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Abstract

This monograph describes principles of information theoretic secrecy
generation by legitimate parties with public discussion in the presence
of an eavesdropper. The parties are guaranteed secrecy in the form of
independence from the eavesdropper’s observation of the communica-
tion.

Part I develops basic technical tools for secrecy generation, many of
which are potentially of independent interest beyond secrecy settings.
Various information theoretic and cryptographic notions of secrecy are
compared. Emphasis is placed on central themes of interactive com-
munication and common randomness as well as on core methods of
balanced coloring and leftover hash for extracting secret uniform ran-
domness. Achievability and converse results are shown to emerge from
“single shot” incarnations that serve to explain essential structure.

Part II applies the methods of Part I to secrecy generation in two
settings: a multiterminal source model and a multiterminal channel
model, in both of which the legitimate parties are a�orded privileged
access to correlated observations of which the eavesdropper has only
partial knowledge. Characterizations of secret key capacity bring out
inherent connections to the data compression concept of omniscience
and, for a specialized source model, to a combinatorial problem of max-
imal spanning tree packing in a multigraph. Interactive common infor-
mation is seen to govern the minimum rate of communication needed to
achieve secret key capacity in the two-terminal source model. Further-
more, necessary and su�cient conditions are analyzed for the secure
computation of a given function in the multiterminal source model.

Based largely on known recent results, this self-contained mono-
graph also includes new formulations with associated new proofs. Sup-
plementing each chapter in Part II are descriptions of several open
problems.

P. Narayan and H. Tyagi. Multiterminal Secrecy by Public Discussion. Foundations
and Trends R• in Communications and Information Theory, vol. 13, no. 2-3,
pp. 129–275, 2016.
DOI: 10.1561/0100000072.





1
Introduction

Information theoretic cryptography is founded on the principle of guar-
anteeing legitimate users provable data security from an adversary with
unlimited computational power. Such an unconditional guarantee of se-
curity assures secrecy in the form of statistical independence (or near-
independence) from the adversary’s observations. This is accomplished,
however, by giving the legitimate users a hearty leg up. By comparison,
most existing cryptosystems for data security are based on the concept
of computational complexity. The latter form of security rests on the
infeasibility of existing mathematical and computational techniques in
solving “hard” underlying computational problems, for instance, in-
verting specific functions.

Information theoretic perfect secrecy, introduced by Claude Shan-
non [72], constitutes the strongest definition of data security. It requires
independence of a secret from the adversary’s observations. A prac-
tically acceptable relaxation to near-independence ensures negligible
information leakage to the adversary. Taken together with resources
for the legitimate parties that lend them a decided advantage over the
adversary, it leads to a rich theory raring for application.
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4 Introduction

In this monograph, we consider secrecy generation with public com-
munication by multiple legitimate parties in two settings: a multitermi-
nal source model and a multiterminal channel model. In both models,
the legitimate parties are given privileged access to correlated observa-
tions that are only partially available to the eavesdropper. Our primary
focus is on the former model.

The multiterminal source model consists of m • 2 terminals with
prior access to correlated observations, and the means to communicate
interactively among themselves over a public and noiseless broadcast
medium of unlimited capacity. In the multiterminal channel model, a
subset of k terminals, 1 § k § m ´ 1, govern the inputs of a noisy
but secure transmission channel with the remaining m ´ k terminals
receiving the channel outputs. In between transmissions over the se-
cure channel, all the terminals additionally can communicate among
themselves publicly as in the source model. In both models, a passive
adversary can eavesdrop on the communication among the terminals
but cannot tamper with it, i.e., the communication is authenticated. In
the setting of each model, the primary goal is to generate a secret key
of optimal length for all the m terminals under the requirement of in-
formation theoretic secrecy from the eavesdropped communication. We
also consider secure function computation by trusted computing parties
for a multiterminal source model under a similar secrecy constraint.

We do not address “wiretap channel” secrecy, launched in seminal
works [98, 17], that entails secure transmission of messages over insecure
channels which are wiretapped by an adversary; this is chronicled in
[49, 19, 65]. Also, the classical multiterminal (information theoretically)
secure function computation problem where the parties themselves are
not trusted is not considered here; it has a substantial literature (cf. [46,
15, 95, 25, 58, 40, 96, 93, 94, 3, 87]).

This self-contained monograph is written in the language of infor-
mation theory and aims to appeal as well to the cryptographer. To
this end, we have strived to emphasize its following distinctive fea-
tures: Comparison of various information theoretic and cryptographic
notions of secrecy; bringing out of the significance – in distributed co-
operative secrecy generation – of central themes of interactive commu-
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nication and the common randomness or shared bits thereby created;
and a presentation of “single-shot” results with a minimum of statisti-
cal assumptions (beyond knowledge of a joint distribution of pertinent
random variables). Such a single-shot analysis, redolent of standard
practice in cryptography, lies at the heart of information theoretic cod-
ing theorems. Also, by virtue of their lean and not mean but essential
form, these results are of potential significance for models beyond those
considered here.

Although this monograph largely treats known recent results, ad-
herence to a consistency of themes has engendered also new formu-
lations with associated new proofs. Our e�ort is to be viewed as a
complement to the rich chapter on information theoretic security in
[19] as well as jaunts in new directions.

Organization
Part I consists of Chapters 2 - 5 that deal with basic technical tools

for secrecy generation. Many of these tools are potentially of indepen-
dent interest beyond secrecy applications. Part II contains Chapters 6
- 9 that apply the methods of Part I to secrecy generation for the mul-
titerminal source and channel models. In order to maintain a smooth
flow of presentation, credits are provided only at the end of each chap-
ter in a story of results a la [19]. The list of references is representative
but not exhaustive. Supplementing the credits in Chapters 6 - 9 are
descriptions of open problems.

Beginning with rudiments, Chapter 2 describes secrecy indices for
a key with their operational meanings, as well as secrecy indices for a
message and relationships among the latter. Turning to basic methods,
Chapter 3 deals with the central concepts of interactive communica-
tion among multiple terminals and the common randomness generated
thereby; a fundamental structural property of interactive communica-
tion and single-shot converse upper bounds for the ensuing common
randomness are derived. The concept of a secret key is introduced
formally in Chapter 4, and suitable upper bounds on its length are
obtained by means of two di�erent converse techniques: bounding the
entropy of common randomness and through the error exponent of
conditional independence hypothesis testing. The notion of shared in-
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formation is introduced as an upper bound for the length of a secret
key; shared information has a potential role as a measure of mutual
dependence among m • 2 random variables. Chapter 5 describes two
achievability approaches – balanced coloring and leftover hash – for ex-
tracting uniform randomness from a given random variable with near
independence from another random variable. These methods pave the
way for extracting a secret key from common randomness by means of
public communication.

Chapter 6 addresses secret key generation for the multiterminal
source model in which each terminal observes one component of a dis-
crete memoryless multiple source. A single-letter characterization of
secret key capacity is obtained on the strength of an inherent link
to a data compression problem of “omniscience” without secrecy con-
straints. This capacity is seen as being equal to shared information,
thereby imbuing the latter with an operational meaning. Secret key
generation for a special “pairwise independent network” model reveals
connections to a combinatorial problem of maximal packing of span-
ning trees in a multigraph. For the two-terminal source model, the
minimum rate of interactive communication needed to generate an op-
timal rate secret key is addressed in Chapter 7, and is shown to be
related to a new interactive variant of Wyner’s common information.
Chapter 8 examines conditions that enable a special form of secrecy
generation for the multiterminal source model: secure function com-
putation in which multiple terminals compute a given function of the
collective data at the terminals using public communication that does
not reveal the function value. The closing Chapter 9 studies secret key
generation for the multiterminal channel model in which one subset
of the terminals are connected to the remaining terminals by a secure
discrete memoryless multiaccess channel. While a general single-letter
characterization of secret key capacity remains open, in the special case
of a channel with a single output terminal, interesting connections are
shown between secrecy capacity and the transmission capacity region
of the multiple access channel with and without feedback.
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A note: All the random variables (rvs) throughout this monograph
take values in finite sets, with known joint probability mass functions
(pmfs). Probabilities of events involving rvs X, Y will be denoted by
PXY , PX|Y , etc., and by a general P when appropriate.





Part I

Basic Tools





2
Notions of Secrecy and Their Relationships

We set the stage with a description of measures of information theo-
retic secrecy and their properties. Variational secrecy and divergence
secrecy are defined in §2.1. Corresponding secrecy indices for a key
and a useful relationship between them are described in §2.2. The con-
nection, which sandwiches divergence secrecy index between functions
of variational secrecy index, will enable us in later chapters to estab-
lish secrecy results that involve switching back and forth between the
two indices. The operational secrecy of a key in terms of its resistance
to querying by an eavesdropper possessing related side information is
also explained. In a di�erent setting of message security, relationships
among various message secrecy indices: variational or divergence, se-
mantic and distinguishing, are considered in §2.3. It is established that
these indices are, in e�ect, in agreement with each other. The use of a
secret key in encryption by a one-time pad is shown in §2.4.

2.1 Information theoretic secrecy

Let the K-valued rv K denote a secret for legitimate parties, and let
the Z-valued rv Z denote the observation of an eavesdropper. A secret

11



12 Notions of Secrecy and Their Relationships

K is information theoretically secure if K and Z are “almost inde-
pendent.” Formally, it is required that the joint pmf PKZ of K, Z be
close to PK ˆPZ . Two di�erent measures of closeness are used, yielding
corresponding notions of secrecy.

1. Variational secrecy. Given ‘ • 0, an rv K is ‘-secure from the
rv Z in variational distance if

}PKZ ´ PK ˆ PZ} § ‘,

where }P ´ Q} denotes the variational distance between pmfs P
and Q on X , given by

}P ´ Q} “ 1
2

ÿ

xPX
|P pxq ´ Qpxq|

“ max
AÑX

P pAq ´ QpAq.

2. Divergence secrecy. An rv K is ‘-secure from an rv Z in di-
vergence if

D
`

PKZ

›

›PK ˆ PZ

˘ § ‘,

where D
`

P
›

›Q
˘

denotes the Kullback-Leibler divergence between
the pmfs P and Q on X , given by1

DpP }Qq “
ÿ

xPX
P pxq log P pxq

Qpxq .

Note that the expression on the left-side of inequality above is
simply the mutual information IpK ^ Zq between K and Z.

As we shall see below, divergence secrecy is more stringent than vari-
ational secrecy. On the other hand, variational secrecy provides ready
operational meanings to be seen in this and subsequent chapters. The
following relation plays the role of a “chain rule” for variational dis-
tance.

Lemma 2.1. For two pmfs PUm and QUm on a finite set U1 ˆ ... ˆ Um,
it holds that

}PUm ´ QUm} §
m
ÿ

i“1

›

›PU i ´ PU i´1QUi|U i´1
›

› .

1The standard convention 0 logp0{0q “ 0 is followed.
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Proof. For 1 § i § m ´ 1, denote by P piq the pmf PU iQUm
i`1|U i , and let

P p0q “ QUm and P pmq “ PUm . Then,

}PUm ´ QUm} “
›

›

›

›

›

m
ÿ

i“1
P piq ´

m
ÿ

i“1
P pi ´ 1q

›

›

›

›

›

§
m
ÿ

i“1
}P piq ´ P pi ´ 1q}

“
m
ÿ

i“1

›

›

›

PU iQUm
i`1|U i ´ PU i´1QUm

i |U i´1

›

›

›

“
m
ÿ

i“1

›

›PU i ´ PU i´1QUi|U i´1
›

› .

2.2 Secrecy of a key

In the secrecy requirements above, we allow the secret K to have an
arbitrary pmf. In applications involving a secret key, it is required that
the secret key K additionally must be close to a uniform rv. Indeed,
the security of many cryptographic primitives relies on the uniformity
of the underlying secret key.2

2.2.1 Secrecy indices for a key

We define two secrecy indices that incorporate a uniformity require-
ment for K into the notions of variational secrecy and divergence se-
crecy.

Definition 2.2. The variational secrecy index for K given Z is

‡varpK; Zq fi
›

›PKZ ´ P K
unif ˆ PZ

›

› ,

where P K
unif is the uniform pmf on the range K of K. The divergence

2If only computational secrecy is required, it su�ces to use a pseudorandom
uniform key.
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secrecy index for K given Z is

‡divpK; Zq fi D
`

PKZ

›

›P K
unif ˆ PZ

˘

“ log |K| ´ HpKq ` IpK ^ Zq
“ log |K| ´ HpK | Zq.

In fact, the two secrecy indices are closely related; the following
technical lemma is used to relate the two indices.

Lemma 2.3. For pmfs P and Q on a finite set X ,

|HpP q ´ HpQq| § }P ´ Q} logp|X | ´ 1q ` h p}P ´ Q}q ,

where hpxq “ ´x log x ´ p1 ´ xq logp1 ´ xq, 0 § x § 1, is the binary
entropy function.

Proof. For any pmf PXY on X ˆ X with PX “ P , PY “ Q,

HpP q ´ HpQq “ HpXq ´ HpY q
“ HpX|Y q ´ HpY |Xq

so that

|HpP q ´ HpQq| “ |HpX | Y q ´ HpY | Xq|
§ maxtHpX | Y q, HpY | Xqu.

§ PXY pX ‰ Y q logp|X | ´ 1q ` hpPXY pX ‰ Y qq,
where the last step uses Fano’s inequality. The claim follows by choosing
PXY to be a a maximal coupling of P and Q, i.e., with PX “ P ,
PY “ Q and PXY pX “ Y q being maximal, whence PXY pX ‰ Y q “
}P ´ Q}.

Lemma 2.4. The secrecy indices ‡varpK; Zq and ‡divpK; Zq satisfy

p2 log eq ‡varpK; Zq2 § ‡divpK; Zq
§ ‡varpK; Zq logp|K| ´ 1q ` h p‡varpK; Zqq

Proof. The first claim follows from Pinsker’s inequality

2 log e }P ´ Q}2 § D
`

P
›

›Q
˘

,
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with P “ PKZ and Q “ P K
unif ˆ PZ . For the second, we have

‡divpK; Zq
“ log K ´ HpK | Zq
“

ÿ

z

PZ pzq “

H
`

P K
unif

˘ ´ H
`

PK|Z“z

˘‰

§
ÿ

z

PZ pzq “

›

›PK|Z“z ´ P K
unif

›

› logp|K| ´ 1q

`h
`

›

›PK|Z“z ´ P K
unif

›

›

˘‰

,

where the previous step is by Lemma 2.3. The second claim follows
since hp¨q is concave.

2.2.2 Operational notion of secrecy

Often it is required that we “extract” a secret key K as a function of
another rv U , with the former being ‘-secure from Z. This is captured
by the following definition of secrecy.

Definition 2.5. Given k P N and 0 § ‘ † 1, a U-valued rv U is pk, ‘q-
secure from Z if there exists a mapping Ÿ : U Ñ t1, ..., ku such that the
rv K “ ŸpUq satisfies ‡varpK; Zq § ‘.

While the definition of secrecy above is mathematically appealing,
its operational significance is not apparent immediately. In this sec-
tion, we shall present a heuristic definition of secrecy and establish its
equivalence with the pk, ‘q secrecy of Definition 2.5.

Specifically, an eavesdropper observing Z wishes to ascertain the
value of the rv U by asking questions of the form “Is U “ u?” with
yes-no answers. A query strategy q for U given Z “ z is a bijection
qp¨|zq : U Ñ t1, ..., |U |u, where the querier, upon observing Z “ z,
asks the question “Is U “ u?” in the qpu|zqth query. A natural secrecy
requirement is to force the task of the querying eavesdropper to be as
onerous as possible.

Definition 2.6. Given 0 § ‘ † 1 and ⁄ ° 0, a rv U is p⁄, ‘q-secure
from a querying eavesdropper with Z if for every query strategy q for
U given Z,

P pqpU |Zq ° ⁄q • 1 ´ ‘,
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i.e., with probability exceeding 1 ´ ‘, the querying eavesdropper must
make more than ⁄ queries to ascertain the value of U .

The pk, ‘q secrecy of Definition 2.5 is, in e�ect, equivalent to the
p⁄, ‘q secrecy from a querying eavesdropper, in that both secrecy crite-
ria are tantamount to requiring large probability upper bounds on PU |Z .
The next two lemmas bring out this correspondence.

Lemma 2.7. Let 0 § ‘ † 1 and ÷ ° 0 with ‘ ` ÷ † 1 be given. If U is
pk, ‘q-secure from Z a la Definition 2.5, then

P
`

PU |Z pU | Zq § p÷kq´1˘ • 1 ´ ‘ ´ ÷,

where pU, Zq has pmf PUZ . Furthermore, if

P
`

PU |Z pU | Zq § k´1˘ • 1 ´ ‘, (2.1)

then U is p÷k, ‘ ` ÷q-secure from Z.

Proof. To show the first claim, suppose there exists a mapping Ÿ : U Ñ
t1, ..., ku such that K “ ŸpUq satisfies

‡varpK; Zq § ‘. (2.2)

Since for every u and z with Ÿpuq “ l,

PK|Z pl | zq • PU |Z pu | zq ,

it su�ces to show that

PKZ

` pl, zq : PK|Z pl | zq § p÷kq´1(˘ • 1 ´ ‘ ´ ÷.

To this end, denoting by A the complement of the set in t¨u above, we
have by (2.2) that

PKZ pAq ´
´

P r1,ks
unif ˆ PZ

¯

pAq § ‘

whereby

PKZ pAq § ‘ `
ÿ

z

PZ pzq |Az|
k

, (2.3)
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where Az “ tv : pv, zq P Au. Since by the definition of the set A,
|Az| § ÷k, it follows by (2.3) that

PKZ pAq § ‘ ` ÷,

which completes the proof of the first claim.
To prove the second claim, assuming (2.1), we need to show the

existence of a mapping Ÿ : U Ñ t1, ..., ÷ku with ‡varpŸpUq; Zq § ‘ `
÷. In fact, all our secrecy generation schemes in this monograph rely
on the existence of such mappings. We defer the proof of this part
to Chapter 5, where general results establishing the existence of such
mappings will be developed. Specifically, we refer to Lemma 5.17.

Lemma 2.8. Given 0 § ‘ † 1 and ⁄ ° 0, if U is p⁄, ‘q-secure from Z a
la Definition 2.6, then

P
`

PU |Z pU | Zq § ⁄´1˘ ° 1 ´ ‘. (2.4)

Furthermore, if (2.4) holds, then U is p÷⁄, ‘`÷q-secure from Z for every
0 † ÷ † 1 ´ ‘.

Proof. Fix 0 § ‘ † 1 and ⁄ ° 0, and suppose that (2.4) does not hold,
i.e.,

P
` pu, zq : PU |Z pu | zq ° ⁄´1(˘ ° ‘. (2.5)

Letting Uz fi tu : PU |Z pu | zq ° ⁄´1u for each z, we have

|Uz|
⁄

§
ÿ

uPUz

PU |Z pu | zq § 1. (2.6)

Consider a query strategy q that upon observing Z “ z first makes
queries “Is U “ u?” for u P Uz (in any order) and then, for u R Uz (in
any order). It follows from (2.5) and (2.6) that

P pqpU |Zq § ⁄q •
ÿ

z

PZ pzq PU |Z pUz | zq

“ P
` pu, zq : PU |Z pu | zq ° ⁄´1(˘

° ‘,
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which is the same as P pqpU |Zq ° ⁄q † 1 ´ ‘, so that U is not p⁄, ‘q-
secure from Z.

Conversely, suppose that (2.4) holds but there exists a query strat-
egy q with

P pqpU | Zq ° ÷⁄q † 1 ´ ‘ ´ ÷.

Then, by (2.4),

÷ † P
` pu, zq : PU |Z pu | zq § ⁄´1, qpu|zq § ÷⁄

(˘

§
ÿ

z

PZ pzq
ÿ

u : qpu|zq§÷⁄

⁄´1.

Note that qp¨|zq is a bijection for each fixed z, so that

|tu : qpu|zq § ÷⁄u| § ÷⁄.

Hence,

÷ †
ÿ

z

PZ pzq
ÿ

u : qpu|zq§÷⁄

⁄´1 § ÷,

which is inconsistent. Thus, for every query strategy q for U given Z,
it must hold that P pqpU | Zq ° ÷⁄q • 1 ´ ‘ ´ ÷.

2.3 Secrecy of a message

In a di�erent setting from that of a secret key, a secret K takes the form
of a secret message M that must be concealed from an eavesdropper
observing Z. For each transmitted message M “ m in M, the eaves-
dropper’s observation Z has (conditional) pmf PZ|M“m. Note that the
conditional pmf PZ|M , denoted by a stochastic matrix W : M Ñ Z, is
determined by an encryption or a transmission protocol and is assumed
to be known to the eavesdropper. In contrast with a secret key, a secret
message M has a pmf PM that is allowed to vary with application or
the eavesdropper’s prior belief. Accordingly, the secrecy indices below
guarantee security of the message for all PM .

2.3.1 Secrecy indices for a message

The secrecy indices for a message, ‡varpM; W q and ‡divpM; W q, are
natural counterparts of those for a secret key in §2.2. For a random
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message M with pmf PM , the rv Z with PZ|M “ W denotes the eaves-
dropper’s observation.

Definition 2.9. For a message set M and eavesdropper’s channel W ,
the variational secrecy index is

‡varpM; W q fi max
PM

}PMZ ´ PM ˆ PZ} ,

and the divergence secrecy index is

‡divpM; W q fi max
PM

D pPMZ}PM ˆ PZq
“ max

PM

IpPM , W q. (2.7)

Traditionally, in problems of secure message transmission PM “
P M

unif is assumed, and Z “ Zn “ pZ1, ..., Znq denotes the n-length
observation of the eavesdropper. The strong and weak secrecy indices,
respectively, are given by IpM ^ Znq and p1{nqIpM ^ Znq and corre-
spond to fixing PM “ P M

unif and Z “ Zn in (2.7).
A more stringent notion, often adopted in cryptography, is seman-

tic secrecy which requires that the eavesdropper does no better than
random guessing in inferring any (nontrivial) function f of the message
and for any PM .

Definition 2.10. The semantic secrecy index for M and eavesdropper’s
channel W is

‡sempM; W q fi min
G

max
PM ,f,f̂

P
´

f̂pZq “ fpMq
¯

´ P
´

f̂pGq “ fpMq
¯

,

where the estimate3 f̂pZq of fpMq can depend on PM and f , and the
rv G is independent of pM, Zq and does not depend on PM or f , i.e.,
f̂pGq is tantamount a random guess4.

A relaxation of semantic secrecy considers only pmfs PM of support-
size 2. Termed distinguishing secrecy, the latter is seen in Lemma 2.14
to be nonetheless equivalent to the former, while a�ording a reduced
search space for PM . In contrast, this equivalence does not hold under
computational secrecy, in general.

3There is no loss of generality in a restriction to deterministic estimators.
4Allowing G to depend additionally on PM would result in a weaker notion of

secrecy.
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Definition 2.11. The distinguishing secrecy index for M and W is

‡dispM; W q fi max
m0,m1PM

ˆ

max
b̂

P
´

b̂ pZmB q “ B
¯

´ 1
2

˙

,

where B is uniformly distributed rv on t0, 1u, ZmB denotes the eaves-
dropper’s observation corresponding to the random message mB, and
the estimate b̂ pZmB q of B depends on tm0, m1u.

The following alternative expression for ‡dispM; W q is useful.

Lemma 2.12.

‡dispM; W q “ max
m0,m1PM

1
2

›

›PZm0
´ PZm1

›

› ,

where
PZm “ W p¨|mq, m P M.

