph.

X. COMPLETE ALGORITHM

In this section, we outline our complete synchronization
optimization algorithm. The input is a DFG and a parallel
schedule for it, and the output is an IPC graph G;p. =
(V, Eip.), which represents buffers as IPC edges; a strongly
connected synchronization graph G, = (V, E), which repre-
sents synchronization constraints; and a set of shared-memory
buffer sizes { By (e)|e is an IPC edge in Gp. }, which specifies
the amount of memory to allocate in shared memory for each
IPC edge.

The pseudocode for the complete algorithm is given in
Fig. 10. Here, RemoveRedundantSynchs is invoked twice: once
at the beginning and once again after Convert-to-SC-graph
and DetermineDelays. It is possible that the edge(s) added by
Convert-to-SC-graph can make some of the existing synchro-
nization edges redundant, and thus, applying RemoveRedun-
dantSynchs after Convert-to-SC-graph may be benefical.

A code generator can then accept G';p. and G, and allocate
a buffer in shared memory for each IPC edge e specified by
Glipe of size Byy(e) and generate synchronization code for the

synchronization edges represented in G;. These synchroniza-
tions may be implemented using BBS. The synchronization
cost in the final implementation is equal to 2n,, where n; is
the number of synchronization edges in Gj.

XI. CONCLUSIONS

We have presented techniques to reduce synchronization
overhead in self-timed, multiprocessor implementations of
iterative dataflow programs. We have introduced a graph-
theoretic analysis framework that allows us to determine the
effects on throughput and buffer sizes of modifying the points
in the target program at which synchronization functions are
carried out, and we have used this framework to extend
an existing technique—removal of redundant synchronization
edges—for noniterative programs to the iterative case and to
develop a new method for reducing synchronization overhead
that converts a feedforward DFG into a strongly connected
graph in such a way as to reduce synchronization overhead
without slowing down execution. We have shown how our
techniques can be combined and how the result can be
postprocessed to yield a format from which IPC code can
easily be generated.

Perhaps the most significant direction for further work is the
incorporation of timing guarantees, i.e., hard upper and lower
execution time bounds, as Dietz et al. use in [7], and handling
of a mix of actors, some of which have guaranteed execution
time bounds and some that have no such guarantees, as Filo
et al. do in [8].
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