Proof. We show for each tm0, m1u that

max
b̂

P
´

b̂ pZmB q “ B
¯

´ 1
2 “ 1

2
›

›PZm0
´ PZm1

›

› .

For each b̂, denoting Z0 “ b̂´1p0q, we have

P
´

b̂ pZmB q “ B
¯

“ 1
2

”

P
´

b̂ pZm0q “ 0
¯

` P
´

b̂ pZm1q “ 1
¯ı

“ 1
2 rW pZ0|m0q ` W pZc

0|m1qs

“ 1
2 rW pZ0|m0q ´ W pZ0|m1qs ` 1

2 .

The proof is completed upon noting that

max
Z0

rW pZ0|m0q ´ W pZ0|m1qs “ ›

›PZm0
´ PZm1

›

› .

2.3.2 Relationships between secrecy indices for a message

Surprisingly the three secrecy indices above are, in essence, equivalent.
First, analogous to Lemma 2.4, the following relationship holds be-

tween ‡varpM; W q and ‡divpM; W q.
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Lemma 2.13.
log e

2 ‡varpM; W q2

§ ‡divpM; W q
§ ‡varpM; W q logp|M| ´ 1q ` h pmint‡varpM; W q, 1{2uq .

Next, ‡sempM; W q and ‡dispM; W q are equivalent up to a multi-
plicative constant.

Lemma 2.14.

‡dispM; W q § ‡sempM; W q § 2‡dispM; W q.
Proof. The first inequality obtains from the definition of ‡sem upon

fixing fpmq “ m, m P M, and choosing PM “ P tm0,m1u
unif for every pair

of messages in M.
For the second inequality, given PM , f , and f̂ , let G “ Zm0 for an

arbitrary but fixed message m0 in M. Then, there exists m1 P M such
that

P
´

f̂pZM q “ fpMq
¯

´ P
´

f̂pGq “ fpMq
¯

“
ÿ

m

PM pmq
”

P
´

f̂pZmq “ fpmq
¯

´ P
´

f̂pZm0q “ fpmq
¯ı

§ P
´

f̂pZm1q “ fpm1q
¯

´ P
´

f̂pZm0q “ fpm1q
¯

. (2.8)

Furthermore, for b̂pzq “
´

f̂pzq “ fpm1q
¯

, we have

P
´

b̂pZmB q “ B
¯

“ 1
2

”

P
´

b̂pZm1q “ 1
¯

` P
´

b̂pZm0q “ 0
¯ı

“ 1
2

”

P
´

f̂pZm1q “ fpm1q
¯

` P
´

f̂pZm0q ‰ fpm1q
¯ı

“ 1
2 ` 1

2

”

P
´

f̂pZm1q “ fpm1q
¯

´ P
´

f̂pZm0q “ fpm1q
¯ı

• 1
2 ` 1

2

”

P
´

f̂pZM q “ fpMq
¯

´ P
´

f̂pGq “ fpMq
¯ı

,

where the last inequality is by (2.8), and the claim follows since PM ,
f , and f̂ are arbitrary.
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Finally, ‡dispM; W q and ‡varpM; W q are also equivalent up to a
multiplicative constant.

Lemma 2.15.

‡dispM; W q § ‡varpM; W q § 2‡dispM; W q.
Proof. We shall use the alternative expression for ‡dispM; W q given

in Lemma 2.12. For m0, m1 P M and PM “ P tm0,m1u
unif , it holds that

‡varpM; W q • }PMZ ´ PM ˆ PZ}
“ 1

2
›

›PZm0
´ PZ

›

› ` 1
2

›

›PZm1
´ PZ

›

›

• 1
2

›

›PZm0
´ PZm1

›

› .

Since m0, m1 P M are arbitrary, the first inequality follows. For the
second inequality, observe that for each PM ,

›

›PMZ ´ PM ˆ PZ

›

› “
ÿ

mPM
PM pmq ›

›PZm ´ PZ

›

›

“
ÿ

mPM
PM pmq ›

›PZm ´
ÿ

m1PM
PM

`

m1˘ PZm1
›

›

§
ÿ

m,m1PM
PM pmq PM

`

m1˘ ›

›PZm ´ PZm1
›

›

§ max
m,m1PM

›

›PZm ´ PZm1
›

›

“ 2‡dispM; Zq.

2.4 Secure transmission with one-time pad

We close this chapter with a composability result showing that secrecy
under ‡var and ‡div is preserved for message transmission using a one-
time pad with a secret key. Such a result serves to guarantee the overall
secrecy for an encryption system when its components are individually
secure.

Let pG, `q be a commutative group. Let K be a G-valued secret key
with ‡varpK; Zq § ‘ or ‡divpK; Zq § ‘, where Z is the eavesdropper’s
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side information. Let M be a message with values in G and pmf PM ,
and suppose that M is independent of pK, Zq.

A transmitter “encrypts” the message M as M ` K and sends it
over an insecure public channel which is observed by a receiver as well
as by the eavesdropper. The receiver, also knowing K, can decrypt
the message by subtracting K from M ` K. However, the message M
remains concealed from the eavesdropper’s observations of pZ, M `Kq.
Specifically, for a random message M with pmf PM , the eavesdropper
observes pZ, M `Kq with PZ,M`K|M “ W̃ where the stochastic matrix
W̃ : G Ñ Z ˆ G is

W̃ pz, l|mq “ PZ,M`K|M pz, l|mq
“ PZ|M pz|mq PM`K|M,Z pl|m, zq
“ PZ pzq PK|Z pl ´ m|zq ,

by the assumed independence of M and pK, Zq.

Proposition 2.16. Let M be independent of pK, Zq. Then,

‡varpK; Zq § ‘ and ‡divpK; Zq § ‘

imply, respectively, that

‡varpG; W̃ q § 2‘ and ‡divpG; W̃ q § ‘.

Proof. We show that

‡varpG; W̃ q § 2‡varpK; Zq and ‡divpG; W̃ q § ‡divpK; Zq.
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First, for every pmf PM ,

}PM,Z,M`K ´ PM ˆ PZ,M`K}
“ 1

2
ÿ

mPG
PM pmq

ÿ

zPZ
PZ pzq

ÿ

lPG

ˇ

ˇPK|Z pl ´ m|zq ´ PM`K|Z pl|zqˇ

ˇ

§ 1
2

ÿ

mPG
PM pmq

ÿ

zPZ
PZ pzq

ÿ

lPG

«

ˇ

ˇ

ˇ

ˇ

PK|Z pl ´ m|zq ´ 1
|K|

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

m1PG
PM

`

m1˘ PK|Z
`

l ´ m1|z˘ ´ 1
|K|

ˇ

ˇ

ˇ

ˇ

ˇ

�

§ 2 ¨ 1
2

ÿ

mPG
PM pmq

ÿ

zPZ
PZ pzq

ÿ

lPG

ˇ

ˇ

ˇ

ˇ

PK|Z pl|zq ´ 1
|K|

ˇ

ˇ

ˇ

ˇ

“ 2‡varpK; Zq.
Next, for every pmf PM ,

D
`

PM,Z,M`K

›

›PM ˆ PZ,M`K

˘

“ IpM ^ Z, M ` Kq
“ IpM ^ M ` K|Zq
“ HpM ` K|Zq ´ HpM ` K|Z, Mq
§ log |G| ´ HpK|Z, Mq
“ log |G| ´ HpK|Zq
“ ‡divpK; Zq.

2.5 Story of results

The notion of information theoretic perfect secrecy with IpK ^ Zq “
0 “ }PKZ ´ PK ˆ PZ} was introduced by Shannon in his seminal work
[72] where it was used to provide the first formal security analysis
of a one-time pad. See also [52] for a review in the context of cryp-
tology. The secrecy criteria ‡varpK; Zq and ‡divpK; Zq that combine
independence and uniformity requirements are due to [21]. A precursor
to Lemma 2.4 relating ‡varpK; Zq and ‡divpK; Zq was proved first in
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[21]. The slightly stronger version here is obtained by using Lemma 2.3,
which is a stronger bound for the di�erence |HpP q ´ HpQq| than that
used in the proof of the original version in [21]. Lemma 2.3 is from
[4, 104] (see, also, [19, Problem 3.10]). The operational notion of query-
based secrecy treated in §2.2.2 was defined in [79]. The equivalence of
variational secrecy in Definition 2.5 and query-based secrecy in Defini-
tion 2.6, obtained by connecting them to large probability bounds for
the conditional probability PU |Z , was established in [79]. The clearer
treatment presented here, along the lines of the information spectrum
approach [35, 33], is new and was developed in [86]; see also [43]. §2.3,
which extends the well-known notions of semantic and distinguishing
secrecy [30], is based on [5] with slightly modified proofs. Lastly, a sim-
pler form of Proposition 2.16 was proved by Shannon in [72]; the part
on ‡div given here is from [19, Chapter 17] (see also [1, Lemma 2.1]).





3
Interactive Communication and Common

Randomness

The central concepts of interactive communication and common ran-
domness for multiple terminals, of independent interest beyond appli-
cations to secrecy problems, are studied in this chapter. These concepts
will permeate the monograph. Characteristics of interactive communi-
cation, including a fundamental structural property, are described in
§3.1. Common randomness generated by multiple terminals using inter-
active communication is addressed in §3.2. A “single-shot” upper bound
for the entropy of common randomness conditioned on interactive com-
munication is derived, using the mentioned special property of the lat-
ter. As an application, it is shown to provide a converse lower bound
for communication in a data compression problem of omniscience (sans
secrecy constraints). The mentioned upper bound, termed shared in-
formation and particularizing to mutual information for two terminals,
will be applied in later chapters for proving converse results in secrecy
settings.

27
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3.1 Interactive communication and properties

Consider a set of terminals M “ t1, ..., mu that observe, respectively,
finite-valued rvs X1, ..., Xm with joint pmf PXM “ PX1¨¨¨Xm . The ter-
minals cooperate to accomplish a given task in a distributed manner,
using interactive communication over an unrestricted and noiseless net-
work. It is assumed that the communication is in broadcast mode, i.e.,
all the terminals receive instantaneously all the communication.

Randomization is permitted at terminals, and the rv Ui denotes the
local randomness at Terminal i, where U1, ..., Um are mutually inde-
pendent1. It is assumed that UM is independent of XM. For notational
simplicity, we shall use Yi “ pUi, Xiq, i P M.

Definition 3.1. Assume without any loss of generality that the com-
munication of the terminals in M occurs in consecutive time slots in r
rounds; such communication is described in terms of the mappings

f11, . . . , f1m, f21, . . . , f2m, . . . , fr1, . . . , frm,

with fji corresponding to a message in round j from Terminal i, 1 §
j § r, 1 § i § m; in general, fji is allowed to yield any function of Yi

and of previous communication

„ji “ tfkl : k † j, l P M or k “ j, l † iu.

The corresponding rvs representing the communication will be de-
picted collectively as

F “ tF11, . . . , F1m, F21, . . . , F2m, . . . , Fr1, . . . , Frmu,

where F “ FpYMq, namely a deterministic function of YM; the rv
corresponding to „ji is denoted by �ji. A special form of such com-
munication will be termed simple communication if F “ pF1, ..., Fmq,
where Fi “ Fi pYiq, i P M.

An interactive communication possesses several distinguishing
properties that will play an important role. We begin by considering
the case m “ 2.

1A more general model would include an additional shared randomness U0 known
to all the terminals in M.
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Lemma 3.2. Given rvs Y1, Y2, for interactive communication F of the
terminals in M “ t1, 2u, it holds that

I pY1 ^ Y2 | Fq § I pY1 ^ Y2q . (3.1)

In particular, independent rvs Y1, Y2 remain so upon conditioning on
an interactive communication.

Proof. For interactive communication

F “ pF11, F12, ..., Fr1, Fr2q,
we have

I pY1 ^ Y2q “ I pY1, F11 ^ Y2q
• I pY1 ^ Y2 | F11q
“ I pY1 ^ Y2, F12 | F11q
• I pY1 ^ Y2 | F11, F12q .

The first claim follows by iterating the steps above. The second claim
is immediate.

In general, the lemma above does not hold for every function F “
F pY1, Y2q, as shown by the following example.

Example 3.3. Let pY1, Y2q “ pX1, X2q be binary symmetric rvs with

PX1X2 p0, 0q “ PX1X2 p1, 1q “ p1 ´ pq
2 ,

PX1X2 p0, 1q “ PX1X2 p1, 0q “ p

2 ,

where 0 † p † 1. The noninteractive function F “ Y1 ‘ Y2 violates
Lemma 3.2 since

I pY1 ^ Y2 | F q “ 1 ° 1 ´ hppq “ I pY1 ^ Y2q ,

where hppq “ p log 1{p ` p1 ´ pq log 1{p1 ´ pq is the binary entropy
function.

The inequality (3.1) can be expressed equivalently as

I pF ^ Y1, Y2q • I pF ^ Y1 | Y2q ` I pF ^ Y2 | Y1q ,
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where the left- and right-sides are referred to as the extrinsic and in-
trinsic information, respectively. Another useful form of (3.1) is

HpFq • HpF | Y1q ` HpF | Y2q, (3.2)

which holds with equality if Y1 and Y2 are independent. In fact, the
previous form generalizes to m • 2.

Definition 3.4. For the family SpMq “ tS : S à M, S ‰ Hu of subsets
of M, a fractional partition ⁄ “ t⁄S , S P SpMqqu is a collection of
weights 0 § ⁄S § 1 satisfying

ÿ

SPSpMq : iPS

⁄S “ 1, for all i P M.

Lemma 3.5. Given rvs Y1, ..., Ym and an interactive communication F,
it holds that for every fractional partition ⁄ of M

HpFq •
ÿ

SPSpMq
⁄SHpF | YScq,

with equality if Y1, ..., Ym are mutually independent.

Remark 3.6. For m “ 2, the choice ⁄t1u “ ⁄t2u “ 1 leads to (3.2).

Proof. Since Fji is a function of Yi and the previous communication
�ji, we have

HpF | YScq “
r

ÿ

j“1

m
ÿ

i“1
HpFji | YSc , �jiq

“
r

ÿ

j“1

ÿ

iPS

HpFji | YSc , �jiq,

§
r

ÿ

j“1

ÿ

iPS

HpFji | �jiq,

with equality holding i�

I pFji ^ YSc | �jiq “ 0, for all j “ 1, ..., r, i P S. (3.3)
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Then,
ÿ

S

⁄SHpF | YScq

§
ÿ

S

r
ÿ

j“1

ÿ

iPS

⁄SHpFji | �jiq

“
r

ÿ

j“1

m
ÿ

i“1

˜

ÿ

S : iPS

⁄S

¸

HpFji | �jiq

“ HpFq,
where the last equality holds since ⁄ is a fractional partition of M.
Equality holds for mutually independent Y1, ..., Ym, since then (3.3)
holds for all S.

3.2 Common randomness

The concept of common randomness with interactive communication
is pivotal in information theoretic secrecy.

Definition 3.7. For 0 § ‘ † 1, given interactive communication F, an
rv L “ LpYMq is an ‘-common randomness (‘-CR) for M using F if
there exist local estimates Li “ LipYi, Fq, i P M, of L satisfying

P pLi “ L, i P Mq • 1 ´ ‘.

We shall say that L is ‘-recoverable from F.

Distributed processing tasks with interactive communication entail
the generation of CR, and bounds on the amount of such CR are needed
for establishing converse results.

Theorem 3.8. Assume that HpUMq † 8. Given 0 § ‘ † 1, for an
‘-CR L for M using interactive communication F,

HpL | Fq § HpXMq ´
ÿ

SPSpMq
⁄SHpXS | XScq ` ‹,

for every fractional partition ⁄ of M, where ‹ “ mp‘ log |L| ` hp‘qq.
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Proof. Since L is recoverable from pYSc , Fq with probability exceed-
ing 1 ´ ‘, by Fano’s inequality

HpYS | YSc , Fq “ HpYS | YSc , F, Lq ` IpL ^ YS | YSc , Fq
§ HpYS | YSc , F, Lq ` ‹0,

where ‹0 “ ‘ log |L| ` hp‘q. This, with
HpYS | YSc , F, Lq “

ÿ

iPS

HpYi | Yt1,...,i´1uYSc , F, Lq

§
ÿ

iPS

HpYi | Y i´1, F, Lq

yields
ÿ

SPSpMq
⁄SHpYS | YSc , Fq

§
ÿ

SPSpMq

ÿ

iPS

⁄S

“

HpYi | Y i´1, F, Lq ` ‹0
‰

“
m
ÿ

i“1

¨

˝

ÿ

SPSpMq : iPS

⁄S

˛

‚

“

HpYi | Y i´1, F, Lq ` ‹0
‰

“
m
ÿ

i“1

“

HpYi | Y i´1, F, Lq ` ‹0
‰

“ HpYM | F, Lq ` ‹

“ HpYM | Fq ´ HpL | Fq ` ‹.

Therefore,
HpL | Fq

§ HpYM | Fq ´
ÿ

SPSpMq
⁄SHpYS | YSc , Fq ` ‹

“ HpYMq ´
ÿ

SPSpMq
⁄SHpYS | YScq

´
»

–HpFq ´
ÿ

SPSpMq
⁄SHpF | YScq

fi

fl ` ‹

§ HpYMq ´
ÿ

SPSpMq
⁄SHpYS | YScq ` ‹,
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where the previous inequality is by Lemma 3.5. Finally, the claim fol-
lows upon canceling the terms HpUiq, i P M, using the independence
of UM and XM and the mutual independence of Ui, i P M, since

HpYMq “ HpXMq ` HpUMq
and

ÿ

SPSpMq
⁄SHpYS | YScq

“
ÿ

SPSpMq
⁄SHpXS | XScq `

ÿ

SPSpMq
⁄SHpUSq

“
ÿ

SPSpMq
⁄SHpXS | XScq `

ÿ

SPSpMq
⁄S

ÿ

iPS

HpUiq

“
ÿ

SPSpMq
⁄SHpXS | XScq `

ÿ

iPM

¨

˝

ÿ

SPSpMq : iPS

⁄S

˛

‚HpUiq

“
ÿ

SPSpMq
⁄SHpXS | XScq ` HpUMq.

As a first application of Theorem 3.8, consider the problem of
achieving omniscience, namely when each terminal in M wishes to
recover the observations of every other terminal. Specifically, with
Yi “ pUi, Xiq consisting of local randomness Ui and observation Xi,
i P M, the terminals in M use interactive communication F to form
‘-CR L “ XM. Theorem 3.8 leads to a lower bound on the entropy
HpFq which will be seen to be tight in special cases in Chapter 4 and
6.

Lemma 3.9. For ‘-CR L “ XM using interactive communication F,

HpFq •
ÿ

SPSpMq
⁄SHpXS | XScq ´ ‹,

for every fractional partition ⁄ of M, where ‹ “ mp‘ log |L| ` hp‘qq.
Proof. With L “ XM, the claim follows from Theorem 3.8 upon

noting that
HpXMq ´ HpFq § HpXM | Fq.
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We close this chapter with facile extensions of Lemma 3.5 and The-
orem 3.8 that entail additional conditioning on a rv Z.

Theorem 3.10. For rvs UM, XM, Z, where U1, ..., Um are mutually in-
dependent and UM is independent of pXM, Zq, and ‘-CR L for M using
interactive communication F, we have for every fractional partition ⁄
of M that

HpF | Zq •
ÿ

SPSpMq
⁄SHpF | YSc , Zq,

and

HpL | F, Zq § HpXM | Zq ´
ÿ

SPSpMq
⁄SHpXS | XSc , Zq ` ‹,

where ‹ “ mp‘ log |L| ` hp‘qq.
Remark 3.11. (Shared information). Defining shared information for
X1, . . . , Xm by

SIpXMq fi HpXMq ´ max
⁄

ÿ

SPSpMq
⁄SHpXS | XScq, (3.4)

Theorem 3.10 says that HpL | Fq À SIpX1, . . . , Xmq, and a�ords the
useful interpretation that the maximum CR generated by the terminals
in M that is distinct from any interactive communication F used to
generate it, as measured by HpL | Fq, cannot exceed SIpXMq. We shall
return to the concept of shared information in Chapters 4 and 6 where
its significance will be seen.

3.3 Story of results

The first formal definition of an interactive protocol for distributed
computing appeared in [100], where it was restricted to a tree-based
structure. It is perhaps the most popular model for protocols in the
computer science literature. More elaborate definitions have been con-
sidered, for instance, in [26, 62]. The general description here is a multi-
terminal extension from [21] of the two-terminal versions in [44, 54, 1].



3.3. Story of results 35

Compared with its predecessors, it does not specify the structure of the
set of possible transcripts. However, it su�ces for our purpose of show-
ing worst-case converse results, e.g., worst-case lower bounds on the
number of communication bits. The achievability schemes presented in
this monograph consist of either simple protocols or bounded-round
protocols with the terminals communicating in a fixed order. The fun-
damental structural property in Lemma 3.2 is from [54, 1], but has been
rediscovered in other contexts; see, for instance, the “intrinsic-extrinsic
information bound” (cf. [8]). The multiterminal generalization involv-
ing fractional partitions in Lemma 3.5 is from [22], and also can be seen
as a special case of a more general bound for submodular functions in
[51]. Common randomness was defined in a two-terminal setting in
[1, 2], where its connection to secret key agreement was explored to-
gether with communication requirements for common randomness gen-
eration. The general treatment here, specifically the bounds involving
fractional partitions, follows [21, 22].





4
Secret Key Generation

The concept of a secret key and di�erent approaches for deriving up-
per limits on its length are examined in this chapter. A secret key is
defined formally in §4.1 under the variational secrecy index and the
more stringent divergence secrecy index; it is instructive as well as con-
venient to deal with both forms of secrecy, as will be seen in this and
subsequent chapters. §4.2 describes three methods for deriving upper
bounds for secret key length, with emphasis placed on the first and
second means which will be the mainstay of converse proofs in later
chapters. First, the upper bound for the conditional entropy of com-
mon randomness conditioned on interactive communication, obtained
in Chapter 3, leads directly to upper bounds for secret key length un-
der the variational and divergence secrecy indices. The second method
relates secret key agreement under variational secrecy to an appropri-
ate binary hypothesis testing problem; the needed upper bound then
is elicited from the error exponent of the latter. A third approach that
analyzes secret key monotones is illustrated for the case of m “ 2
terminals.

37
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4.1 Multiterminal secret key

Each terminal i in M observes rv Xi and possesses local randomness Ui.
The terminals in M cooperate, using interactive public communication
F, to generate a secret key which is concealed from an eavesdropper
with access to F and additional side information Z. We assume that
UM is independent of pXM, Zq, and that all the parties know PUMXMZ .

Definition 4.1. Given 0 § ‘ † 1, ” • 0, an rv K with values in
K constitutes an p‘, ”q-secret key (p‘, ”q-SK) for M if K is an ‘-CR
for M using interactive communication F, which satisfies the secrecy
requirement ‡pK; F, Zq § ”, where ‡ can either be ‡var or ‡div as in
§2.2. The corresponding largest size log |K| of an p‘, ”q-SK is denoted
by Svar

‘,” or Sdiv
‘,” .

An SK with ‘ “ ” “ 0 is termed a perfect SK.

Remark 4.2. The only interesting case in Definition 4.1 is when ‘`” †
1 since otherwise Svar

‘,” is unbounded. This is illustrated for m “ 2.
Terminal 1 generates a (trivial) SK K1 uniformly on an arbitrary set
K using local randomness U1, and sends K1 to Terminal 2. Then K1
constitutes a p0, 1´1{|K|q-SK and, therefore, also a p0, 1q-SK. Terminal
2 generates K2 uniformly on K using U2 (and does not communicate
it publicly). Note that K2 constitutes trivially a p1 ´ 1{|K|, 0q-SK and,
therefore, also a p1, 0q-SK. If ‘ ` ” • 1, an rv K that equals K1 with
probability p1´‘q and K2 with probability ‘ constitutes an p‘, 1´‘q-SK
of length log |K| and, therefore, also an p‘, ”q-SK of the same length.
Since K was arbitrary, Svar

‘,” is unbounded.

The following simple examples of SK generation assume that Z “
constant.

Example 4.3. For m “ 3, let X1 “ pB11, B12q, X2 “ pB21, B22q, and

X3 “ pB11 ‘ B21, B12 ‘ B22q,
where Bij , 1 § i, j § 2, are mutually independent random bits. Using
interactive communication F “ pF11, F12, F13q, where

F11 “ B11, F12 “ B22, F13 “ B11 ‘ B21 ‘ B12 ‘ B22,
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the terminals become omniscient with a perfect recovery of
pX1, X2, X3q. Furthermore, they generate a perfect SK K “ B12 (or
B21) of length 1.

The next two examples illustrate how mutually independent SKs
between pairs of terminals in M can be used to generate a SK for M.
The initial pairwise SKs can be represented conveniently by a suitable
undirected graph G with vertex set M, edge set E and no self loops.
For each edge pi, jq P E , the terminals i and j have access to a shared
random bit Bij , where Bij “ Bji and Bij , 1 § i † j § m, are mutually
independent. In particular,

Xi “ tBij , pi, jq P Eu, i P M,

i.e., each terminal i P M observes all the bits corresponding to the
edges incident on it.
Example 4.4. Let G be a tree with vertex set M. In the first step, the
root node selects a bit Be from an edge e incident on it and broadcasts
the modulo 2 sums of Be with every other incident bit. This enables
all the child nodes of the root to recover Be. The protocol proceeds
with each child node repeating the previous step for propagating Be

further to its children, terminating when the leaf nodes recover Be. The
random bit Be constitutes a perfect SK for M since it is independent
of

F “ tBe ‘ Bij , pi, jq P Ezteuu.

Example 4.5. Let G be a complete graph with vertex set M where m
is even. By the previous example, each spanning tree of G gives rise to
1 bit of perfect SK for M. A repeated application of this protocol to d
edge-disjoint spanning trees yields a d-bit perfect SK. Clearly,

d § Total number of edges in G
m ´ 1 “ m

2 .

On the other hand, there exists an edge-disjoint spanning tree packing
of G of size m{2. Specifically, for each edge e in a matching of size m{2,
the spanning trees given in Figure 4.1 are disjoint, thereby leading to
a m{2-bit SK.

In the next section, we shall see that the SK lengths in the examples
above cannot be bettered.
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e

Figure 4.1: Spanning tree corresponding to an edge e of the matching.

4.2 Upper bounds for secret key length

We present three di�erent approaches for obtaining upper bounds for
the maximum length of an p‘, ”q-SK, with relative merits in di�erent
regimes of ‘, ”.

4.2.1 Common randomness entropy bound

An upper bound on Sdiv
‘,” follows directly from Theorem 3.10.

Theorem 4.6. Given 0 § ‘ † 1{m and ” • 0,

Sdiv
‘,” § 1

1 ´ m‘

»

–HpXM | Zq ´ max
⁄

ÿ

SPSpMq
⁄SHpXS | XSc , Zq

fi

fl

` mhp‘q ` ”

1 ´ m‘
, (4.1)

where the maximum if over all fractional partitions ⁄ for SpMq (see
Definition 3.4).

Remark 4.7. A corresponding bound for Svar
‘,” follows from Lemma 2.4:

Svar
‘,” § 1

1 ´ m‘ ´ ”

»

–HpXM | Zq ´ max
⁄

ÿ

SPSpMq
⁄SHpXS | XSc , Zq

fi

fl

` mhp‘q ` hp”q
1 ´ m‘ ´ ”

.
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Proof. Let K be an p‘, ”q-SK for M using interactive communication
F. By Theorem 3.10, for every fractional partition ⁄ of M,

HpK | F, Zq § HpXM | Zq ´
ÿ

SPSpMq
⁄SHpXS | XSc , Zq

` mp‘ log |K| ` hp‘qq.
Since ‡divpK; F, Zq “ log |K| ´ HpK | F, Zq, the claim follows.

The expression

SIpXM | Zq fi HpXM | Zq ´ max
⁄

ÿ

SPSpMq
⁄SHpXS | XSc , Zq, (4.2)

in (4.1), which plays a central role in the maximum length of a SK, has
an appealing equivalent form in terms of the Kullback-Leibler diver-
gence. Let fi “ pfi1, ..., filq be a nontrivial partition of M with |fi| “ l
atoms, 2 § l § m. Consider the corresponding fractional partition
⁄ “ ⁄pfiq given by

⁄S “
#

1
l´1 , if S “ fic

i , 1 § i § l,

0, otherwise.

Then for each fi,

SIpXM | Zq § HpXM | Zq ´ 1
|fi| ´ 1

|fi|
ÿ

i“1
HpXfic

i
| Xfii , Zq

“ 1
|fi| ´ 1

»

–

|fi|
ÿ

i“1
HpXfii | Zq ´ HpXM | Zq

fi

fl

“ 1
|fi| ´ 1D

`

PXM|Z
›

›

|fi|
π

i“1
PXfii |Z

ˇ

ˇ PZ

˘

,

so that

SIpXM|Zq § min
fi

1
|fi| ´ 1D

`

PXM|Z
›

›

|fi|
π

i“1
PXfii |Z

ˇ

ˇ PZ

˘

.

In fact, the previous inequality can be shown to hold with equality.
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Theorem 4.8. It holds that

SIpXM|Zq “ min
fi

1
|fi| ´ 1D

`

PXM|Z
›

›

|fi|
π

i“1
PXfii |Z

ˇ

ˇ PZ

˘

. (4.3)

Next, we apply the bound of Theorem 4.6 to show that the SKs
generated in Examples 4.3-4.5 are of maximum lengths.

Example 4.9. Let X1, X2, X3 be as in Example 4.3 and let Z “ con-
stant. For a perfect SK K, upon using Theorem 4.6, (4.2), and (4.3)
with fi “ pt1u, t2u, t3uq, we get

log |K| § 1
2

«

3
ÿ

i“1
HpXiq ´ HpX1, X2, X3q

�

“ 1
2 r6 ´ 4s “ 1.

Example 4.10. Consider an undirected graph G “ pM, Eq with no
loops and each edge corresponding to a random bit as in §4.1. Then,
for every partition fi of M,

HpXfiiq “ number of edges incident on vertices in fii, 1 § i § |fi|,
and

HpXMq “ |E |.
Denoting by Efi the edge-cut of fi, using Theorem 4.6, (4.2) and (4.3)
the length of a perfect SK K is bounded above by |Efi|{p|fi| ´ 1q, and
for the particular choice fi “ ptiu, i P Mq, by |E |{pm ´ 1q. Therefore,
for the tree and complete graph of Examples 4.4 and 4.5, respectively,
the length of a perfect SK is bounded above by 1 and m{2.

4.2.2 Conditional independence testing bound

Another upper bound for SK length Svar
‘,” can be obtained by relating

SK agreement to simple binary hypothesis testing. First, we consolidate
the recovery and secrecy conditions for an SK K under ‡var into a
single convenient form which involves the local estimates K1, ..., Km of
K (cf. Definition 3.7). Denote KM “ pK1, ..., Kmq, and for a pmf P on
K let P pmq denote its extension to Km given by

Ppmqpk1, ..., kmq “ P pkq1pk1 “ ... “ kmq, pk1, ..., kmq P Km.
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Lemma 4.11. Given 0 § ‘, ” § 1 and an p‘, ”q-SK K under ‡var using
interactive communication F, the local estimates K1, ..., Km satisfy

›

›

›

PKMFZ ´ Punif
pmq ˆ PFZ

›

›

›

§ ‘ ` ”. (4.4)

Conversely, if KM satisfies (4.4) with ‘ in lieu of ‘ ` ”, each Ki, i P M,
constitutes an p‘, ‘q-SK under ‡var.

Proof. For an p‘, ”q-SK K,
›

›

›

PKMFZ ´ Punif
pmq ˆ PFZ

›

›

›

§
›

›

›

PKKMFZ ´ Punif
pm`1q ˆ PFZ

›

›

›

§
›

›

›

PKKMFZ ´ PK|FZ
pm`1q ˆ PFZ

›

›

›

`
›

›

›

PK|FZ
pm`1q ˆ PFZ ´ Punif

pm`1q ˆ PFZ

›

›

›

.

Since

}P ´ Q} “ P ptx : P pxq ° Qpxquq ´ Qptx : P pxq ° Qpxquq,
the first term on the right-side above satisfies

›

›

›

PKKMFZ ´ PK|FZ
pm`1q ˆ PFZ

›

›

›

“ 1 ´ P pK “ K1 “ ...Kmq
§ ‘, (4.5)

and the second term equals
›

›PK|FZ ˆ PFZ ´ Punif ˆ PFZ

›

› § ”,

which gives (4.4).
For the second claim, ‘-secrecy is immediate and ‘-recoverability

follows as in (4.5).
Next, consider a simple binary hypothesis testing problem with null

hypothesis P and alternative hypothesis Q, where P and Q are pmfs
on a finite set X . An observer of x P X decides if x were generated by
P or by Q. To this end, a randomized test T , i.e., a conditional pmf
on t0, 1u given x in X , is used. For each x in X , the test T decides P
with probability T p0|xq and Q with probability T p1|xq “ 1 ´ T p0|xq.



44 Secret Key Generation

For 0 § ‘ † 1, denote by —‘pP, Qq the infimum over tests T of the
probability of error of type II given that the probability of error of
type I is less than ‘, i.e.,

—‘pP, Qq fi inf
T : pP ˝T qp0q•1´‘

pQ ˝ T qp0q, (4.6)

where pP ˝T qp0q “ ∞

xPX P pxqT p0|xq and pQ˝T qp0q is defined similarly.
For any stochastic matrix W : X Ñ Y, the following data processing

inequality holds:

—‘pP, Qq § —‘pP ˝ W, Q ˝ W q. (4.7)

Consider a partition fi “ tfi1, ..., filu of M with l • 2 atoms. Heuristi-
cally, if PXMZ is such that Xfi1 , ..., Xfil are conditionally independent
given Z, the length of a SK that can be generated is 0. This suggests a
bound for the length of an SK in terms of “how far” the pmf PXMZ is
from another pmf Qfi

XMZ with the conditional independence property.
The closeness of the two pmfs is measured by —‘

`

PXMZ , Qfi
XMZ

˘

.
Specifically, let Qpfiq be the set of all pmfs Qfi

XMZ that factorize as
follows:

Qfi
XM|Z “

|fi|
π

i“1
Qfi

Xfii |Z . (4.8)

A repeated application of Lemma 3.2 gives for each Qfi
XMZ P Qpfiq and

an interactive communication F that

Qfi
XM|FZ “

|fi|
π

i“1
Qfi

Xfii |FZ . (4.9)

Theorem 4.12. Given 0 § ‘ ` ” † 1, 0 † ÷ † 1 ´ ‘ ´ ”, and a partition
fi of M, it holds that

Svar
‘,” § 1

|fi| ´ 1

„

´ log —‘`”`÷

`

PXMZ , Qfi
XMZ

˘ ` |fi| logp1{÷q
⇢

for all Qfi
XMZ P Qpfiq.

Proof. Let K be an p‘, ”q-SK using F. By Lemma 4.11, the local
estimates KM “ pK1, ..., Kmq satisfy (4.4). Denote by WKMF|XMZ
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the stochastic matrix corresponding to the SK generation protocol
pKM, Fq. Using the data processing inequality (4.7) with P “ PXMZ

and Q “ Qfi
XMZ , and W “ WKMF|XMZ , we get

—‘`”`÷

`

PXMZ , Qfi
XMZ

˘ § —‘`”`÷

`

PKMFZ , Qfi
KMFZ

˘

.

The main step of the proof entails showing next that

log |K| § 1
|fi| ´ 1

„

´ log —‘`”`÷

`

PKMFZ , Qfi
KMFZ

˘ ` |fi| logp1{÷q
⇢

.

Lemma 4.13. Let KM “ pK1, ..., Kmq be the local estimates of an
p‘, ”q-SK K using an interactive communication F. Then, for 0 § ‘`” †
1, 0 † ÷ † 1 ´ ‘ ´ ” and every Qfi

XMZ P Qpfiq, we have

log |K| § 1
|fi| ´ 1

„

´ log —‘`”`÷

`

PKMFZ , Qfi
KMFZ

˘ ` |fi| logp1{÷q
⇢

,

where PKMFZ is the marginal pmf of pKM, F, Zq from the joint pmf

PKMFXMZ “ PXMZWKMF|XMZ ,

and Qfi
KMFZ is the corresponding marginal pmf from the joint pmf

Qfi
KMFXMZ “ Qfi

XMZWKMF|XMZ .

Proof. We construct a test for the hypothesis testing problem with
null hypothesis P “ PKMFZ and alternative hypothesis Q “ Qfi

KMFZ .
Specifically, we use a deterministic test1 with the following acceptance
region (for the null hypothesis)2:

A :“
#

pkM, f, zq : log P pmq
unif pkMq

Qfi
KM|FZpkM|f, zq • ⁄fi

+

,

where
⁄fi “ p|fi| ´ 1q log |K| ´ |fi| logp1{÷q.

1In fact, we use a simple threshold test on the loglikelihood ratio but with
Punif

pmq ˆ PFZ in place of PKMFZ , since the two distributions are close to each
other by (4.4).

2Those pkM, f, zq for which Qfi
KM|FZpkM|f, zq “ 0 are included in A.
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For this test, the probability of error of type II is bounded above as

Qfi
KMFZpAq “

ÿ

f,z

Qfi
FZpf, zq

ÿ

kM :
pkM,f,zqPA

Qfi
KM|FZpkM|f, zq

§ 2´⁄fi
ÿ

f,z

Qfi
FZpf, zq

ÿ

kM

P pmq
unif pkMq

“ |K|1´|fi|÷´|fi|. (4.10)

On the other hand, the probability of error of type I is bounded above
as

PKMFZ pAcq §
›

›

›

PKMFZ ´ P pmq
unif ˆ PFZ

›

›

›

` Punif
pmq ˆ PZF pAcq

§ ‘ ` ” ` P pmq
unif ˆ PFZpAcq, (4.11)

where the first inequality is by the definition of variational distance
and the second is by (4.4). The second term above can be expressed as
follows:

Punif
pmq ˆ PFZ pAcq

“
ÿ

f,z

PFZ pf, zq 1
|K|

ÿ

k

ppk, f, zq P Acq

“
ÿ

f,z

PFZpf, zq 1
|K|

ÿ

k

´

Qfi
KM|FZpk|f, zq|K||fi|÷|fi| ° 1

¯

, (4.12)

where k “ pk, . . . , kq. The inner sum can be further bounded above as
ÿ

k

´

Qfi
KM|FZpk|f, zq|K||fi|÷|fi| ° 1

¯

§
ÿ

k

´

Qfi
KM|FZpk|f, zq|K||fi|÷|fi|

¯

1
|fi|

“ |K|÷
ÿ

k

Qfi
KM|FZpk|f, zq 1

|fi|

“ |K|÷
ÿ

k

|fi|
π

i“1
Qfi

Kfii |FZpk|f, zq 1
|fi| , (4.13)

where the previous equality uses (4.9) and the fact that given F, Kfii

is a function of pUfii , Xfiiq. Next, an application of Hölder’s inequality
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to the sum on the right-side of (4.13) yields

ÿ

k

|fi|
π

i“1
Qfi

Kfii |FZpk|f, zq 1
|fi| §

|fi|
π

i“1

˜

ÿ

k

Qfi
Kfii |FZpk|f, zq

¸

1
|fi|

§
|fi|
π

i“1

¨

˝

ÿ

kfii

Qfi
Kfii |FZpkfii |f, zq

˛

‚

1
|fi|

“ 1. (4.14)

Upon combining (4.12)-(4.14) we obtain

P pmq
unif ˆ PFZpAcq § ÷,

which along with (4.11) limits the probability of error of type I as

PKMFZ pAcq § ‘ ` ” ` ÷.

It follows from (4.10) that

—‘`”`÷

`

PKMFZ , Qfi
KMFZ

˘ § |K|1´|fi|÷´|fi|,

which completes the proof.
Note that the converse bound above involves ‘ and ” in the form ‘`”

and holds when ‘ ` ” † 1, which is the interesting case by Remark 4.2.
In fact, Svar

‘,” is determined by ‘ ` ” alone and not ‘, ” separately. This
is shown next for m “ 2 and can be extended to m • 2 in a straight-
forward manner.

Lemma 4.14. Given an p‘, ”q-SK for M “ t1, 2u, there exists an p‘ `
”, 0q-SK of the same length.

Proof. Let K be an p‘, ”q-SK for M “ t1, 2u using interactive com-
munication F, with local estimates K1 and K2. We construct a new
p‘ ` ”, 0q-SK K 1 using the maximal coupling lemma referred to in the
proof of Lemma 2.3.

For each fixed realization of pF, Zq, let PKK1|F,Z be the maximal
coupling of PK|FZ and Punif. Then PK1FZ “ Punif ˆ PFZ , and since K
is an p‘, ”q-SK, we get by the maximal coupling property that

P
`

K ‰ K 1˘ “ }PKFZ ´ Punif ˆ PFZ} § ”.
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Define the joint pmf

PK1KFZK1K2U1X1U2X2 “ PK1|KFZPKFZK1K2U1X1U2X2 . (4.15)

Since P pK “ K1 “ K2q • 1 ´ ‘ under the joint pmf (4.15), we have

P
`

K1 “ K2 “ K 1˘ • 1 ´ ‘ ´ ”.

Thus, K 1 constitutes3 an p‘ ` ”, 0q-SK.
The evaluation of the conditional independence testing upper bound

of Theorem 4.12 relies on evaluating —‘pP, Qq. A direct computation of
—‘pP, Qq, which is a linear program, is not feasible for large alphabets.
However, we can find upper bounds for ´ log —‘pP, Qq which may be
evaluated easily, especially when P and Q have a product structure.

We begin with an information spectrum upper bound for
´ log —‘pP, Qq. Denote by P“ the tail probability

P“ fi P
ˆ

log P pXq
QpXq § “

˙

,

where X has pmf P .

Lemma 4.15. For pmfs P and Q on X and every 0 § ‘ † P⁄,

´ log —‘pP, Qq § inf
“

“ ´ log pP“ ´ ‘q .

Remark 4.16. The term E“ fi ´ log P“ is of fundamental importance
in information spectrum methods. For the case when P “ P n and
Q “ Qn correspond to i.i.d. rvs, asymptotically tight bounds for E“

can be found using large deviations analysis.

Proof. Let T be a test for P versus Q with pP ˝ Tqp0q • 1 ´ ‘.
Denoting

A“ “
"

x P X : log P pxq
Qpxq § “

*

,

3The additional randomness for generating K 1 can be provided as local random-
ness to one of the terminals.
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we get

pQ ˝ Tqp0q •
ÿ

xPA“

QpxqTp0|xq

• 2´“
ÿ

xPA“

P pxqTp0|xq

• 2´“
“pP ˝ Tqp0q ´ P pAc

“q‰

“ 2´“ rP“ ´ pP ˝ Tqp1qs
• 2´“ rP“ ´ ‘s ,

which upon taking logarithm yields

´ logpQ ˝ Tqp0q § “ ´ logpP“ ´ ‘q.
The claim of the lemma follows since T is arbitrary.

Thus, finding “ such that P“ is bounded away from 0 will result
in upper bounds for ´ log —‘pP, Qq. Interestingly, the Rényi divergence
constitutes such a choice of “.

Definition 4.17. For pmfs P and Q on X , the Rényi divergence of order
– ‰ 1, – • 0, is given by

D–pP, Qq “ 1
– ´ 1 log

ÿ

xPX
P pxq–Qpxq1´–.

Lemma 4.18. Given 0 † ‘1 † 1 and – ° 1, for the choice

“ “ D–pP, Qq ` 1
– ´ 1 log 1

‘1 ,

we have P“ • 1 ´ ‘1.

Proof. For this choice of “, the set A“ satisfies

1 “ P pA“q `
ÿ

xPAc
“

P pxq
ˆ

P pxq
Qpxq

˙–´1 ˆ

P pxq
Qpxq

˙1´–

§ P pA“q ` ‘12p1´–qD–pP,Qq ÿ

xPAc
“

P pxq
ˆ

P pxq
Qpxq

˙–´1

§ P pA“q ` ‘1,

which completes the proof.
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As a corollary, the following bound holds.

Lemma 4.19. Given 0 § ‘ † 1 and pmfs P and Q on X , for every
– ° 1 and 0 † ‘1 † 1 ´ ‘,

´ log —‘pP, Qq § D–pP, Qq ` 1
– ´ 1 log 1

‘1 ` log 1
1 ´ ‘ ´ ‘1 .

4.2.3 Secret key monotone bound

A monotone is an attribute of an SK generation protocol that evolves
“monotonically” as the protocol proceeds. A suitable choice of a mono-
tone for a given SK generation problem leads to upper bounds for the
resulting SK length. This approach is illustrated for the case m “ 2.

Definition 4.20. Given rvs X1, X2, Z, a nonnegative-valued function
M‘,” “ M‘,”pX1, X2|Zq, 0 § ‘, ” † 1, constitutes a monotone for SK
generation under ‡var or ‡div if it satisfies the following properties:

1. M‘,”pX1, X2|Zq does not increase if X1 or X2 are replaced by
their degraded version, i.e., for the Markov chain X 1

1 ´̋́ X1 ´̋́ X2Z

M‘,”pX1, X2|Zq • M‘,”pX 1
1, X2|Zq,

and for the Markov chain X 1
2 ´̋́ X2 ´̋́ X1, Z

M‘,”pX1, X2|Zq • M‘,”pX1, X 1
2|Zq;

2. M‘,”pX1, X2|Zq does not increase on revealing degraded versions
of X1 or X2, i.e., for X 1

1 and X 1
2 as in Property 1,

M‘,”pX1, X2|Zq • M‘,”pX1, pX2, X 1
1q|Z, X 1

1q,
and

M‘,”pX1, X2|Zq • M‘,”pX 1
2, X1, X2|Z, X 1

2q;
3. M‘,”pX1, X2|Zq does not decrease upon replacing Z by its de-

graded version Z 1 ´̋́ Z ´̋́ X1, X2:

M‘,”pX1, X2|Zq § M‘,”pX1, X2|Z 1q;
4. for an p‘, ”q-SK K using F under ‡var or ‡div, with local estimates

K1 and K2, it holds that

log |K| § M‘,”ppK1, Fq, pK2, Fq|Z, Fq ` �p‘, ”q,
for a suitable �p‘, ”q ° 0.
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Lemma 4.21. For 0 § ‘, ” † 1 and a monotone M‘,” under ‡ “ ‡var
or ‡ “ ‡div,

S‡
‘,” § inf

Z1´́̋Z´́̋X1,X2
M‘,”pX1, X2|Z 1q ` �p‘, ”q.

Proof. Since Ki is recoverable from pXi, F, Uiq, i “ 1, 2, Properties
1 and 4 of a monotone imply that

log |K| § M‘,”ppX1, Fq, pX2, Fq|Z, Fq ` �p‘, ”q.
Also, a repeated application of Property 2 for communication in each
time-slot gives

M‘,”ppX1, Fq, pX2, Fq|Z, Fq § M‘,”pX1, X2|Zq,
and so

log |K| § M‘,”pX1, X2|Zq ` �p‘, ”q.
The claim follows upon using Property 3.

Example 4.22. Consider

M‘,”pX1, X2|Zq “ 1
1 ´ ‘

I pX1 ^ X2 | Zq ,

and let
�p‘, ”q “ hp‘q ` ”

1 ´ ‘
.

It can be verified that M‘,” is a monotone under ‡div; in particular,
Property 3 holds since I pX1 ^ X2 | Zq § I pX1 ^ X2 | Z 1q by the con-
vexity of divergence. Therefore, by Lemma 4.21

Sdiv
‘,” § min

Z1´́̋Z´́̋X1,X2

1
1 ´ ‘

I
`

X1 ^ X2 | Z 1˘ ` �p‘, ”q.

4.3 Story of results

A preliminary incarnation of information theoretic SK generation by
two terminals using public discussion was considered in [7]. The two-
terminal version of the formulation addressed in this chapter was intro-
duced in [53], a forerunner of [54]. For this model, the largest asymp-
totic rate of a SK for i.i.d. observations, a question we return to in
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Chapter 6, was characterized in [54, 1]. Multiterminal SK generation
as formulated in this chapter was studied first in [21] (see also [9]) for
i.i.d. observations. The treatment here and the common randomness
entropy upper bound of §4.2.1 are based on [21, 22], paraphrased in
single-shot form. The expression for shared information SI pXM | Zq
and its upper bound involving only partitions were identified in [21];
the tightness of the bound in Theorem 4.8 was shown in [13]. The con-
ditional independence testing bound of §4.2.2 is from [85, 87] and the
secret key monotone bound of §4.2.3 from [69]. (Secret key monotones
appeared earlier in [9].) Example 4.3 is from [21]. Examples 4.4 and 4.5
evoke the pairwise independent network model introduced in [61, 59];
the maximal spanning tree packing depicted in Figure 4.1 is from [78].
Lemma 4.14, which converts an p‘, ”q-SK to an p‘ ` ”, 0q-SK, is from
[39].



5
Extracting Uniform Randomness

Two approaches – balanced coloring and leftover hash – are developed
side-by-side for extracting uniform and independent random bits from
a given source rv, while keeping near independence from another rv.
The extractions employ random mappings. The two methods are at
the heart of achievability proofs in later chapters for generating secret
common randomness for multiple terminals. Elemental forms of the
balanced coloring and leftover hash lemmas are presented in §5.1 and
5.2, respectively, where the eavesdropper can be assumed to have ac-
cess to the realization of the mentioned random mappings. §5.3 extends
both lemmas to the setting in which the eavesdropper has additional
access to side information that is correlated with the source. Further
refinements in §5.4 make for improved e�ciency of extraction and en-
able an asymptotic performance analysis of the extraction methods for
sequences of rvs. We note that the basic bounds presented below are
adequate for our purposes, but are not necessarily the best that are
known in general.

53
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We begin with pertinent definitions. For a pmf P on a countable
set U , the minentropy Hmin pP q of P is defined as

Hmin pP q fi inf
uPU

p´ log P puqq “ log 1
supuPU P puq .

For a joint pmf PUV on a countable set U ˆ V, the conditional
minentropy of U given V is defined as

Hmin pPUV |V q fi sup
QV : supppQV qÖsupppPV q

Hmin pPUV |QV q ,

where

Hmin pPUV |QV q fi inf
uPU , vPsupppQV q

´ log PUV pu, vq
QV pvq .

In fact, it can be shown that

Hmin pPUV |V q “ ´ log
ÿ

vPV
PV pvq sup

uPU
PU |V pu|vq (5.1)

and operationally is the negative logarithm of the average maximum
probability of guessing U from V .

We shall show that roughly as many uniformly distributed bits from
an rv with pmf P can be extracted as its minentropy Hmin pP q. Further-
more, for rvs U, V with joint pmf PUV , we can extract roughly as many
uniformly distributed bits from U independent of V as the conditional
minentropy Hmin pPUV |V q. In fact, we can replace these bounds with
more tractable ones by achieving smooth versions of these entropies (to
be defined below).

5.1 Balanced coloring lemma

Given a rv U with pmf P on a finite set U , we first show that most of
the mappings „ : U Ñ t1, ..., ku can be used to extract log k random bits
from U , provided that log k is smaller than approximately HminpP q.

Specifically, for k • 1, consider the family Fall “  

„ : U Ñ
t1, ..., ku(

of all mappings from U to t1, ..., ku. Let � be a rv that
is distributed uniformly on Fall, i.e.,

P� p„q “ 1
|Fall| “ 1

k|U | , „ P Fall,
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and is independent of U . Then the rvs �puq, u P U , with the obvious
connotation, are i.i.d., with each distributed uniformly on t1, . . . , ku.

For a mapping „ P Fall, the rv „pUq has pmf P„pUq “ `

P„pUqpiq, i “
1, . . . , k

˘

, where

P„pUq piq “
ÿ

u : „puq“i

PU puq , i “ 1, . . . , k.

With an abuse of notation, let P�pUq “ `

P�pUqpiq, i “ 1, . . . , k
˘

denote
the random pmf taking values in the set of pmfs tP„pUq, „ P Fallu on
t1, ..., ku.

Lemma 5.1 (Balanced coloring). Let U be a U-valued rv, |U | † 8, with
pmf P . For 0 † ‘ † 1, the random mapping � distributed uniformly
on Fall and independent of U , satisfies

P
´

›

›P�pUq ´ Punif
›

› § ‘
¯

• 1 ´ 2k exp
´

´‘22HminpP q´log k´1
¯

,

where Punif is the uniform pmf on t1, .., ku.

Remark 5.2. It follows from the result above that for log k “ p1 ´
÷qHmin pP q ´ 1, ÷ ° 0, all but a fraction

exp
´

p1 ´ ÷qHmin pP q ´ ‘22÷HminpP q
¯

of mappings „ P Fall satisfy
›

›P„pUq ´ Punif
›

› § ‘.

In particular, for a large Hmin pP q, most of the mappings „ P Fall
extract close to Hmin pP q random bits.

Proof. Fix i P t1, . . . , ku. It su�ces to show that

P
´

ˇ

ˇ

ˇ

P�pUqpiq ´ 1
k

ˇ

ˇ

ˇ

° 2‘

k

¯

§ 2 exp
´

´ ‘22HminpP q

2k

¯

(5.2)

which implies the assertion of the lemma. Observe that

P�pUqpiq “
ÿ

uPU
P puq `

�puq “ i
˘
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is a sum of independent rvs since the rvs
`

�puq “ i
˘

, u P U , are i.i.d.
Also, P

`

�puq “ i
˘ “ 1

k , u P U , whereby
∞

uPU E
“

P puq `

�puq “ i
˘‰ “

1
k . The tail inequality (5.2) is obtained by applying Cherno� bounding
in the form of a slightly paraphrased version of Bernstein’s inequality,
stated next, to the sum of the independent rvs

`

�puq “ i
˘

, u P U .
Specifically, let X1, . . . , Xn be independent R-valued rvs satisfying

the conditions
n

ÿ

j“1
ErX2

j s § ‹,
n

ÿ

j“1
ErmaxtX l

j , 0us § l!‹cl´2

2

for all integers l • 3 and for some 0 § ‹, c † 8. Then for every t ° 0,

P
´

ˇ

ˇ

n
ÿ

j“1

`

Xj ´ ErXjs˘ˇ

ˇ ° ?
2‹t ` ct

¯

§ 2 expp´tq. (5.3)

We apply Bernstein’s inequality (5.3) with P puq `

�puq “ i
˘

, u P U ,
as Xj , j “ 1, . . . , n, noting that the conditions in its hypothesis are
met according to

ÿ

uPU
E

“`

P puq `

�puq “ i
˘˘2‰ “

ÿ

uPU
P puq2P

`

�puq “ i
˘

§
ÿ

uPU
2´HminpP qP puq 1

k
“ 2´HminpP q

k
,

and for l • 3,
ÿ

uPU
E

“`

P puq `

�puq “ i
˘˘l‰ “

ÿ

uPU
P puq2P puql´2P

`

�puq “ i
˘

§ 2´pl´2qHminpP q 2´HminpP q

k

with ‹ “ 2´HminpP q
k and c “ 2´HminpP q. By (5.3) for the choice t “

2‘
k 2HminpP q,

P
´

ˇ

ˇ

ˇ

P�pUqpiq ´ 1
k

ˇ

ˇ

ˇ

° 2
?

‘

k
` 2‘

k

¯

§ 2 exp
´

´ 2‘

k
2HminpP q

¯

so that

P
´

ˇ

ˇ

ˇ

P�pUqpiq ´ 1
k

ˇ

ˇ

ˇ

° 4
?

‘

k

¯

§ 2 exp
´

´ 2‘

k
2HminpP q

¯

since 0 § ‘ § ?
‘ § 1. The claim in (5.2) follows by a simple change of

variables.
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5.2 Leftover hash lemma

The balanced coloring lemma of the previous section shows that for a
large Hmin pP q, most of the mappings „ : U Ñ t1, ..., ku with range sizes
close to Hmin pP q will enable the extraction, from a rv U with pmf P , of
roughly Hmin pP q almost unbiased and independent bits. However, its
proof does not suggest a method for obtaining even a single, determin-
istic extractor. Of course, a randomized extractor can be e�ected by
using a randomly selected map as in the proof of Lemma 5.1; however,
this calls for additional uniform randomness of size exponential in U . In
this section, we present an alternative mechanism for a randomized ex-
tractor. It only requires additional uniform randomness of size roughly
|U |; however, the specifics of the construction, while simple, are beyond
the scope of this monograph.

A key element of this construction is a 2-universal hash family
(UHF).

Definition 5.3. Given a finite set U and k • 1, a family F of mappings
„ : U Ñ t1, . . . , ku constitutes a UHF of length k if for every u ‰ u1 in
U ,

1
|F |

ÿ

„PF
1

`

„puq “ „pu1q˘ § 1
k

. (5.4)

Heuristically, random selection over a UHF yields an “almost in-
vertible” mapping from U to t1, . . . , ku which, for su�ciently small k,
will be seen below to enable uniform randomness extraction. Note that
the family Fall of all mappings in the previous section constitutes a
UHF with equality in (5.4).

The main result of this section is the leftover hash lemma which
shows that a randomly selected member of a UHF will enable the ex-
traction of roughly Hmin pP q random bits from a rv U with pmf P .

Lemma 5.4 (Leftover hash). Let U be a U-valued rv, |U | † 8, with
pmf P , and let F be a UHF of length k. It holds that

1
|F |

ÿ

„PF

›

›P„pUq ´ Punif
›

› § 1
2

a

2log k´HminpP q,
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or, equivalently, a random mapping � distributed uniformly on F and
independent of U , satisfies

‡varp�pUq; �q § 1
2

a

2log k´HminpP q. (5.5)

Remark 5.5. The equivalent form in (5.5) ensures the secrecy of the
output of the extractor from an eavesdropper with access to the ran-
dom selection of �. Thus, the randomization over a UHF can be im-
plemented using “public randomness.”

Proof. For every mapping „ : U Ñ t1, ..., ku,

›

›P„pUq ´ Punif
›

› “ 1
2

k
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

u : „puq“i

P puq ´ 1
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

§ 1
2

g

f

f

f

ek
k

ÿ

i“1

¨

˝

ÿ

u : „puq“i

P puq ´ 1
k

˛

‚

2

by the Cauchy-Schwarz inequality. To bound further the right-side,
observe that

k
ÿ

i“1

¨

˝

ÿ

u : „puq“i

P puq ´ 1
k

˛

‚

2

“
k

ÿ

i“1

ÿ

u,u1
P puqP pu1q1 `

„puq “ „pu1q “ i
˘ ´ 1

k

“
ÿ

u

P puq2 `
k

ÿ

i“1

ÿ

u,u1 : u‰u1
P puqP pu1q1 `

„puq “ „pu1q “ i
˘ ´ 1

k

“
ÿ

u

P puq2 `
ÿ

u,u1 : u‰u1
P puqP pu1q1 `

„puq “ „pu1q˘ ´ 1
k

“ 2´H2pP q `
ÿ

u,u1 : u‰u1
P puqP pu1q1 `

„puq “ „pu1q˘ ´ 1
k

,

where H2pP q denotes the Rényi entropy of order-2 given by

H2pP q “ ´ log
ÿ

uPU
P puq2.
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Furthermore, noting that H2pP q • Hmin pP q and applying Jensen’s
inequality to the concave function fpxq “ ?

x, x • 0, we get

1
|F |

ÿ

„PF

g

f

f

f

e

k
ÿ

i“1

¨

˝

ÿ

u : „puq“i

P puq ´ 1
k

˛

‚

2

§
d

2´HminpP q `
ÿ

u,u1 : u‰u1
P puqP pu1q 1

|F |
ÿ

„PF
1 p„puq “ „pu1qq ´ 1

k

§
d

2´HminpP q `
ÿ

u,u1 : u‰u1
P puqP pu1q 1

k
´ 1

k

§
a

2´HminpP q,

where the second inequality holds by the definition of a UHF. Thus,
by combining the steps above, we get

1
|F |

ÿ

„PF

›

›P„pUq ´ Punif
›

› § 1
2

a

k2´HminpP q.

The equivalent form follows upon checking that
›

›P�pUq� ´ Punif ˆ P�
›

› “ 1
|F |

ÿ

„PF

›

›P„pUq ´ Punif
›

› ,

using the independence of � and U .

Remark 5.6. The proof of Lemma 5.4 establishes the stronger result

1
|F |

ÿ

„PF

›

›P„pUq ´ Punif
›

› § 1
2

a

2log k´H2pP q.

Indeed, analogous strengthened results can be had below. However, the
forms with Hmin are apt for our purpose.

5.3 Extractor lemmas with side information

The basic extractor lemmas of the previous two sections treat the case
where an eavesdropper has access to the realization of the random
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extractor but has no additional side information. For applications in-
volving secrecy generation considered in this monograph, we require ex-
tractor lemmas when, in addition to the public randomness, the eaves-
dropper observes additional side information V that is correlated with
U . Simple extensions of the balanced coloring lemma and the leftover
hash lemma enable the extraction of roughly Hmin pPUV |PV q random
bits independent of V .

Formally, consider rvs U and V taking values in finite sets U and
V, respectively, and with joint pmf PUV . Note that

Hmin pPUV | PV q § Hmin
`

PU |V “v

˘

, v P V. (5.6)

For a mapping „ : U Ñ t1, ..., ku, let P„pUqV denote the joint pmf

P„pUqV pi, vq “
ÿ

u : „puq“i

PUV pu, vq , i P t1, ..., ku, v P V.

Furthermore,

‡varp„pUq; V q “ ›

›P„pUqV ´ Punif ˆ PV

›

›

“
ÿ

vPV
PV pvq ›

›P„pUq|V “v ´ Punif
›

› .

Consider a random mapping � distributed uniformly on Fall and inde-
pendent of U and V . The rvs �puq, u P U , are conditionally i.i.d., with
each conditionally distributed uniformly on t1, . . . , ku, conditioned on
V “ v, v P V. Then

P
´

‡varp�pUq; V q ° ‘
¯

“ P
´

ÿ

vPV
PV pvq ›

›P�pUq|V “v ´ Punif
›

› ° ‘
¯

§ P
´

§

vPV

!

›

›P�pUq|V “v ´ Punif
›

› ° ‘
)¯

§
ÿ

vPV
P

´

›

›P�pUq|V “v ´ Punif
›

› ° ‘
¯

§ 2|V|k exp
´

´‘22HminpPUV |PV q´log k´1
¯

,

where the last inequality is by Lemma 5.1 and (5.6). We have obtained
the following extension of the balanced coloring lemma.
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Lemma 5.7 (Balanced coloring with side information). Let U and V be
U- and V-valued rvs, |U | † 8, |V| † 8, with joint pmf PUV . For
0 † ‘ † 1, the random mapping � distributed uniformly on Fall and
independent of U, V , satisfies

P
´

‡varp�pUq; V q § ‘
¯

• 1 ´ 2|V|k exp
´

´‘22HminpPUV |PV q´log k´1
¯

.

Remark 5.8. As in Remark 5.2, with H “ Hmin pPUV |PV q, for log k “
p1 ´ ÷qH ´ 1, ÷ ° 0, all but a fraction

exp
`p1 ´ ÷qH ` log |V| ´ ‘22÷H

˘

of mappings „ P Fall satisfy

‡varp„pUq; V q § ‘.

In particular, when H is su�ciently large and log |V| is of the order of
H, most mappings „ P Fall extract close to H random bits independent
of V .

The leftover hash Lemma 5.4 admits a similar extension to the case
of an eavesdropper with side information. Unlike its balanced coloring
counterpart, however, it does not require log |V| to be of the order of
H in order to be e�ective. Specifically, let F be a UHF of length k of
mappings „ : U Ñ t1, ..., ku, and let � be distributed uniformly on F
and independent of U and V . Then,

‡varp�pUq; V, �q “
ÿ

vPV
PV pvq 1

|F |
ÿ

„PF

›

›P„pUq|V “v ´ Punif
›

›

§ 1
2

a

k2´HminpPUV |PV q,

where the equality uses the independence of � and U, V , and the in-
equality is by Lemma 5.4 and (5.6). Thus, we have the following exten-
sion of Lemma 5.4.

Lemma 5.9 (Leftover hash with side information). Let U and V be U-
and V-valued rvs, |U | † 8, |V| † 8, with joint pmf PUV . Let F be
a UHF of length k consisting of mappings „ : U Ñ t1, ..., ku. Then, for
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a random mapping � distributed uniformly on F and independent of
U, V , it holds that

‡varp�pUq; V, �q § 1
2

a

2log k´HminpPUV |PV q.

Remark 5.10. As in Remark 5.5, here, too, the random mapping �
can be implemented with public randomness that is available to the
eavesdropper.

5.4 Extracting smooth minentropies

A shortcoming of the extractor lemmas discussed above is that the
size of the extracted uniform randomness is governed by minentropies,
which can diminish significantly even if there were a single element in U
with large probability. In this section, we present the notion of smooth-
ing which not only a�ords a remedy, but also provides a convenient way
to quantify the asymptotic performance of the resulting extractors for
a sequence of pmfs tPUnVnu8

n“1 with suitable concentration behavior.
Given a pmf PUV on a finite set U ˆ V, consider another pmf QUV

on U ˆV. In applications below, QUV will be obtained from PUV . For a
mapping „ : U Ñ t1, ..., ku, let Q„pUqV be defined analogously as P„pUqV

with QUV replacing PUV . Then, for every „ P Fall,
›

›P„pUqV ´ Punif ˆ PV

›

› § ›

›Q„pUqV ´ Punif ˆ PV

›

› ` }PUV ´ QUV }
§ ›

›Q„pUqV ´ Punif ˆ QV

›

› ` 2 }PUV ´ QUV } .

Application of the earlier extractor lemmas to the pmf QUV in lieu
of PUV incurs an extra leakage of variational secrecy not exceeding
2 }PUV ´ QUV }. In particular, restricting QUV according to

}PUV ´ QUV } § ÷, (5.7)

will incur an additional leakage of at most 2÷. Thus, Lemmas 5.7
and 5.9 can be revised accordingly to enable the extraction of
sup Hmin pQUV |QV q random bits, where the supremum is over all QUV

for which (5.7) holds.
For a function gpPUV q of PUV , the quantity

g÷pPUV q fi sup
QUV : }PUV ´QUV }§÷

gpQUV q
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is called the ÷-smooth version1 of g. The salient observation above is
that the number of bits extracted can be increased to the ÷-smooth ver-
sions of the earlier amounts by incurring an additional secrecy leakage
not exceeding 2÷. In the next two subsections, we derive extensions of
Lemmas 5.7 and 5.9 using the idea of smoothing, and then note their
consequence for the case of an i.i.d. sequence of pmfs tPUnVnu8

n“1.

5.4.1 Extractor lemmas with smooth minentropies

As a direct consequence of the foregoing discussion, we obtain the fol-
lowing extensions of Lemmas 5.7 and 5.9. The underlying probability
is with respect to PUV .

Lemma 5.11. Let U and V be U- and V-valued rvs, |U | † 8, |V| † 8,
with joint pmf PUV . For 0 † ÷ † 1, let H÷ denote the ÷-smooth
minentropy

H÷ “ sup
QUV : }PUV ´QUV }§÷

Hmin pQUV |QV q .

Then for 0 † ‘ † 1, the random mapping � distributed uniformly on
Fall and independent of U, V , satisfies

P
´

‡varp�pUq; V q § ‘ ` 2÷
¯

• 1 ´ 2|V|k exp
´

´‘22H÷´log k´1
¯

.

Remark 5.12. Clearly, H÷ • H pPUV |PV q , 0 † ÷ † 1.

Lemma 5.13. Let U and V be U- and V-valued rvs, |U | † 8, |V| † 8,
with joint pmf PUV . Let F be a UHF of length k of mappings „ : U Ñ
t1, ..., ku. Then, for a random mapping � distributed uniformly on F
and independent of U, V , it holds that

‡varp�pUq; V, �q § 1
2

?
2log k´H÷ ` 2÷.

Thus, approximately H÷ random bits can be extracted from U that
are nearly independent of V . Often, it is more convenient to use weak-
ened versions of the extractor results above, obtained by deriving lower

1Smoothing can be defined with a supremum or an infimum over an ÷-ball de-
pending on context.
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bounds for H÷. We provide a few popular versions below, each of which
can be deduced as an instantiation of the following general lower bound
for H÷. In particular, we shall use this bound to show that approxi-
mately Hmin pPUV |V q unbiased bits can be extracted from U that are
independent of V . Furthermore, it will be used to obtain estimates of
the number of extracted bits in the important case when tpUi, Viqun

i“1
have certain i.i.d. attributes. Also, we note that the mentioned lower
bound applies, in general, to any smooth function g÷pPUV q of PUV .

Proposition 5.14. For 0 † ÷ † 1, given a subset A Ñ U ˆ V such that

PUV pAq • 1 ´ ÷,

let P A
UV denote the joint conditional pmf of U, V , given that pU, V q P

A. Then the ÷-smooth version g÷pPUV q of a function gpPUV q of PUV

satisfies

g÷pPUV q • gpP A
UV q.

In particular,

H÷ • Hmin
`

P A
UV |P A

V

˘

.

Proof. It su�ces to show that
›

›PUV ´ P A
UV

›

› § ÷.

Indeed, for B “ supp pPUV q X Ac, we have

B “  pu, vq : P A
UV pu, vq † PUV pu, vq(

,

so that
›

›PUV ´ P A
UV

›

› “ PUV pBq ´ P A
UV pBq

“ PUV pBq
§ ÷.

The previous proposition enables a lower bound for H÷ in terms
of Hmin pPUV |V q. For 0 † ÷ † 1 and pmf QV on V, consider the set
A “ ApQV q Ñ U ˆ V, where

A “ U ˆ tv P V : PV pvq • ÷QV pvqu.
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Then,

PUV pAq “ 1 ´ PUV pAcq • 1 ´ ÷. (5.8)

Furthermore, for each pu, vq P A, we have

´ log P A
UV pu, vq
P A

V pvq “ ´ log PUV pu, vq
PV pvq

• ´ log PUV pu, vq
÷QV pvq ,

whereby

Hmin
`

P A
UV |P A

V

˘ • Hmin pPUV |QV q ´ log 1
÷

,

so that by Proposition 5.14,

H÷ • Hmin pPUV |QV q ´ log 1
÷

. (5.9)

Since the previous bound holds for every QV , we get

H÷ • Hmin pPUV |V q ´ log 1
÷

. (5.10)

Remark 5.15. The balanced coloring and leftover hash Lemmas 5.11
and 5.13 hold in weaker form with Hmin pPUV |V q ´ log 1

÷ replacing H÷,
by (5.10).

Another popular form of extractor lemmas considers the case where
V “ pV1, V2q is a V1 ˆ V2-valued rv where V1 and V2 are countable and
finite sets, respectively. In a typical application, V1 corresponds to side
information available to an eavesdropper and V2 to public communica-
tion involved in the underlying protocol. For this case, by choosing

QV1V2 pv1, v2q “ QV1 pv1q
|V2| , v1 P V1, v2 P V2,

we get

Hmin pPUV |V q • Hmin pPUV |QV q • Hmin pPUV1 |V1q ´ log |V2|.
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Remark 5.16. By the previous bound and (5.9), the balanced coloring
and leftover hash Lemmas 5.11 and 5.13 hold with H÷ replaced by
Hmin pPUV1 |V1q ´ log |V2| ´ log 1

÷ . In fact, the mentioned leftover hash
lemma can be improved by directly modifying the proof of Lemma 5.4.
This version, stated without proof, is

‡varp�pUq; V, �q § 1
2

a

2log k´HminpPUV |V q, (5.11)

which for the case V “ pV1, V2q can be weakened using the specific
choice of QV1V2 above to get

‡varp�pUq; V1, V2, �q § 1
2

b

2log k`log |V2|´HminpPUV1 |V1q. (5.12)

Finally, an improved extraction in (5.12) can be had by smoothing
with respect to PUV . Specifically, denote by H÷

min pPUV |V q the smooth
conditional minentropy of U given V defined by

H÷
min pPUV |V q fi sup

QUV : }PUV ´QUV }§÷
Hmin pQUV |V q , 0 † ÷ † 1.

The following incarnation of the leftover hash lemma is a simple exten-
sion of (5.12) and is a generalization of all the versions stated above.

Lemma 5.17. Let U, V1 and V2 be U-, V1- and V2-valued rvs with joint
pmf PUV1V2 , where U and V1 are countable sets and V2 is a finite set.
Let F be a UHF of length k consisting of mappings „ : U Ñ t1, ..., ku.
Then, for 0 † ÷ † 1, for a random mapping � distributed uniformly
on F and independent of U, V1, V2, it holds that

‡varp�pUq; V1, V2, �q § 2÷ ` 1
2

b

2log k`log |V2|´H÷
minpPUV1 |V1q.

Lemma 5.17 suggests the following two-step procedure for SK gen-
eration for the multiterminal setup introduced in §3.1. The terminals in
M first generate ‘-CR L “ LpUM, XMq by means of interactive com-
munication F “ FpUM, XMq. Then the terminals extract from this CR
an SK K, in accordance with the the balanced coloring or leftover hash
lemmas, maintaining a low variational secrecy index. When the termi-
nals observe i.i.d. data (say, in time), a refinement of this procedure is
possible in which the next result plays a central role.
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5.4.2 The case of i.i.d. tpUi, Viqun
i“1

We close this chapter with an extractor lemma for the case when U
and V1 correspond to n i.i.d. repetitions pUi, V1iqn

i“1 with pmf PUV1 .
Assume for simplicity that the sets U and V1 are finite. By a Cherno�
bound, for each ” ° 0, there exists a constant c “ cp”q ° 0 such that
for each n • 1, the set

A “
!

pun, vnq P Un ˆ V1
n : ´ log PUn|V n

1
pun|vnq ° nrHpU |V1q ´ ”s

)

has probability
PUnV n pAq • 1 ´ 2´nc.

Thus, by Proposition 5.14 with ÷ “ ÷pnq “ 2´nc,

H÷
min

`

PUnV n
1 |V n

1
˘ • Hmin

´

P A
UnV n

1
|V n

1

¯

• Hmin
´

P A
UnV n

1
|PV n

1

¯

“ inf
pun,vnqPA

´ log
PUn|V n

1
pun|vnq

PUnV n
1 pAq

• nrHpU |V1q ´ ”s ` log
`

1 ´ 2´nc
˘

, (5.13)

where the last inequality uses the definition of A and PUnV n
1 pAq •

1 ´ 2´nc. Lemma 5.17, combined with the bound above, yields the
following mainstay of several of the achievability results in the chapters
to come.

Lemma 5.18. Consider rvs Un, V n
1 , V2 such that tpUi, V1iqun

i are i.i.d.
repetitions of the rv pU, V1q, where U, V1, V2 are U-, V1-, V2-valued rvs,
|U | † 8, |V1| † 8, |V2| † 8. Then, for every ” ° 0 there is c “ cp”q ° 0
such that for every n • 1 and every

log k † nrHpU |V1q ´ 2”s ´ log |V2| ` log
`

1 ´ 2´nc
˘ ` 2, (5.14)

a random mapping � distributed uniformly on a UHF F of length k
consisting of mappings „ : U Ñ t1, ..., ku and independent of Un, V n

1 , V2
satisfies

‡varp�pUnq; V n
1 , V2, �q § 2´n mintc,”u`log 3.
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Remark 5.19. In this section, smoothing involved optimization with
respect to the pmf QUV such that }PUV ´ QUV } § ÷. However, the
proofs of Lemmas 5.11 and 5.13 hold even when PUV is a subdistribu-
tion, i.e., when

ÿ

u,v

PUV pu, vq § 1.

Thus, all the results of this section can be extended with smoothing
performed with respect to a subdistribution QUV such that

}PUV ´ QUV } “ 1
2

ÿ

u,v

|PUV pu, vq ´ QU,V pu, vq | § ÷.

A useful choice of such a subdistribution is given by

QUV pu, vq “ PUV pu, vq1ppu, vq P Aq,
which satisfies }PUV ´ QUV } § ÷ if PUV pAcq § ÷. This notion of
smoothing has many interesting applications and will be used in Chap-
ter 8. Also, it leads to an improvement in Lemma 5.18 and allows the
omission of the logp1´2´ncq term in (5.14) by replacing the distribution
P A

UnV n in (5.13) with a subdistribution PUnV n1 ppUn, V nq P Aq.

5.5 Story of results

The concept of randomness extraction was introduced by von Neumann
in [90] who considered the generation of uniformly distributed random
bits from biased coin tosses. The problems addressed in this chapter
are of a slightly di�erent hue as we do not insist on producing exactly
uniform bits but seek random bits with pmf close to the uniform. This
latter direction was considered first by Santha and Vazirani [70, 71]. In
fact, the theoretical computer science community has contributed an
extensive body of work on extractors; see [88, Chapter 6] for a survey.
This work includes extractors for a family of sources that will render
certain computational tasks feasible in a specific (randomized) compu-
tational complexity class, while often demonstrating the infeasibility of
deterministic extractors; the work in [70, 71] provides one such example
of an infeasibility result. In contrast, our focus is on a less-ambitious
extraction of randomness from a fixed source. This, or an extension
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to a family of i.i.d. sources, su�ces for the applications considered in
this monograph. In such cases, our seeded extractors can be derandom-
ized easily. For fundamental limits of randomness extraction (of nearly
uniform bits), see [89].

The definition of conditional minentropy with optimization with
respect to QV was introduced in [66]. The operational form in (5.1)
was given in [47]. The first instance of the leftover hash lemma, with a
conditional entropy-based notion of leakage, appeared in [7]. Lemma 5.4
is from [41], and the term “leftover hash” appeared first in [42] where
a strengthening of the result of [41] was given with Rényi entropy of
order 2 in place of minentropy. The version here using UHFs is from
[36], where side information was introduced as well. Variations of this
result using conditional Rényi entropy of order 2 can be found in ([6,
37, 24]) A basic form of the balanced coloring lemma without side
information was introduced in [2] (see also [16]), where it was noted that
the superexponentially decaying form of the bound enables uniform
extraction for any i.i.d. distribution in a family of exponential size with
a uniformly bounded minentropy. Variants of the balanced coloring
lemma admitting side information were obtained in [21]. The idea of
smoothing in the context of the leftover hash lemma was introduced in
[68, 66, 69]. While the original versions of balanced coloring were not
stated in terms of minentropy and nor did they rely on smoothing, the
modified forms stated above enable a unified treatment of the leftover
hash and balanced coloring lemmas. The final form of the leftover hash
Lemma 5.17 was given in [39], and followed readily from [66].





Part II

Applications





6
Secret Key Capacity for the Multiterminal

Source Model

Secret key generation for the multiterminal source model, in which
each terminal observes one component of a discrete memoryless multi-
ple source, is investigated in this chapter. The model is given in §6.1.
Its secret key capacity problem is studied in detail in §6.2 and a single-
letter characterization is provided. The achievability proof brings out
an inherent connection to a multiterminal data compression problem
of omniscience, namely that of recovering at each of m terminals the
source components observed by all the other terminals. The latter set-
ting does not involve any secrecy constraints. A strong converse is
shown based on the results of Chapter 4. The secret key capacity is
seen to equal shared information, thereby giving operational meaning
to the latter notion. Secret key generation for a special “pairwise inde-
pendent network” model is considered in §6.3. The achievability proof
of SK capacity shows a matching connection to a combinatorial prob-
lem of maximal packing of spanning trees in an associated multigraph.

73
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6.1 Multiterminal source model

The multiterminal source model is a garnished version of the basic
setup introduced in §3.1.

Let X1, . . . , Xm, m • 2, be rvs with finite alphabets X1, . . . , Xm,
and joint pmf PX1¨¨¨Xm . Consider a discrete memoryless multiple source
(DMMS) with generic rv XM “ pX1, . . . , Xmq and comprising n i.i.d.
repetitions Xn

M “ pXn
1 , . . . , Xn

mq of XM, n • 1. For a set of terminals
M “ t1, . . . , mu, assume that each terminal i P M observes the ith
component Xn

i of Xn
M. Randomization is allowed at the terminals,

with the finite-valued rv Ui denoting the local randomness at terminal
i P M. We assume that the rvs U1, . . . , Um are mutually independent
and that UM “ pU1, . . . , Umq is independent of Xn

M. All the terminals
know PUMXn

M
.

The terminals in M engage in interactive communication F as in
Definition 3.1, where now fji is allowed to yield any function of pUi, Xn

i q
and of the previous communication „ji, 1 § j § r, 1 § i § m.
Note that F “ Fpnq pUM, Xn

Mq. Of particular interest is simple com-
munication which, recalling Definition 3.1, is F “ pF1, . . . , Fmq, where
Fi “ fi

pnq pUi, Xn
i q , i P M. The terminals cooperate, using public in-

teractive communication F, to generate a SK which is concealed from
an eavesdropper with access to F.

6.2 Secret key capacity

The notion of a multiterminal SK has been described in §4.1. Now for
a multiterminal source model, we define achievable SK rates and SK
capacity.

Definition 6.1. R • 0 is an achievable SK rate for the terminals in
M if there exist p‘n, ”nq-SKs Kpnq for M with values in Kpnq using
interactive communication Fpnq, i.e., there exist local estimates Kpnq

i “
Kpnq

i

`

Ui, Xn
i , Fpnq˘ , i P M, of Kpnq satisfying

P
`

Kpnq
i “ Kpnq, i P M

˘ • 1 ´ ‘n, ‡var
`

Kpnq; Fpnq˘ § ”n (6.1)

where ‘n Ñ 0, ”n Ñ 0, and 1
n log

ˇ

ˇKpnqˇ
ˇ Ñ R as n Ñ 8.
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The largest achievable SK rate is the SK capacity CS .

Thus, an SK Kpnq is an ‘n-CR for M using Fpnq with the variational
secrecy index for Kpnq given Fpnq contained within ”n.

Theorem 6.2 (SK capacity for M). The SK capacity for a multiterminal
source model with generic rv XM “ `

X1, . . . , Xm

˘

is

CS “ SIpXMq “ HpXMq ´ max
⁄

ÿ

SPSpMq
⁄SHpXS |XScq, (6.2)

where the fractional partition ⁄ and SpMq are as in Definition 3.4.
Furthermore, SK capacity can be achieved without randomization at
the terminals in M and with simple communication.

Corollary 6.3. It holds that

CS “ min
fi

1
|fi| ´ 1D

´

PXM ||
|fi|
π

k“1
PXfik

¯

, (6.3)

where the minimum is over all nontrivial partitions fi of M.

Theorem 6.2 says that the largest rate of ‘n-CR for M that is nearly
independent of the public communication Fpnq used to generate it, is
equal to the shared information SIpXMq for X1, . . . , Xm, defined in
Remark 3.11.

Remark 6.4. By Lemma 2.4, SK capacity defined analogously as in
Definition 6.1 but under the divergence secrecy index (see Defini-
tion 2.2), can be no larger. In fact, the capacity remains undiminished
since the achievability proof below of Theorem 6.2 is with ”n in (6.1)
vanishing to zero exponentially in n, so that by Lemma 2.4 the diver-
gence secrecy index, too, decays to zero.

The CR concept of omniscience, introduced in §3.2, will be of ma-
terial significance in the proof of achievability of SK capacity in Theo-
rem 6.2. This notion is discussed next, followed by the proof of Theo-
rem 6.2.
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6.2.1 The role of omniscience

For the multiterminal source model, omniscience for the terminals in
M entails forming ‘n-CR Lpnq “ Xn

M using interactive communication
F “ Fpnq`UM, Xn

M
˘

. Determining the smallest rate of communication
that enables such omniscience is a problem of multiterminal source cod-
ing that is not constrained by any secrecy requirement. As shall be seen
below, the concept of omniscience brings out an inherent connection
between secrecy generation and source coding for the multiterminal
source model.

Definition 6.5. The smallest achievable rate of communication for om-
niscience, termed minimum CO rate and denoted by RCO, is the small-
est number R • 0 such that for suitable interactive communication
Fpnq “ Fpnq`UM, Xn

M
˘

of the terminals in M and ‘n with

‘n Ñ 0 and 1
n

log
ˇ

ˇF pnqˇ
ˇ Ñ R as n Ñ 8,

Xn
M is ‘n-CR for M, where F pnq is the range of Fpnq.

Theorem 6.6 (Minimum CO rate for M). The minimum CO rate for a
multiterminal source model with generic rv XM “ `

X1, . . . , Xm

˘

is

RCO “ max
⁄

ÿ

SPSpMq
⁄SHpXS |XScq, (6.4)

and can be achieved without randomization at the terminals in M and
with simple communication.

The achievability part of Theorem 6.6 is a particularization of a
general result regarding a “normal source network without helpers.”
The latter is addressed next, followed by the proof of Theorem 6.6.

Normal source network without helpers

Let X1, . . . , Xm, D1, . . . , Dm, m • 2, be rvs with finite
alphabets X1, . . . , Xm, D1, . . . , Dm, respectively, and with
known joint pmf PX1¨¨¨XmD1¨¨¨Dm . Consider n i.i.d. repeti-
tions of pXM, DMq “ pX1, . . . , Xm, D1, . . . , Dmq denoted by
pXn

M, Dn
Mq “ pXn

1 , . . . , Xn
m, Dn

1 , . . . , Dn
mq , n • 1.
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For a DMMS with generic rv XM “ pX1, . . . , Xmq as in §6.1,
consider the following network source coding problem with decoder
side information. Each component Xn

i of the DMMS is connected to
exactly one encoder fi “ fi

pnq : X n
i Ñ Mi “  

1, . . . , Mi

(

of rate
Ri “ 1

n log Mi, i P M. Each of m decoders Âi “ Âpnq
i , i P M, pos-

sesses side information Dn
i , and is required to decode, for a prescribed

set Si Ñ M, the corresponding component sources tXn
j , j P Siu of the

DMMS. Each decoder Âi, i P M, is connected to only those encoders
tfj , j P Siu whose corresponding DMMS components it must decode
(and so has no additional encoders as “helpers”), and thus is a mapping

Âi :
ˆ

ë

jPSi
Mj

˙

ˆ Dn
i Ñ ë

jPSi
X n

j . These are the only connections
in the network, and only simple communication in the form of encoder
outputs is allowed. No randomization in encoding or decoding is as-
sumed. The codes

 pfi, Âiq , i P M
(

are required to satisfy

P
ˆ

Âi

´

`

fjpXn
j q, j P Si

˘

, Dn
i

¯

“ `

Xn
j , j P Si

˘

, i P M
˙

• 1 ´ ‘n

(6.5)

where ‘n Ñ 0 as n Ñ 8.

Lemma 6.7 (Achievable rates for normal source network). For the
normal source network without helpers above, there exist codes
! ´

f pnq
i , Âpnq

i

¯

, i P M
)

satisfying (6.5) if the rates Ri, i P M, sat-
isfy the “Slepian-Wolf” conditions

ÿ

jPS

Rj • H
`

XS | XSizS , Di

˘

, S Ñ Si, i P M. (6.6)

Remark 6.8. In fact, randomly chosen tf pnq
i , i P Mu with rates as

in (6.6) (and suitably chosen decoders) will satisfy (6.5) with large
probability.

Proof. Consider first the special case when the decoders possess no
side information, i.e., Di “ constant, i P M. Then the claim follows
by the Slepian-Wolf theorem applied to the decoder for each i P M.
Specifically, there exist codes

! ´

f pnq
i , Âpnq

i

¯

, i P M
)

of rates Ri, i P M
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satisfying
ÿ

jPS

Rj • H
`

XS | XSizS

˘

, S Ñ Si, i P M. (6.7)

that meet (6.5) (with Dn
i “ constant, i P M).

For the given general model, consider a corresponding modified
setup without decoder side information obtained by the following sim-
ple artifice. Introduce dummy sources X̃n

i “ Dn
i , i P M, and con-

nect each dummy source X̃n
i to a dummy encoder f̃i “ f̃ pnq

i of rate
R̃i “ HpDiq. The output of each f̃i feeds only into a single decoder
Ẫi “ „̃pnq

i which is connected also to the encoders tfj , j P Siu. In
this modified setup, each decoder Ẫi, i P M, is required to decode
tXn

j , j P Siu as well as X̃n
i from the outputs of tfj , j P Siu and f̃i, but

without direct access to the side information Dn
i , under the requirement

P
ˆ

Ẫi

´

`

fjpXn
j q, j P Si

˘

; f̃i

`

X̃n
i

˘

¯

“ `

Xn
j , j P Si; X̃n

i

˘

, i P M
˙

• 1 ´ ‘n

where ‘n Ñ 0 as n Ñ 8.
It is clear that if there exist codes

!

`pfi, f̃iq, Ẫi

˘

, i P M
)

with
encoders fi of rates Ri, i P M (and f̃i of rates R̃i “ HpDiq, i P M, as
above), that satisfy the mentioned requirement for the modified setup,
then the encoders fi, i P M, together with suitable decoders Âi, i P M,
will satisfy the less stringent (6.5) for the given model, too.

Thus, the proof is completed upon showing that numbers Ri •
0, i P M, that obey (6.6) will also meet conditions for the modified
setup that are analogous to (6.7). The latter conditions are: for each
i P M and S Ñ Si,

ÿ

jPS

Rj • H
`

XS | XSizS , Di

˘

,

and for S1 such that XS1 “ `

XS , X̃i

˘ “ pXS , Diq,
ÿ

jPS1
Rj • H

`

XS1 | XSizS

˘

“ H
`

Di | XSizS

˘ ` H
`

XS | XSizS , Di

˘

.
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If (6.6) is satisfied, then the first condition coincides with it. The second
condition is met, too, as its left-side equals

ÿ

jPS1
Rj “ HpDiq `

ÿ

jPS

Rj

and is no smaller than the right-side, since HpDiq • H
`

Di | XSizS

˘

and the first condition holds.

Proof of Theorem 6.6

Proof. Achievability: In Lemma 6.7, set Di “ Xi and Si “ Mztiu, i P
M. Then, there exist codes

! ´

f pnq
i , Âpnq

i

¯

, i P M
)

using which Xn
M

is achievable as ‘n-CR for M, with ‘n Ñ 0 as n Ñ 8, if the rates
Ri, i P M, satisfy the Slepian-Wolf conditions (6.6) which now are
simply

ÿ

iPS

Ri • HpXS | XScq, S P SpMq, (6.8)

where SpMq is as in §3.1. The codes do not use randomization at the
terminals in M, and the encoder outputs constitute simple communi-
cation F “ pF1, . . . , Fmq, Fi “ fi

pnq pXn
i q , i P M, of rate

1
n

log
m
π

i“1
Mi “

m
ÿ

i“1

1
n

log Mi “
m
ÿ

i“1
Ri.

Clearly the minimum sum rate minpR1,...,Rmq
∞m

i“1 Ri subject to (6.8)
is an achievable CO rate for M. By the duality theorem of linear pro-
gramming, this minimum is equal to max⁄

∞

SPSpMq ⁄SHpXS | XScq.
Converse: Suppose that Xn

M is achievable as ‘n-CR for M using in-
teractive communication Fpnq, where ‘n Ñ 0 as n Ñ 8. By Lemma 3.9,
with Xn

S and Xn
Sc in the roles of XS and XSc , respectively, we have

HpFnq • max
⁄

ÿ

SPSpMq
⁄SH

`

Xn
S | Xn

Sc

˘ ´ m
`

n‘n log |XM| ` hp‘nq˘

,

so that
lim inf

n

1
n

log |F pnq| • lim inf
n

1
n

HpFnq • max
⁄

ÿ

SPSpMq
⁄SH

`

XS | XSc

˘

.
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6.2.2 Proof of Theorem 6.2

Proof. The achievability of H pXMq ´ max⁄
∞

SPSpMq ⁄SH pXS | XScq
as an SK rate is shown in two steps: The terminals in M first achieve
CR in the form of omniscience using F; then, each terminal extracts
an SK in the form of uniform randomness almost independent of F
from this CR, as enabled by Lemma 5.18. It is followed by the converse
part of the proof which is an immediate consequence of the common
randomness entropy bound in §4.2.1.

Achievability: First, fixing an arbitrary ‹ ° 0, we get by Theo-
rem 6.6 that the terminals in M can achieve omniscience, i.e., Xn

M as
‘n-CR, using simple communication Fpnq “

´

F pnq
1 , . . . , F pnq

m

¯

of range
F pnq, say, and rate

R “ 1
n

log |F pnq| “ max
⁄

ÿ

SPSpMq
⁄SH pXS | XScq ` ‹, (6.9)

and without having to use local randomization, where ‘n Ñ 0 as n Ñ
8. We note thereby that any function of Xn

M also remains an ‘n-CR
for M achievable with Fpnq.

Next, Lemma 5.18, with

Un “ Xn
M, V n

1 “ constant, V2 “ Fpnq and V2 “ F pnq,

guarantees, for any number 0 § H † H pXMq ´ R, the exis-
tence of „ pXn

Mq with values in
 

1, . . . , texppnHqu
(

such that for
Kpnq “ „ pXn

Mq, the variational secrecy index ‡var
`

Kpnq; F
˘ § ”n

where ”n Ñ 0 exponentially rapidly as n Ñ 8. Since ‹ ° 0 in
(6.9) can be chosen to be arbitrarily small, it follows that H pXMq ´
max⁄

∞

SPSpMq ⁄SH pXS | XScq is an achievable SK rate.
Converse: Suppose that Kpnq represents an p‘n, ”nq-SK for M

with values in Kpnq using interactive communication Fpnq and with
‡var

`

Kpnq; Fpnq˘ § ”n, where ‘n Ñ 0 and ”n Ñ 0 as n Ñ 8. Then, by
Remark 4.7 with Xn

M, Xn
S and Xn

Sc in the roles of XM, XS and XSc ,
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respectively, and with Z “ constant, we get

log
ˇ

ˇKpnqˇ
ˇ § 1

1 ´ m‘n ´ ”n

»

–HpXn
Mq ´ max

⁄

ÿ

SPSpMq
⁄SHpXn

S | Xn
Scq

fi

fl

` mhp‘nq ` hp”nq
1 ´ m‘n ´ ”n

,

whereupon

lim sup
n

1
n

log
ˇ

ˇKpnqˇ
ˇ § HpXMq ´ max

⁄

ÿ

SPSpMq
⁄SHpXS | XScq.

The Corollary is immediate from (4.3) with Z “ constant.

6.2.3 Strong converse for SK capacity

An achievable SK rate R • 0 in Definition 6.1 involves p‘n, ”nq-SKs
Kpnq for the terminals in M with ‘n Ñ 0 and ”n Ñ 0 in (6.1) as
n Ñ 8, and the converse proof of Theorem 6.2 makes explicit use of
the limits. This converse can be strengthened to show that achievable
SK rates cannot increase even if the requirements in (6.1) are eased so
as to hold for fixed ‘ ° 0, ” ° 0 with ‘ ` ” † 1.

Lemma 6.9 (Strong converse for SK capacity). Fix ‘ ° 0, ” ° 0 with
‘ ` ” † 1. Let Kpnq represent an p‘, ”q-SK for M with values in Kpnq

using interactive communication Fpnq, and with ‡var
`

Kpnq; Fpnq˘ § ”.
Then,

lim sup
n

1
n

log |Kpnq| § SI pX1, . . . , Xmq “ min
fi

1
|fi| ´ 1D

`

PXM

›

›

|fi|
π

i“1
PXfii

˘

.

Remark 6.10. The case ‘`” • 1 is uninteresting as it enables arbitrar-
ily large achievable SK rates. For instance, Terminal 1 can generate a
p0, 1q-SK K̃, distributed uniformly on a set K, which it communicates
publicly to the remaining terminals; and each terminal i P M generates
a p1, 0q-SK Ki distributed uniformly on K using Ui but requiring no
communication whatsoever. Clearly, an rv K that equals K̃ with prob-
ability 1 ´ ‘ and K1, say, with probability ‘, constitutes an p‘, ”q-SK
for ” “ 1 ´ ‘, with arbitrarily large log |K|.
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Proof. Apply Theorem 4.12 with

XM “ Xn
M, Z “ constant and Qfi

Xn
M

“
|fi|
π

i“1
P n

Xfii

to get that for every partition fi of M,

log |Kpnq| § 1
|fi| ´ 1

„

´ log —‘`”`÷

`

P n
XM ,

|fi|
π

i“1
P n

Xfii

˘ ` |fi| logp1{÷q
⇢

(6.10)
where 0 † ÷ † 1 ´ ‘ ´ ”. For each partition fi of M, by Stein’s Lemma
applied to the testing of the null hypothesis P n

XM
versus the alter-

native hypothesis
±|fi|

i“1 P n
Xfii

, the infimum —‘`”`÷

`

P n
XM

,
±|fi|

i“1 P n
Xfii

˘

of
the probability of error of type II when the probability of error of type
I is constrained to not exceed ‘ ` ” ` ÷, satisfies

lim
n

´ 1
n

log —‘`”`÷

`

P n
XM ,

|fi|
π

i“1
P n

Xfii

˘ “ D
`

PXM

›

›

|fi|
π

i“1
PXfii

˘

for all 0 † ‘ ` ” ` ÷ † 1. Hence, the assertion of the result follows from
(6.10).

6.3 Example: Pairwise Independent Network (PIN) model

The Pairwise Independent Network (PIN) model is a special form of
the multiterminal source model of §6.1. It is a simplified description
of a wireless communication network in which every pair of terminals
share a “statistically-reciprocal link” in both directions, with all such
pairwise links being mutually independent.

Specifically, the rvs X1, . . . , Xm are of the form

Xi “ pAij , j P Mztiuq , i P M,

where the “reciprocal pairs” of finite-valued rvs pAij , Ajiq , 1 § i †
j § m, are mutually independent. Thus, every pair of terminals is
associated with a corresponding pair of rvs, with such pairs of rvs
being mutually independent.

The SK capacity for the PIN model, given by Theorem 6.2 and
Corollary 6.3, simplifies as shown next.



6.3. Example: Pairwise Independent Network (PIN) model 83

Lemma 6.11 (SK capacity of the PIN model). The SK capacity for the
PIN model equals

CS “ min
fi

1
|fi| ´ 1

„

ÿ

1§i†j§m :
pi,jq crosses fi

IpAij ^ Ajiq
⇢

, (6.11)

where for a fixed nontrivial partition fi of M, a pair of indices pi, jq
cross fi if i and j are in di�erent atoms of fi.

Proof. For every partition fi of M in (6.3),

D
´

PXM ||
|fi|
π

k“1
PXfik

¯

“
|fi|
ÿ

k“1
H pXfik q ´ H pXMq . (6.12)

Specializing to the PIN model, for each 1 § k § |fi|,
H pXfik q “

ÿ

1§i†j§m :
iPfik, jPfik

H pAij , Ajiq `
ÿ

iPfik, jRfik

H pAijq ,

and

H pXMq “
ÿ

1§i†j§m

H pAij , Ajiq

“
|fi|
ÿ

k“1

«

ÿ

1§i†j§m :
iPfik, jPfik

H pAij , Ajiq `
ÿ

1§i†j§m :
iPfik, jRfik

H pAij , Ajiq
�

.

Then in (6.12),

D
´

PXM ||
|fi|
π

k“1
PXfik

¯

“
|fi|
ÿ

k“1

«

ÿ

iPfik, jRfik

H pAijq ´
ÿ

1§i†j§m :
iPfik, jRfik

H pAij , Ajiq
�

“
ÿ

1§i†j§m :
pi,jq crosses fi

”

H pAijq ` H pAjiq ´ H pAij , Ajiq
ı

“
ÿ

1§i†j§m :
pi,jq crosses fi

IpAij ^ Ajiq,

whence the claim.
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6.3.1 Achieving SK capacity for the PIN model by tree packing

The formula for SK capacity of the PIN model given above is in terms
of linear combinations of mutual information terms that involve pairs
of “reciprocal” rvs

 pAij , Ajiq , 1 § i † j § m
(

. Each such mutual
information connotes the maximum rate of a pairwise SK that can be
generated by the corresponding pair of terminals in M from just their
own local observations using public communication. The expression in
(6.11) hints at the possibility of forming a groupwide SK for all the
terminals in M by propagating mutually independent pairwise SKs of
maximum rate, building on Examples 4.4 and 4.5. As will be seen be-
low, a maximal packing of spanning trees in a multigraph associated
with the PIN model yields that the corresponding rate of packing is
always a lower bound for SK capacity, which is shown to be tight. This
method thereby also a�ords an alternative achievability proof for the
SK capacity of the PIN model. In fact, it shows directly the achievabil-
ity of the expression in (6.3) for this special model.

Let G “ pV, Eq be a multigraph, i.e., a connected undirected graph
with no self-loops and with multiple edges possible between any vertex
pair, whose vertex set V “ M “ t1, . . . , mu and edge set E “ teij •
0, 1 § i † j § mu, where eij is the number of edges connecting the
pair of vertices i, j, 1 § i † j § m.

Definition 6.12. A spanning tree of G is a subgraph of G that is a
tree and whose vertex set is M. A spanning tree packing of G is any
collection of edge disjoint spanning trees of G. Let µpGq denote the
maximum size of such a packing.

Next, assume without any loss of generality in the PIN model that
all pairwise reciprocal mutual information values IpAij ^ Ajiq, 1 § i †
j § m, are rational numbers. Let N denote the collection of positive
integers n such that the number of edges between any pair of vertices
i, j is equal to nIpAij ^ Ajiq is integer-valued for all 1 § i † j § m;
the elements of N form an arithmetic progression. Consider a sequence
of multigraphs tGpnq “ `

M, Epnq˘ , n P N u, where Epnq is such that
eij “ nIpAij ^ Ajiq for n in N . Clearly, 1

nµpGpnqq is nondecreasing for
n in N . We term supnPN

1
nµpGpnqq as the maximum rate of spanning
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tree packing in the multigraph G “ pM, Eq. The connection between
SK generation for the PIN model and spanning tree packing is brought
out below. Specifically, we present an alternative SK generation scheme
using spanning tree packing which achieves capacity for the PIN model.

The SK is generated using a two-step procedure. The first is to
generate pairwise SKs of maximal rate between pairs of terminals in
M. In the second step, bits from these pairwise SKs are propagated
to form a groupwide SK for M of optimal rate; this step is associated
with a maximal spanning tree packing of an appropriate multigraph.

(i) Fix ‹ ° 0 that is smaller than every positive I pAij ^ Ajiq , 1 §
i † j § m. Each pair of Terminals i, j with I pAij ^ Ajiq ° 0
generate an p‘n, ”nq-SK Kij “ Kpnq

ij

`

An
ij , An

ji

˘

of rate 1
n log |Kpnq

ij | “
I pAij ^ Ajiq ´ ‹ using public communication Fij “ F pnq

ij

´

Apnq
ij , Apnq

ji

¯

,
where ‘n Ñ 0 and

‡var
´

Kpnq
ij ; F pnq

ij

¯

§ ”n, with ”n Ñ 0 exponentially as n Ñ 8.

(6.13)
The existence of such rvs Kij , 1 § i † j § m, comes from the proof of
Theorem 6.2. We note that

pKij , Fijq , 1 § i † j § m, are mutually independent. (6.14)

(ii) Next, consider a sequence of multigraphs
 

Gpnq
‹ “

´

M, ÅEpnq
¯

, n P N
(

with ÅEpnq assigning
X

n
`

I pAij ^ Ajiq´‹
˘\

edges to
each vertex pair i, j. We claim that every spanning tree in a spanning
tree packing of Gpnq

‹ can be associated with one shared bit for M using
public communication of which the former is independent. To see this,
a common vertex i corresponding to edges pi, jq and pi, j1q, j ‰ j1, in
a spanning tree, broadcasts the binary sum of two independent bits –
one each from Kij and Kij1 . This enables i, j, j1 to share one of these
two bits, with the shared bit being independent of the binary sum.
Proceeding in this manner, all the vertices in M – being connected by
the spanning tree – can share one bit that is independent jointly of all
the publicly broadcast binary sums for the tree, whence the claim. This
procedure, applied repeatedly to every edge disjoint spanning tree of
Gpnq

‹ , generates µ
´

Gpnq
‹

¯

shared bits for M.
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Denote by K “ Kpnq
´

Kpnq
ij , 1 § i † j § m

¯

a Kpnq-valued rv cor-

responding to these shared bits, and by F “ F
´

Kpnq
ij , 1 § i † j § m

¯

the F pnq-valued communication comprising the binary sum messages
above. The next result shows that the SK so generated achieves the
SK capacity.

Lemma 6.13. The rv K defined above constitutes an
`

‘n, ”̃n

˘

-SK for
M, where

”̃n “ mpm ´ 1q”n (6.15)

and its rate
1
n

log
ˇ

ˇKpnqˇ
ˇ “ 1

n
µ

´

Gpnq
‹

¯

satisfies

sup
nPN

1
n

µ
´

Gpnq
‹

¯

• sup
nPN

1
n

µ
´

Gpnq
¯

´ mpm ´ 1q‹
2

• min
fi

1
|fi| ´ 1

„

ÿ

1§i†j§m :
pi,jq crosses fi

IpAij ^ Ajiq
⇢

´ mpm ´ 1q‹
2 . (6.16)

Corollary 6.14. The SK capacity of the PIN model is

CS “ sup
nPN

1
n

µpGpnqq

“ min
fi

1
|fi| ´ 1

„

ÿ

1§i†j§m :
pi,jq crosses fi

IpAij ^ Ajiq
⇢

, (6.17)

where the minimum is over all nontrivial partitions fi of M.

Proof. Clearly, K “ Kpnq
´

Kpnq
ij , 1 § i † j § m

¯

is an ‘n-CR for M.
By a classic graph-theoretic result of Nash-Williams and Tutte, given
a multigraph G “ pM, Eq, the maximum number of edge disjoint span-
ning trees that can be packed in G is equal to

µ pGq “ min
fi

[

1
|fi| ´ 1 pnumber of edges of G that cross fiq

_

, (6.18)
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where the minimum is over all nontrivial partitions of M. Thus,

µ
´

Gpnq
‹

¯

“ min
fi

Z

1
|fi| ´ 1

„

ÿ

1§i†j§m :
pi,jq crosses fi

Y

n
´

IpAij ^ Ajiq ´ ‹
¯]

⇢^

• min
fi

Z

1
|fi| ´ 1

„

ÿ

1§i†j§m :
pi,jq crosses fi

nIpAij ^ Ajiq
⇢^

´ pn‹ ` 1qmpm ´ 1q
2 ´ 1.

Note that by (6.18) the first term on the right-side above equals µpGpnqq.
Thus, for n P N

1
n

µ
´

Gpnq
‹

¯

• 1
n

µ
´

Gpnq
¯

´ mpm ´ 1q‹
2 ´ mpm ´ 1q ´ 2

2n

• min
fi

1
|fi| ´ 1

„

ÿ

1§i†j§m :
pi,jq crosses fi

IpAij ^ Ajiq
⇢

´ mpm ´ 1q‹
2 ´ mpm ´ 1q ´ 4

2n
,

which yields (6.16) upon taking the supremum over n P N on both
sides.

It remains to show (6.15). Denote Kp1q “ pKij , 1 § i † j § mq and
Fp1q “ pFij , 1 § i † j § mq in step (i), and let Ku “ Kpnq

u pKp1qq repre-
sent the pairwise SK bits in Kp1q that remain unused after the maximal
spanning tree packing Gpnq

‹ yields K by means of F in step (ii). Let Kpnq
p1q

and Kpnq
u represent the set of values of Kp1q and Ku, respectively. Since

there is a 1´1 mapping between the bits corresponding to the edges in
any spanning tree and the shared bit for M together with the binary
sum messages that enabled such sharing for that tree, a consequent
1 ´ 1 mapping exists between Kp1q and pK, F, Kuq. Furthermore

P
Kpnq

p1q
unif “ P Kpnq

unif ˆ P Fpnq
unif ˆ P Kpnq

u
unif . (6.19)
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Then

‡var
`

K; Fp1q, F
˘ “

›

›

›

PKFp1qF ´ P Kpnq
unif ˆ PFp1qF

›

›

›

§
›

›

›

PKF Fp1q ´ P Kpnq
unif ˆ P Fpnq

unif ˆ PFp1q

›

›

›

`
›

›

›

P Kpnq
unif ˆ PF Fp1q ´ P Kpnq

unif ˆ P Fpnq
unif ˆ PFp1q

›

›

›

“
›

›

›

PKF Fp1q ´ P Kpnq
unif ˆ P Fpnq

unif ˆ PFp1q

›

›

›

`
›

›

›

PF Fp1q ´ P Fpnq
unif ˆ PFp1q

›

›

›

§
›

›

›

›

PKp1qFp1q ´ P
Kpnq

p1q
unif ˆ PFp1q

›

›

›

›

`
›

›

›

›

PKp1qFp1q ´ P
Kpnq

p1q
unif ˆ PFp1q

›

›

›

›

“ 2‡var
`

Kp1q; Fp1q
˘

, (6.20)

where the second inequality above uses Kp1q ” pK, F, Kuq and (6.19).
Also,

‡var
`

Kp1q; Fp1q
˘

“ ‡var ppKij , 1 § i † j § mq; Fij , 1 § i † j § mqq
“

›

›

›

PpKij ,1§i†j§mqpFij ,1§i†j§mq ´ PpKij ,1§i†j§mqPpFij ,1§i†j§mq
›

›

›

“
›

›

›

›

›

π

1§i†j§m

PKijFij ´
π

1§i†j§m

PKij PFij

›

›

›

›

›

§
ÿ

1§i†j§m

›

›PKijF ij ´ PKi´1,j´1F i´1,j´1PKij PFij

›

›

“
ÿ

1§i†j§m

›

›PKijFij ´ PKij PFij

›

›

“
ÿ

1§i†j§m

‡var pKij ; Fijq

§ mpm ´ 1q
2 ”n, (6.21)

where the first inequality above uses Lemma 2.1 and (6.14), and the
last inequality is by (6.13).
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Gathering (6.20) and (6.21),

‡var
`

K; Fp1q, F
˘ § ”̃n “ mpm ´ 1q”n

which is (6.15)
The corollary holds by Lemma 6.11 since ‹ ° 0 was arbitrary.

Remark 6.15. If the joint pmf of PKp1qFp1q equals

PKp1qFp1q “ P
Kpnq

p1q
unif ˆ PFp1q (6.22)

with P
Kpnq

p1q
unif as in (6.19), then (6.20) asserts that the SK generation

scheme above converts perfect pairwise SKs Kp1q “ pKij , 1 § i † j §
mq into a perfect SK K.

6.4 Story of results and open problems

SK generation for the two-terminal source model was introduced by
Maurer in [54] and SK capacity characterized in [54, 1]. The multiter-
minal model with m • 2 terminals described above and the charac-
terization of SK capacity in Theorem 6.2 are from [21]. The “shared
information” form of SK capacity in Corollary 6.3 was derived as an
upper bound for SK capacity in [21] and shown to be tight in [13]. The
common randomness-based approach for analyzing SK rates pursued
here was introduced by Ahlswede and Csiszár in [1, 2]. The specific
connection to the data compression problem of omniscience generation
was identified in [21]; our treatment closely follows [21]. Note that the
omniscience setting is related to a general source network problem with
no helpers considered in [18, 34]. However, since we allow interaction,
the standard converse of [18, 34] does not apply here. Nevertheless, our
achievability scheme entails simple communication and can be seen as a
special case of general achievability in [18, 34]. A two-terminal version
of the omniscience problem was considered first in [26]. A multiter-
minal version in a slightly di�erent setting appeared in [99]. A strong
converse for SK capacity with ” † p1 ´ ?

‘q2 was shown in [80], and
the complete strong converse (for all ‘ ` ” † 1) stated here appeared
in [85, 87]. The PIN model of §6.3.1 was introduced in [103] and its SK
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capacity characterized in this chapter is from [61, 59]. Variants of this
model have been considered in [10, 11, 14].

Extensions and open problems. The multiterminal source model of
this chapter is a reduction of a slightly broader “helper” model in [21]
that entails SK generation by a subset of terminals in A Ñ M “
t1, . . . , mu with the cooperation of the remaining terminals in Ac “
MzA which participate in the public discussion. The setting in §6.1
has A “ M. A further generalization is the “privacy” model in which
the secret CR generated must be concealed simultaneously from an
eavesdropper observing the public communication and from a specified
subset D Ñ Ac of the helper terminals. The maximum rate of such a
secret CR, termed the private key capacity, was characterized in [21] in
terms of fractional partitions. However, even for the helper model with
A Ä M, an analog of the partition-based expression in Corollary 6.3
(which now requires each feasible partition fi “ `

fi1, . . . , fi|fi|
˘

of M to
satisfy fik X A ‰ H, 1 § k § |fi|, 2 § |fi| § |A|) is an upper bound
that is not tight, in general (see [10]). Since the strong converse proof
given in §6.2.3 relies on such a partition-based upper bound, full strong
converses for the helper model with A Ä M and for the privacy model
remain open. Nevertheless, the partial strong converse of [80], which is
valid only for ” † p1 ´ ?

‘q2 with A “ M, extends to the helper model.
A more comprehensive construct has the eavesdropper, in addition

to observing the public discussion, also possessing side information Zn

that has a given joint pmf with Xn
M. Termed the “wiretapper” model,

the maximum rate of a SK for it is called wiretap secret key (WSK)
capacity. A single-letter characterization of WSK capacity, in general,
remains defiant even for the case m “ 2 initiated in [54, 1]. Private key
capacity forms an obvious upper bound that is tight only in special
cases.

Furthermore, upper and lower bounds for WSK capacity that co-
incide with restricted interaction and side information were derived in
[54, 1, 67] and for the multiterminal generalization in [21, 28]. In par-
ticular, an operational characterization of WSK capacity was given in
[28], similar to that in [21], where it was shown to equal HpXMq minus
the minimum communication rate for omniscience at a neutral observer
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with side information Zn.
Another direction involves the cooperative generation of groupwise

SKs for di�erent subsets of terminals in a multiterminal source model,
with an SK for each group being concealed from other groups in addi-
tion to an eavesdropper observing the communication. An associated
SK capacity region of achievable SK rate-tuples remains an open prob-
lem, in general; special cases have been considered in [101, 32].

SK generation for a multiterminal Gaussian source model was con-
sidered in [60] and SK capacity characterized. The strong converse in
[87] extends to this model as well, albeit for communication protocols
taking countably many values. On the other hand, the partial strong
converse of [80] is valid for continuous-valued sources with general
distribution and admitting general measurable interactive protocols.
While the results of [60] hold for the helper model as well, these two
strong converse results do not. Thus, even a partial strong converse
is not available for the multiterminal helper model with continuous-
valued sources and general measurable interactive protocols.

Finally, SK capacity for a two-terminal continuous-valued source
model as well as the second order asymptotic term in SK-length for n
i.i.d. observations, have been derived recently in [38, 39]. Interestingly,
the achievability scheme therein uses interactive communication. In
fact, examples exhibiting the necessity of interaction in such regimes
are available. Complete analogs of these results for the wiretap model
and the multiterminal model with m • 2 terminals remain open.





7
Minimum Communication for Secret Key

Capacity

Considering a two-terminal source model, the minimum rate of interac-
tive communication needed to generate a secret key of maximum rate
is examined, and is shown to be related to a new interactive variant
of Wyner’s common information. Interpreting the latter for a pair of
random variables as the minimum rate of a function of their i.i.d. rep-
etitions that makes them conditionally independent, interactive com-
mon information is defined in §7.1 as its restriction when said function
is a common randomness together with the interactive communica-
tion that generated it. Interactive common information which, unlike
Wyner’s common information, does not have a known single-letter for-
mula, is shown to correspond to common randomness generated when
a secret key of optimal rate is achieved using interactive communica-
tion of minimal rate. The consequent nonsingle-letter characterization
of the desired minimum communication rate, stated in §7.2, is proved
in §7.3. The necessity of interaction in communication for minimality
is illustrated also in §7.2.
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7.1 Communication and common randomness for secret keys

Consider SK agreement in the source model of §6.1 for the special case
of two terminals, i.e., when m “ 2. Terminals 1 and 2 observe, re-
spectively, the rvs Xn

1 and Xn
2 where pXn

1 , Xn
2 q are n i.i.d. repetitions

of pX1, X2q. Consider an r-round interactive communication F as in
Definition 3.1 of §3.1. We restrict ourselves to deterministic communi-
cation, i.e., with the local randomization U1 “ U2 “ H. The rate of
this communication is defined to be the maximum number of bits per
observation transmitted in implementation of the corresponding com-
munication protocol. Formally, denoting by }F} the cardinality of the
range of the rv F, the rate of communication F is given by 1

n log }F}.
We seek to determine the minimum (asymptotic) rate of interactive

communication required for generating an SK of maximum rate. Our
approach entails characterizing the CR (see §3.2) generated when the
terminals agree on such an SK, and relating the rate of communication
to the rate of CR for a maximum rate SK. In particular, the mini-
mum rate of CR generated in maximum rate SK agreement constitutes
a common information (CI) quantity which is related closely to the
Wyner’s CI.

We interpret Wyner’s CI for a pair of rvs pX1, X2q as the minimum
rate of a function of their i.i.d. repetitions pXn

1 , Xn
2 q that renders Xn

1
and Xn

2 conditionally independent.

Definition 7.1. A number R • 0 is an achievable CI rate if for every
0 † ‘ † 1 there exists an n • 1 and a finite-valued rv L “ L pXn

1 , Xn
2 q

of rate p1{nqHpLq § R ` ‘ that satisfies the property
1
n

I pXn
1 ^ Xn

2 | Lq § ‘. (7.1)

Obvious examples of such an rv are L “ pXn
1 , Xn

2 q or Xn
1 or Xn

2 . The
infimum of all achievable CI rates, denoted CIW pX1 ^ X2q, is called
the CI of X1 and X2. The following theorem, stated without proof,
characterizes CIW pX1 ^ X2q.
Theorem 7.2. The CI of rvs X1, X2 is

CIW pX1 ^ X2q “ min
W

IpX1, X2 ^ W q, (7.2)
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where the rv W takes values in a finite set W with |W| § |X1||X2| and
satisfies the Markov condition X1 ´̋́ W ´̋́ X2.

Note that for every W such that X1 ´̋́ W ´̋́ X2, we have

IpX1, X2 ^ W q “ HpX1, X2q ´ HpX1|W q ´ HpX2|W q
• HpX1, X2q ´ HpX1|X2q ´ HpX2|X1q
“ IpX1 ^ X2q,

so that CIW pX1 ^ X2q • IpX1 ^ X2q.
We shall see that the minimum rate of an interactive communication

required to generate a maximum rate SK will be related closely to an
interactive variant of Wyner’s CI, defined next.

Definition 7.3. An achievable r-interactive CI rate is defined in a man-
ner analogous to achievable CI rate, but with the restriction that the
rvs L in (7.1) be ‘-CR, i.e., L “ pJ, Fq, where F is an r-interactive
communication and J is ‘-recoverable from1 F. The infimum of all
achievable r-interactive CI rates, denoted CIr

i pX1; X2q, is called the
r-interactive CI of the rvs X1 and X2. By definition, the nonnegative
sequence tCIr

i pX1; X2qu8
r“1 is nonincreasing in r and is bounded below

by CIW pX1 ^ X2q. Define interactive CI of the rvs X1, X2 as

CIipX1 ^ X2q “ lim
rÑ8 CIr

i pX1; X2q.

Then, CIipX1 ^ X2q • CIW pX1 ^ X2q • 0. Note that CIr
i pX1; X2q

may not be symmetric in X1 and X2 since the communication is initi-
ated at terminal X1. However, since

CIr`1
i pX1; X2q § CIr

i pX2; X1q § CIr´1
i pX1; X2q,

clearly,

CIipX1 ^ X2q “ lim
rÑ8 CIr

i pX1; X2q
“ lim

rÑ8 CIr
i pX2; X1q

“ CIipX2 ^ X1q. (7.3)
1Since the set M “ t1, 2u remains fixed in this chapter, we simply use the phrase

“CR using F” in place of “CR for M using F”; see Definition 3.7.
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Furthermore, for all 0 † ‘ † 1, J “ X1
n is ‘-recoverable from X2

n

and a communication (of a Slepian-Wolf codeword) F “ F pXn
1 q, and

L “ pJ, F q satisfies (7.1). Hence, CIipX1 ^ X2q § HpX1q; similarly,
CIipX1 ^ X2q § HpX2q. To summarize, we have

0 § CIW pX1 ^ X2q § CIipX1 ^ X2q § mintHpX1q, HpX2qu, (7.4)

where the first and the last inequalities can be strict. In §7.2 we show
an instance where the second inequality is strict.

The notion of r-interactive CI plays a pivotal role in maximum rate
SK generation and is related closely to the minimum rate of an r-round
interactive communication needed for generating such an SK. Loosely
speaking, the results of the next section assert the following: A CR
that satisfies (7.1) can be used to generate a maximum rate SK and
conversely, a maximum rate SK yields a CR satisfying (7.1). In fact,
such a CR of rate R can be recovered from an interactive communica-
tion of rate R ´ CS , where CS is the SK capacity for a two-terminal
source model with rvs X1, X2 described in Chapter 6. Therefore, to find
the minimum rate of interactive communication needed to generate a
maximum rate SK, it is su�cient to characterize CIipX1 ^ X2q.

To state these results, we need a formal definition of aforementioned
optimal rates of communication.

Definition 7.4. A rate R1 • 0 is an achievable r-interactive communi-
cation rate for CIr

i if, for all 0 † ‘ † 1, there exists for some n • 1,
an r-round interactive communication F of rate p1{nq log }F} § R1 ` ‘,
and an ‘-CR J using F, with L “ pJ, Fq satisfying (7.1). Let Rr

CI

denote the infimum of all achievable r-interactive communication rates
for CIr

i . Similarly, R2 • 0 is an achievable r-interactive communication
rate for SK capacity if, for all 0 † ‘ † 1, there exists, for some n • 1,
an r-round interactive communication F of rate p1{nq log }F} § R2 ` ‘,
and an2 p‘, ‘q-SK K, recoverable from F, of rate

p1{nqHpKq • IpX1 ^ X2q ´ ‘.

Let Rr
SK denotes the infimum of all achievable r-interactive communi-

cation rates for SK capacity. Note that by their definitions, both Rr
CI

2For convenience, epsilontics in this chapter involve a single vanishing ‘.
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and Rr
SK are nonincreasing with increasing r, and are bounded below

by zero. Define

RCI “ lim
rÑ8 Rr

CI , RSK “ lim
rÑ8 Rr

SK .

Although Rr
CIpX1; X2q and Rr

SKpX1; X2q are not equal to
Rr

CIpX2; X1q and Rr
SKpX2; X1q, respectively, the quantities RCI and

RSK are symmetric in X1 and X2 using an argument similar to that
leading to (7.3).

7.2 Communication rate for secret key capacity

The result below characterizes the minimum rate of interactive com-
munication required for generating a maximum rate SK. Specially, it
provides a structural characterization of Rr

SK and shows that it equals
Rr

CI . Furthermore, it provides a characterization of the latter quantity
in terms of CIr

i pX1, X2q
Theorem 7.5. For every r • 1,

Rr
SK “ Rr

CI “ CIr
i pX1; X1q ´ IpX1 ^ X2q. (7.5)

Corollary 7.6 (Communication requirements for attaining SK capacity).
It holds that

RSK “ RCI “ CIipX1 ^ X2q ´ IpX1 ^ X2q. (7.6)

Remark. The relation (7.6) can be interpreted as follows. Any CR J re-
coverable from interactive communication F, with L “ pJ, Fq satisfying
(7.1), can be decomposed into two mutually independent parts: An SK
K of maximum rate and the interactive communication F. It follows
upon rewriting (7.6) as CIipX1 ^ X2q “ IpX1 ^ X2q ` RCI that the
communication F is (approximately) of rate RCI . Furthermore, RCI is
the same as RSK .

A computable characterization of the operational term CIipX1 ^
X2q is not known. However, the next result, stated without proof, gives
a single-letter characterization of CIr

i pX1; X2q.
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Theorem 7.7. Given rvs X1, X2 and r • 1, we have

CIr
i pX1; X2q “ min

U1,...,Ur

IpX1, X2 ^ U1, ..., Urq, (7.7)

where the minimum is taken over rvs U1, ..., Ur taking values in finite
sets U1, ..., Ur, respectively, that satisfy the following conditions

pP1q U2i`1 ´̋́ X1, U2i ´̋́ X2, 0 § i § tpr ´ 1q{2u,
U2i ´̋́ X2, U2i´1 ´̋́ X1, 1 § i § tr{2u,

pP2q X1 ´̋́ U r ´̋́ X2,

pP3q |U2i`1| § |X1|
2i
π

j“1
|Uj | ` 1, 0 § i § tpr ´ 1q{2u,

|U2i| § |X2|
2i´1
π

j“1
|Uj | ` 1, 1 § i § tr{2u,

with U0 “ H and U0 “ constant.

Remark 7.8. Note that (7.7) has the same form as the expression for
CIW pX1 ^ X2q in (7.2) with W replaced by pU1, ..., Urq satisfying the
conditions above.

Remark 7.9. Theorem 7.5 complies with a central tenet of this mono-
graph: SK generation is linked intrinsically to the e�cient generation
of CR. It illustrates this connection formally for the extreme case of a
maximum rate SK. In general, it is of interest to study the connection
between SK agreement and CR generation using an interactive com-
munication of rate R. For fl • 0, a rate R • 0 is an achievable CR rate
for fl if for every 0 † ‘ † 1 there exists for some n • 1 an ‘-CR L using
an r-round interactive communication F, with

1
n

HpLq • R ´ ‘,

of rate 1
n

HpFq § fl ` ‘.

Denote by CRpflq the maximum achievable CR rate for fl. Similarly,
denote by Cpflq the maximum rate of an SK that can be generated
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using a communication as above. It can be shown in a straightforward
manner that

Cpflq “ CRpflq ´ fl. (7.8)

The graph of CR as a function of fl is plotted in Fig. 7.1. We note that

I(X ^ Y )

I(X ^ Y )

RSK H(X|Y ) +H(Y |X)

H(X, Y )

CR(⇢)

⇢min{H(X|Y ), H(Y |X)}

min{H(X), H(Y )}

CIi(X ^ Y )

Figure 7.1: Minimum rate of communication RSK for maximum rate SK generation

CRpflq is an increasing and a concave function of fl, as can be seen from
a simple time-sharing argument. Since RSK is the minimum rate of
communication required to generate a maximum rate SK, CRpflq´fl “
IpX ^ Y q for fl • RSK . Thus, our results characterize the graph of
CRpflq for all fl • RSK . The quantity RSK is the minimum value of fl
for which the slope of CRpflq is 1; CR pRSKq is equal to the interactive
common information CIipX ^ Y q.
Remark 7.10 (Can interaction reduce the communication rate?). In The-
orem 6.2, we saw that it su�ces to use simple communication to achieve
SK capacity, i.e., interaction is not helpful in improving the (asymp-
totic) maximum rate of SK generation. But can it help in reducing
the rate of communication required for achieving SK capacity? Theo-
rem 7.7 provides a tool for answering this question. By Theorem 7.5,
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interaction will help in reducing the rate of communication required
for attaining SK capacity i� mintCIr

i pX1; X2q, CIr
i pX2; X1qu strictly

decreases for some r • 1. Theorem 7.7 provides an expression for
mintCIr

i pX1; X2q, CIr
i pX2; X1qu which can analyzed for specific exam-

ples. In fact, a manipulation of this expression can be used to show
that RSK can be attained using simple communication for the case of
binary symmetric rvs X1, X2 with

PX1 p1q “ 0.5 and PX2|X1 p1|1q “ PX2|X1 p0|0q .

On the other hand, it can be shown that

mintCI1
i pX1; X2q, CI1

i pX2; X1qu ° CIipX1 ^ X2q
for ternary X1, X2 with joint pmf given by

»

–

a a a
b a a
a c a

fi

fl ,

where a, b, c are nonnegative and satisfy

7a ` b ` c “ 1, c ‰ a, and 2a ° b ° a.

Thus, remarkably, interaction does help in reducing the rate of com-
munication needed for generating a maximum rate SK. In fact, as will
be clear from the proof of Theorem 7.5, the example above illustrates
that it is not always optimal (from a viewpoint of communication rate)
to extract a maximum rate SK from a CR L “ X1 or L “ X2.

7.3 Proof by randomness decomposition

We turn to the proof of Theorem 7.5. The main idea behind the proof
is characterizing the CR generated when the terminals agree on a max-
imum rate SK. Heuristically, we show that the CR generated yields a
maximum rate SK i� the observations of the two terminals are condi-
tionally independent given the CR. Thus, the overall randomness in the
system decomposes into two independent parts: first, the CR generated
by the terminals, and second, residual independent local randomness
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available at the terminals. This approach of decomposing the overall
randomness into various independent parts, with operational signifi-
cance, was used in our derivation of SK capacity in Chapter 6 as well,
and is a common theme underlying many proofs in this monograph.

To prove Theorem 7.5, we begin by making a few simple observa-
tions. The first is a basic property of interactive communication for two
terminals seen already in (3.2).

Lemma 7.11. Let m “ 2. For an interactive communication F, we have

HpFq • H pF|Xn
1 q ` H pF|Xn

2 q .

In fact, an interactive communication can be compressed to a rate
approximately equal to the right-side above.

Lemma 7.12. For an r-interactive communication F, define

Fi “ F
´

Xni
1pnpi´1q`1q, Xni

p2npi´1q`1q
¯

, 1 § i § k.

Then, for all k • k0pn, ‘, |X1|, |X2|q there exists an r-interactive com-
munication F1 “ F1 `

Xnk
1 , Xnk

2
˘

of rate
1

nk
log }F1} § 1

n
rH pF|Xn

1 q ` H pF|Xn
2 qs ` ‘, (7.9)

such that Fk “ pF1, ..., Fkq is an ‘-CR using F1.

Proof. Using a special case of Proposition 6.7 applied to the case of two
terminals, there exist mappings f1, ..., fr of F k

1 , ..., F k
r , respectively, of

rates3

1
k

log }f2i`1} § HpF2i`1 | Xn
2 , F1, ..., F2iq ` n‘

2r
, 0 § i § tpr ´ 1q{2u,

1
k

log }f2i} § HpF2i | Xn
1 , F1, ..., F2i´1q ` n‘

2r
, 1 § i § tr{2u,

such that

F k
2i`1 is ‘

2r
-recoverable from

´

f2i`1pF k
2i`1q, XN

2 , F k
1 , ..., F k

2i

¯

, 0 § i § tpr ´ 1q{2u,

F k
2i is ‘

2r
-recoverable from

´

f2ipF k
2iq, XN

1 , F k
1 , ..., F k

2i´1

¯

, 1 § i § tr{2u,

3Such optimal rate codes obtained by the random binning argument in the proof
of Proposition 6.7 will be referred to as “Slepian-Wolf” codes.
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for all k su�ciently large. Thus, the communication F1 given by F 1
i “

fi

`

F k
i

˘

, 1 § i § r, constitutes the required communication of rate

1
nk

log }F1} § 1
n

rH pF|Xn
1 q ` H pF|Xn

2 qs ` ‘.

The following simple observation lies at the heart of the proof of
Theorem 7.5 and leads to the aforementioned randomness decomposi-
tion.

Lemma 7.13. (A General Decomposition) For a CR J using an inter-
active communication F, we have

nIpX1 ^ X2q “ I pXn
1 ^ Xn

2 | J, Fq ` HpJ, Fq ´ H pF | Xn
1 q

´ H pF | Xn
2 q ´ H pJ | Xn

1 , Fq ´ H pJ | Xn
2 , Fq .

(7.10)

Proof. For T “ T pXn
1 , Xn

2 q, we have

nIpX1 ^ X2q
“ H pXn

1 , Xn
2 q ´ H pXn

1 | Xn
2 q ´ H pXn

2 | Xn
1 q

“ H pXn
1 , Xn

2 | T q ´ H pXn
1 | Xn

2 , T q ´ H pXn
2 | Xn

1 , T q
` HpT q ´ H pT | Xn

1 q ´ H pT | Xn
2 q

“ I pXn
1 ^ Xn

2 | T q ` HpT q ´ H pT | Xn
1 q ´ H pT | Xn

2 q .

Lemma 7.13 follows upon choosing T “ pJ, Fq.
Note that a simplification of (7.10) gives

IpX1 ^ X2q § 1
n

„

I pXn
1 ^ Xn

2 | J, Fq ` HpJ, Fq

´ H pF | Xn
1 q ´ H pF | Xn

2 q
⇢

. (7.11)

If J is an ‘-CR using F, Fano’s inequality implies

1
n

“

HpJ | Xn
1 , Fq ` HpJ | Xn

2 , Fq‰ § 2‘ log |X1||X2| ` 2hp‘q, (7.12)
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where ”p‘q fi 2‘ log |X1||X2| ` 2hp‘q Ñ 0 as ‘ Ñ 0. Combining (7.10),
(7.12) we get

IpX1 ^ X2q • 1
n

„

I pXn
1 ^ Xn

2 | J, Fq ` HpJ, Fq

´ H pF | Xn
1 q ´ H pF | Xn

2 q
⇢

´ ”p‘q, (7.13)

and further, by Lemma 7.11,

IpX1 ^ X2q • 1
n

rI pXn
1 ^ Xn

2 | J, Fq ` HpJ, Fq ´ HpFqs ´ ”p‘q.
(7.14)

Proof of Theorem 7.5.
We now prove (7.5). The proof of (7.6) then follows upon taking

the limit r Ñ 8 on both sides of (7.5). The proof of (7.5) follows from
claims 1–3 below. In particular, the proofs of these claims establish a
structural equivalence between a maximum rate SK and an SK of rate
« 1

nHpJ | Fq extracted from a CR J using F such that L “ pJ, Fq
satisfies (7.1).
Claim 1: Rr

CI • CIr
i pX1; X2q ´ IpX1 ^ X2q.

Proof. By the definition of Rr
CI , for every 0 † ‘ † 1 there exists, for

some n • 1, an r-interactive communication F of rate
1
n

log }F} § Rr
CI ` ‘, (7.15)

and J , an ‘-CR J using F, such that L “ pJ, Fq satisfies (7.1). It follows
from (7.14) that

1
n

HpJ, Fq § IpX1 ^ X2q ` 1
n

HpFq ` ”p‘q,

which with (7.15) gives

1
n

HpJ, Fq § IpX1 ^ X2q ` Rr
CI ` ‘ ` ”p‘q. (7.16)

Since pJ, Fq satisfies

1
n

I pXn
1 ^ Xn

2 | J, Fq § ‘ § ‘ ` ”p‘q,
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the inequality (7.16), along with the fact that ‘ ` ”p‘q Ñ 0 as ‘ Ñ 0,
implies that IpX1 ^ X2q ` Rr

CI is an achievable r-interactive CI rate;
hence, CIr

i pX1; X2q § IpX1 ^ X2q ` Rr
CI .

Claim 2: Rr
SK • Rr

CI .
Proof. Using the definition of Rr

SK , for 0 † ‘ † 1 there exists, for some
n • 1, an r-interactive communication F of rate 1

n log }F} § Rr
SK ` ‘

and an ‘-SK K recoverable from F of rate
1
n

HpKq • IpX1 ^ X2q ´ ‘. (7.17)

By choosing J “ K in (7.14) and rearranging the terms we get,
1
n

I pXn
1 ^ Xn

2 | K, Fq § IpX1 ^ X2q ´ 1
n

HpK | Fq ` ”p‘q.
Next, from p1{nqIpK ^ Fq † ‘, we have

1
n

I pXn
1 ^ Xn

2 | K, Fq § IpX1 ^ X2q ´ 1
n

HpKq ` ‘ ` ”p‘q
§ 2‘ ` ”p‘q,

where the last inequality follows from (7.17). Since 2‘ ` ”p‘q Ñ 0 as
‘ Ñ 0, Rr

SK is an achievable r-interactive communication rate for CIr
i ,

and thus, Rr
SK • Rr

CI .

Claim 3: Rr
SK § CIr

i pX1; X2q ´ IpX1 ^ X2q.
Proof. For 0 † ‘ † 1, let J be an ‘-CR recoverable from an r-

interactive communication F, with
1
n

HpJ, Fq § CIr
i pX1; X2q ` ‘, (7.18)

such that L “ pJ, Fq satisfies (7.1). So by (7.11),
1
n

rHpF | Xn
1 q ` HpF | Xn

2 qs § 1
n

HpJ, Fq ´ IpX1 ^ X2q ` ‘

§ CIr
i pX1; X2q ´ IpX1 ^ X2q ` 2‘.

(7.19)
To prove the assertion in claim 3, we show that for some N • 1 there
exists a �p‘q-SK K “ KpXN

1 , XN
2 q of rate

1
n

log }K} • IpX1 ^ X2q ´ �p‘q



7.3. Proof by randomness decomposition 105

recoverable from an r-interactive communication F2 “ F2pXN
1 , XN

2 q of
rate

1
N

log }F2} § 1
n

rHpF | Xn
1 q ` HpF | Xn

2 qs ` �p‘q ´ 2‘, (7.20)

where �p‘q Ñ 0 as ‘ Ñ 0. Then (7.20), along with (7.19), would yield
1
N

log }F2} § CIr
i pX1; X2q ´ IpX1 ^ X2q ` �p‘q, (7.21)

so that CIr
i pX1; X2q ´ IpX1 ^ X2q is an achievable r-interactive com-

munication rate for SK capacity, thereby establishing the claim.
It remains to find K and F2 as above. To that end, let J be re-

covered as J1 “ J1pXn
1 , Fq and J2 “ J2pXn

2 , Fq by terminals 1 and 2,
respectively, i.e.,

P pJ “ J1 “ J2q • 1 ´ ‘.

Further, for k • 1, let

J1i “ J1
´

Xni
1pnpi´1q`1q, Fi

¯

, J2i “ J2
´

Xni
p2npi´1q`1q, Fi

¯

, 1 § i § k,

where Fi “ F
´

Xni
1pnpi´1q`1q, Xni

p2npi´1q`1q
¯

. For odd r, we find an r-
interactive communication F2 such that

`

Jk
1 , Fk

˘

is an ‘-CR recoverable
from F2, for all k su�ciently large; then the SK K will be chosen to
be a function of

`

Jk
1 , Fk

˘

of appropriate rate. The proof for even r
is similar and is obtained by interchanging the roles of J1 and J2. In
particular, by Lemma 7.12, for all k su�ciently large there exists an
r-interactive communication F1 such that Fk is ‘-CR recoverable from
F1 of rate given by (7.9). Next, from Fano’s inequality,

1
n

maxtHpJ | J1q; HpJ1 | J2qu § ‘ log |X1||X2| ` hp‘q. (7.22)

By Proposition 6.7, there exists a mapping f of Jk
1 of rate

1
k

log }f} § HpJ1 | J2q ` n‘ (7.23)

such that

Jk
1 is ‘-recoverable from

´

f
´

Jk
1

¯

, Jk
2

¯

, (7.24)
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for all k su�ciently large. It follows from (7.22), (7.23) that

1
nk

log }f} § ‘ ` ‘ log |X1||X2| ` hp‘q. (7.25)

For N “ nk, we define the r-interactive communication F2 “
F2 `

XN
1 , XN

2
˘

as

F 2
i “ F 1

i , 1 § i § r ´ 1,

F 2
k “ F 1

r, fpJk
1 q, i “ r,

Thus,
`

Jk
1 , Fk

˘

is 2‘-CR recoverable from F2, where by (7.9) and (7.25)
the rate of communication F2 is bounded as

1
nk

log }F2}

§ 1
n

rH pF|Xn
1 q ` H pF|Xn

2 qs ` 2‘ ` ‘ log |X1||X2| ` hp‘q. (7.26)

Finally, to construct the SK K “ K
`

Jk
1 , Fk

˘

, using Lemma 5.18
with

U “ pJ1, Fq, V1 “ „, n “ k, V2 “ F1,

we get from (7.26) that there exists a function K of Jk
1 , Fk such that

1
k

log }K} • HpUq ´ 1
k

log }F2}
• HpJ1, Fq ´ HpF | Xn

1 q ´ HpF | Xn
2 q

´ np2‘ ` ‘ log |X1||X2| ` hp‘qq, (7.27)

and

IpK ^ F1q § expp´ckq
where c ° 0, for all su�ciently large k. We get from (7.27) and (7.11)
that the rate of K is bounded below as follows:

1
nk

log }K} • IpX1 ^ X2q ´ 1
n

I pXn
1 ^ Xn

2 | J1, Fq
´ 2‘ ´ ‘ log |X1||X2| ´ hp‘q. (7.28)
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Observe that

IpXn
1 ^ Xn

2 | J, Fq “ IpJ1, Xn
1 ^ Xn

2 | J, Fq
• IpXn

1 ^ Xn
2 | J, J1, Fq

• IpXn
1 ^ Xn

2 | J1, Fq ´ HpJ | J1q,
which, along with (7.22) and the fact that L “ pJ, Fq satisfies (7.1),
yields

1
n

IpXn
1 ^ Xn

2 | J1, Fq § ‘ ` ‘ log |X1||X2| ` hp‘q. (7.29)

Upon combining (7.28) and (7.29) we get,

1
nk

log }K} • IpX1 ^ X2q ´ 3‘ ´ 2‘ log |X1||X2| ´ 2hp‘q.
Thus, for �p‘q “ 4‘ ` 2‘ log |X1||X2| ` 2hp‘q, K is a �p‘q-SK of rate
p1{nkq log }K} • IpX1 ^ X2q ´ �p‘q, recoverable from r-interactive
communication F2 which, with (7.26), completes the proof.

7.4 Story of results and open problems

SK generation with rate-limited communication was considered first in
[20], preceded by a related study in [2] of CR generation by two ter-
minals under similar restrictions. The problem is especially interesting
for the two-terminal Gaussian source model where the quantization-
based scheme used in [60] requires communication of unbounded rate.
For this model, SK capacity using rate-limited one-way communication
was characterized in [92]. This chapter closely follows [75] where the
minimum rate of interactive communication for attaining SK capacity
for two terminals was characterized. Lemma 7.12 is an instance of com-
pression of interactive protocols using communication of rate equal to
“intrinsic information,” a topic of considerable current interest.

Extensions and open problems. Extensions of the results of this
chapter to m • 2 terminals constitute an interesting open direction;
partial results were reported in [56, 57]. In particular, a su�cient con-
dition is provided in [57] for equality between RSK and RCI to hold in
the PIN model and examples are given that satisfy this condition. In
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another direction, the minimum communication rate is characterized in
[14] for attaining SK capacity in a hypergraph PIN model using linear
communication schemes which, by example, is shown to exceed the rate
required by general schemes. In a similar vein, but without any restric-
tion on communication protocols, recent work in [55] provides an upper
bound for RSK for a hypergraph PIN model; the bound, however, is
shown to be not tight in general.

Remark 7.10 provides an instance where interaction helps reduce
the communication rate for achieving SK capacity. The interesting
question of characterizing conditions under which interaction is indeed
helpful in achieving SK capacity remains unresolved even for two ter-
minals. A related question concerning conditions which necessitate all
the terminals to communicate in a multiterminal setting was addressed
in [57].

It is also of interest to examine if the standard SK generation
method (in the computer science literature) of recovering the obser-
vations of at least one of the terminals is suboptimal with regard to
communication rate. In [75], it is shown that for two terminals observ-
ing the components of a binary symmetric source, i.e., X1 and X2 such
that PX1 p1q “ 0.5 and

PX2|X1 p1|0q “ PX2|X1 p0|1q “ ”, (7.30)

recovering the observations of one of the terminals is unavoidable in
achieving SK capacity. It was conjectured that same must be true for all
two-terminal models with binary sources. Interestingly, a recent work
[50] claims to have resolved this conjecture in the negative, showing
that it is only true when (7.30) holds.

Lastly, referring to §7.2, a characterization of CRpflq for fl † RSK

is central to the characterization of Cpflq, and this, along with a single-
letter characterization of RSK , remain open.



8
Secure Function Computation with Trusted

Parties

Our formulation of secure function computation for the multiterminal
source model of Chapter 6 requires the terminals to compute a given
function of their collective DMMS observations using interactive com-
munication that does not give away the function value. This setting
di�ers materially from the celebrated classical problem in which each
terminal, using its local data together with the computed function of
the collective data, can glean no additional information regarding the
data observed by other terminals. The question of finding a necessary
and su�cient condition for a function to be computed securely by mul-
tiple terminals is posed formally in §8.1. It follows readily that the
entropy of the function must not exceed the SK capacity of the multi-
terminal model. That this condition is also su�cient is shown in §8.2
by an achievability proof that relies on the techniques of Chapter 5.
A single-shot general necessary condition for secure computability is
derived in §8.3 and illustrated by examples.

109
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8.1 Secure function computation

We consider secure function computation with trusted parties for
the multiterminal source model of §6.1. A set of terminals M “
t1, . . . , mu, m • 2, observe the respective components of a DMMS
Xn

M “ pXn
1 , . . . , Xn

mq consisting of n i.i.d. repetitions of the rv XM,
with Terminal i observing the component Xn

i . Let g : XM Ñ Y be a
given mapping, where Y is a finite alphabet. For n • 1, the mapping
gn : X n

M Ñ Yn is defined by

gnpxn
Mq “ pgpx11, . . . , xm1q, . . . , gpx1n, . . . , xmnqq,

xn
M “ pxn

1 , ..., xn
mq P X n

M.

For convenience, we shall denote the rv gn pXn
Mq by Gn, n • 1, and,

in particular, G1 “ g pXMq simply by G. The terminals in M wish
to “compute securely” the function gnpxn

Mq for xn
M in X n

M. To this
end, they engage in interactive communication F as in Definition 3.1.
Randomization is allowed at the terminals, with the finite-valued rv
Ui denoting the local randomness1 at Terminal i P M. Specifically,
the interactive communication F consists of fji which is allowed to
yield any function of pUi, Xn

i q and of the previous communication
„ji, 1 § j § r, 1 § i § m. Note that F “ Fpnq pUM, Xn

Mq. Re-
call that a communication F constitutes a simple communication if
the message of Terminal i depends only on its local observations, i.e.,
Fi “ fi

pnq pUi, Xn
i q , i P M.

Definition 8.1. For ‘n, ”n ° 0, n • 1, we say that g is p‘n, ”nq-securely
computable (p‘n, ”nq- SC) from observations of length n, randomization
UM and public communication F “ Fpnq, if
(i) gn is ‘n- recoverable from F, i.e., there exists pgpnq

i satisfying

P
´

pgpnq
i pUi, Xn

i , Fq “ Gn, i P M
¯

• 1 ´ ‘n, (8.1)

and
1As before, we assume that the rvs U1, . . . , Um are mutually independent and

that UM “ pU1, . . . , Umq is independent of Xn
M. All the terminals know PUMXn

M
“

PU1 ˆ ¨ ¨ ¨ ˆ PUm PXn
M

, n • 1.
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(ii) gn satisfies the secrecy condition

}PGnF ´ PGn ˆ PF} § ”n. (8.2)

By definition, an p‘n, ”nq-SC function g is recoverable (as gn) at the
terminals in M and is e�ectively concealed from an eavesdropper with
access to the public communication F.

Definition 8.2. We say that g is securely computable if g is p‘n, ”nq- SC
from observations of length n, suitable randomization UM and public
communication F, such that lim

nÑ8 ‘n ` ”n “ 0.

Remark 8.3. Note that if secrecy in (8.2) is defined instead using
Kullback-Leibler divergence, in view of Pinsker’s inequality the class
of securely computable functions can only decrease. In fact, we shall
see that if a function satisfies our su�ciency condition for secure com-
putability, it can be computed securely even under a divergence secrecy
criterion; see Remark 8.7 below.

We seek to answer the following elemental question: When is a
given g securely computable by the terminals in M? A simple neces-
sary condition for a function g to be securely computable follows upon
comparing Definition 8.2 and Definition 6.1 of an achievable SK rate.
Specifically, if g is an p‘n, ”nq-securely computable, then there exists
a communication F such that Gn is ‘n-recoverable from F and (8.2)
holds. Furthermore, applying Lemma 5.18 with Gi in the role of Ui,
1 § i § n, and V1 “ V2 “ H, we get that for every ÷ ° 0 and a
su�ciently large n, there exists a K-valued rv K “ KpGnq and c ° 0
such that 1

n
log |K| • HpGq ´ ÷,

and
›

›PK ´ P K
unif

›

› § 2´n mintc,”u`log 3. (8.3)

On combining (8.2) and (8.3), we obtain by the triangle inequality that

‡varpK; Fq § }PKF ´ PK ˆ PF} ` }PK ´ Punif}
§ }PGnF ´ PGn ˆ PF} ` }PK ´ Punif}
§ ”n ` 2´n mintc,”u`log 3.
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Thus, since K is a function of Gn and Gn is ‘n-recoverable from F, the
rv K constitutes an p‘n, ”1

nq-SK, with ”1
n “ ”n `2´n mintc,”u`log 3, of rate

larger than HpGq ´ ÷. It follows by Theorem 6.2 that

HpGq ´ ÷ § CS ,

where CS is the SK capacity of the multiterminal source model with
rv XM. Therefore, since ÷ ° 0 was arbitrary, if a function g is securely
computable, then it is necessary that

HpGq § CS . (8.4)

Remarkably, it transpires that HpGq † CS is a su�cient condition for
g to be securely computable. Before showing this general result, we
illustrate it in a specific example with a scheme for securely computing
a particular function g under the assumption HpGq † CS .

Example 8.4. Let m “ 2, and let X1, X2 be t0, 1u-valued rvs with

PX1p1q “ p “ 1 ´ PX1p0q, 0 † p † 1,

PX2|X1p1 | 0q “ PX2|X1p0 | 1q “ ”, 0 † ” † 1
2 .

Let gpx1, x2q “ x1 ` x2 mod 2.
By Theorem 6.2, the SK capacity for this source model is

CS “ IpX1 ^ X2q “ hpp ˚ ”q ´ hp”q,
where p ˚ ” “ p1 ´ pq” ` pp1 ´ ”q and hp¨q is binary entropy.

Since HpGq “ hp”q, the condition HpGq † CS is the same as

2hp”q † hpp ˚ ”q. (8.5)

Under this condition, we give a simple scheme for the secure compu-
tation of g when p “ 1{2. This scheme, in turn, builds upon on an
SK agreement scheme for this example, which we address first. When
p “ 1{2, we can write

Xn
1 “ Xn

2 ` Gn mod 2 (8.6)

with Gn being independent separately of Xn
2 and Xn

1 . While Lemma 6.7
shows that Xn

1 can be recovered from Xn
2 and a randomly chosen func-

tion f of Xn
1 of rate HpX1|X2q “ HpGq “ hp”q, for this specific example
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it is seen that the role of f can be played by a linear function of Xn
1 .

Specifically, there exists a binary linear code, of rate – 1 ´ hp”q, with
parity check matrix P such that Xn

1 is ‘n-recoverable from pF1, Xn
2 q at

Terminal 2, where the Slepian-Wolf codeword F1 “ PXn
1 constitutes

public communication from Terminal 1, and where ‘n decays to 0 expo-
nentially rapidly in n. Further, let K “ KpXn

1 q be the location of Xn
1

in the coset of the standard array corresponding to P. By the previous
observation, K too is ‘n-recoverable from pF1, Xn

2 q at Terminal 2. It is
easy to see that K constitutes a “perfect” SK for Terminals 1 and 2
from F1, of rate – IpX1 ^ X2q “ 1 ´ hp”q, and satisfies

IpK ^ F1q “ 0. (8.7)

The SK agreement scheme above can be extended to deliver a scheme
for securely computing g. In a first round of communication, the termi-
nals execute the SK agreement scheme using F1 above, thereby recov-
ering K at both terminals. Furthermore, Terminal 2 recovers Xn

1 and
thereby forms an estimate xGn of Gn; we assume without loss of gener-
ality that xGn has been compressed losslessly with a small probability
of error using a block code of rate HpGq.

Observe from (8.6) that K “ KpXn
1 q “ KpXn

2 ` Gnq and F1 “
F1pXn

1 q “ F1pXn
2 ` Gnq. Since Gn is independent of Xn

2 , it follows that
conditioned on each fixed value Gn “ g, the (common) argument of K
and F1, namely Xn

2 ` Gn, has a conditional pmf that equals the pmf
of Xn

2 ` g which, in turn, coincides with the pmf of Xn
1 ` g, i.e., a

permutation of the pmf of Xn
1 . Hence by (8.7),

IpK ^ F1, Gnq “ IpK ^ F1 | Gnq “ 0, (8.8)

since IpK ^ Gnq § IpXn
1 ^ Gnq “ 0. This independence of K and

pF1, Gnq enables the secure communication of the estimate xGn of Gn

by Terminal 2 to Terminal 1. Specifically, Terminal 2 sends xGn in en-
crypted form as

F2 “ xGn ` K mod 2
(all represented in bits), with encryption feasible since

HpGq “ hp”q † 1 ´ hp”q – 1
n

HpKq,
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by the su�cient condition (8.5). Terminal 1 then decrypts F2 using K
to recover xGn, completing the computation of gn at both the terminals.

The computation of gn is secure since

IpGn ^ F1, F2q “ IpGn ^ F1q ` IpGn ^ F2 | F1q
is small; specifically, the first term equals 0 since

IpGn ^ F1q § IpGn ^ Xn
1 q “ 0,

while the second term is bounded according to

IpGn ^ F2 | F1q “ Hp xGn ` K | F1q ´ Hp xGn ` K | F1, Gnq
§ HpKq ´ HpGn ` K | F1, Gnq ` ”n,

with ”np‘nq Ñ 0
“ IpK ^ F1, Gnq ` ”n “ ”n,

where the intermediate step uses Fano’s inequality and the exponential
decay of ‘n to 0, and the last equality is by (8.8). This establishes
secrecy under Kullback-Leibler divergence; secrecy under variational
distance follows by the Pinsker’s inequality.

8.2 Characterization of secure computability

While the example above shows the su�ciency of the necessary condi-
tion (8.4) for secure computability, the scheme used is asymmetric with
respect to the terminals whose extension to m ° 2 terminals is not
clear. Nevertheless, the main result of this section given below shows
that the necessary condition (8.4) satisfied by a securely computable g
is (almost) su�cient as well.

Theorem 8.5. A function g is securely computable by M if

HpGq † CS . (8.9)

Furthermore, under this condition the function g is securely computable
using a simple communication F.

Conversely, if g is securely computable by M, then HpGq § CS .
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8.2.1 Proof of Theorem 8.5

The proof of the necessary part has been seen already in §8.1. Now, we
show that a function g is securely computable for M using a simple
communication F if

HpGq † CS ,

which, by Theorem 6.2 and Theorem 6.6, is the same as

RCO † HpXM|Gq.

For 0 † “ † HpXM|Gq ´ RCO, let the rvs �i, i P M, be distributed
uniformly on the family of all mappings t„ : X n Ñ t1, ..., r2nRisuu, re-
spectively, whose rates Ri are chosen to satisfy (6.8) and

ÿ

iPM
Ri † RCO ` “

2 . (8.10)

Denote � “ p�1, ..., �mq, �i “ p�1, ..., �iq, and �´i “ �Mztiu. By
Remark 6.8, there exist decoders Âi, i P M, and c ° 0 such that

P
`

Âi

`

Xn
i , �´ipXn

´iq
˘ ‰ Xn

M
˘ § ‘n, i P M, (8.11)

thereby guaranteeing ‘n-recovery of Xn
M, and consequently also of the

function g with ‘n “ 2´nc, at all the terminals in M. Note that these
probabilities are computed with respect to the pmf of pXn

M, �q.
It remains to establish secrecy of the computation of g. To this end,

we shall show that there exists c1 ° 0 such that

E�
”

›

›

›

PGn�pXn
Mq ´ PGn ˆ P�pXn

Mq
›

›

›

ı

§ 2´nc1
, (8.12)

This is done in three steps.
Step 1. Noting that for rvs U, V with joint pmf PUV and any pmf

QV of V ,

}PUV ´ PU ˆ PV } § }PUV ´ PU ˆ QV } ` }PV ´ QV }
§ 2 }PUV ´ PU ˆ QV } ,



116 Secure Function Computation with Trusted Parties

we have

E�
”

›

›

›

PGn�pXn
Mq ´ PGn ˆ P�pXn

Mq
›

›

›

ı

§ 2E�
”

›

›

›

PGn�pXn
Mq ´ PGn ˆ P m

unif

›

›

›

ı

§ 2E�

«

ÿ

g
PGn pgq

›

›

›

P�pXn
Mq|Gn“g ´ P m

unif

›

›

›

�

,

where P m
unif “ Punif,1 ˆ ... ˆ Punif,m and Punif,i denotes the uniform

pmf on t1, ..., r2nRisu. Denoting Fi “ �ipXn
i q and F “ pF1, ..., Fmq for

brevity, it follows upon applying Lemma 2.1 to the summands in the
right-side above with PUm “ PF1...Fm|Gn“g and QUm “ P m

unif that

E�
”

›

›

›

PGn�pXn
Mq ´ PGn ˆ P�pXn

Mq
›

›

›

ı

§ 2E�

«

ÿ

g
PGn pgq

m
ÿ

i“1

›

›PF i|Gn“g ´ PF i´1|Gn“g ˆ Punif,i

›

›

�

§ 2
m
ÿ

i“1
E�

“

›

›PGnF ´ PGnF´i ˆ Punif,i

›

›

‰

(8.13)

where the previous right-side is by the triangle inequality. Therefore,
in order to establish that the secrecy requirement is met, it su�ces to
show that

`

Gn, �´ipXn
´iq

˘

is secure from �ipXn
i q for every i P M.

Step 2. Next, we focus on the summand on the right-side of (8.13).
Denote by F´i the set of all mappings „´i such that for ‘n as in (8.11)

P
`

ÂipXn
i , „´ipXn

´iqq ‰ Xn
M

˘ § ?
‘n. (8.14)

Therefore, by (8.11),

P�´i

`

Fc
´i

˘ § ?
‘n “ 2´nc{2,
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which further yields, using the independence of �1, ..., �m, that

E�
“

›

›PGnF ´ PGnF´i ˆ Punif,i

›

›

‰

“E�
”

›

›

›

PGn�pXn
Mq ´ GnP�´ipXn

´iq ˆ Punif,i

›

›

›

ı

§ 2´nc{2 `
ÿ

„´iPF´i

P�´i p„´iq ˆ

E�i

”

›

›

›

P�ipXn
i q„´ipXn

´iqGn ´ Punif,i ˆ P„´ipXn
´iqGn

›

›

›

ı

“ 2´nc{2 `
ÿ

„´iPF´i

P�´i p„´iq ‡var
`

�ipXn
i q; Gn, „´ipXn

´iq, �i

˘

.

(8.15)

Therefore, the overall secrecy proof will be complete upon showing that
for every „´i P F´i, the rv �ipXn

i q remains secure from pGn, „´ipXn
´iqq,

which is done next.
Step 3. To bound ‡var

`

�ipXn
i q; Gn, „´ipXn

´iq, �i

˘

, we shall take
recourse to the form of leftover hash given in Lemma 5.17 with U “
Xn

i , V1 “ Gn, and V2 “ „´ipXn
´iq. Our proof relies on the following

key observation: Since the mappings „´i P F´i facilitate the recovery
of Xn

M by Xn
i , we can use PXn

M|Gn in place of PXn
i |Gn in estimating

minentropy.
To formalize this heuristic observation, we rely on smoothing using

a subdistribution as described in Remark 5.19. Specifically, we use the
following extension of Lemma 5.17.

Lemma 8.6. Consider rvs U 1, U and V with joint pmf PU 1UV such that
U 1 is ÷-recoverable from pU, V q, i.e., there exists a mapping Â satisfying

P
`

ÂpU, V q “ U 1˘ • 1 ´ ÷. (8.16)

Let � be chosen uniformly over a UHF of length k. Then,

‡varp�pUq; V, �q § 2÷ ` 1
2

b

2log k´H÷{2
minpPU 1V |V q,

where the smoothing of Hmin is over all subdistributions within varia-
tional distance ÷{2 of PU 1V . In particular, for V “ pV1, V2q,

‡varp�pUq; V1, V2, �q § 2÷ ` 1
2

b

2log k`log |V2|´H÷{2
min

´

PU 1V1 |V1
¯

.



118 Secure Function Computation with Trusted Parties

Proof. Using a smoothing argument with (5.11), we get

‡varp�pUq; V, �q § 2÷ ` 1
2

a

2log k´H÷
minpPUV |V q.

Thus, to prove the first claim, it su�ces to show that

H÷
min pPUV |V q • H÷{2

min pPU 1V |V q ; (8.17)

the second claim follows from the first upon noting that any ÷{2-
smoothing of PUV1 can be obtained as a marginal of an ÷{2-smoothing
of PUV1V2 and restricting the optimization over QV1V2 in the definition
of conditional minentropy to QV1V2 pv1, v2q “ QV1 pv1q {|V2|.

It remains to establish (8.17). To this end, consider a subdistribu-
tion QU 1V such that

}PU 1V ´ QU 1V } § ÷

2 .

Then, for QU 1UV fi QU 1V PU |U 1V .

}PU 1UV ´ QU 1UV } § ÷

2 .

Thus, the subdistribution Q̃UV defined by

Q̃UV pu, vq “ QU 1UV pÂpu, vq, u, vq
satisfies

›

›PUV ´ Q̃UV

›

› § 1
2

ÿ

u,v

|PUV pu, vq ´ PU 1UV pÂpu, vq, u, vq|

` }PU 1UV ´ QU 1UV }
§ 1

2
ÿ

u,v

|PUV pu, vq ´ PU 1UV pÂpu, vq, u, vq| ` ÷

2

“ 1
2

ÿ

u1,u,v

PU 1UV

`

u1, u, v
˘

1pu1 ‰ Âpu, vqq ` ÷

2

§ ÷.

Therefore,
H÷

minpPUV |V q • HminpQ̃UV |V q.
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The proof is completed upon noting that for every subdistribution P̃V

such that supppP̃V q Ö supppQV q,
HminpQ̃UV |V q • HminpQ̃UV |P̃V q

“ ´ log max
u,v

Q̃UV pu, vq
P̃V pvq

“ ´ log max
u,v

QU 1UV pÂpu, vq, u, vq
P̃V pvq

• ´ log max
u1,u,v

QU 1UV pu1, u, vq
P̃V pvq

• ´ log max
u1,v

QU 1V pu1, vq
P̃V pvq

“ HminpQU 1V |P̃V q.
Since QU 1V and P̃V were arbitrary subdistributions such that
}PU 1V ´ QU 1V } § ÷{2 and supppP̃V q Ö supppQV q, it follows upon com-
bining the inequalities above that

H÷
minpPUV |V q • HminpQ̃UV |V q • H÷{2

minpPU 1V |V q,
which completes the proof.

We apply Lemma 8.6 with U “ Xn
i , U 1 “ Xn

M, V1 “ Gn, and
V2 “ „´ipXn

´iq. It follows from (8.14) that for every ÷ • 2´nc{2

‡varp�ipXn
i q; Gn, Â´ipXn

´iq, �q

§ 2÷ ` 1
2

b

2nRi`n
∞

jPM,j‰i Rj´H÷{2
min

´

PXn
MGn |Gn

¯

.

Next, proceeding as in §5.4.2, given ” ° 0, the minentropy
H÷{2

min

´

PXn
MGn |Gn

¯

is bounded below as

H÷{2
min

´

PXn
MGn |Gn

¯

• nrHpXM|Gq ´ “{4s,
for all n su�ciently large, provided ÷ • 2´nc0 for a su�ciently large c0;
the arguments above will hold as long as ÷ • 2´n mintc{2,c0u. Note that
the logp1 ´ 2´nc0q term in (5.13) does not appear here since, follow-
ing Remark 5.19, we are smoothing over subdistributions. Thus, for n
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su�ciently large, with c1 “ mintc{2, c0u,

‡varp�ipXn
i q; Gn, Â´ipXn

´iq, �q
§ 2 ¨ 2´nc1 ` 1

2

a

2n
∞

jPM Ri´nHpXM|Gq`n“{4

§ 2 ¨ 2´nc1 ` 1
2

a

2nRCO´nHpXM|Gq`n3“{4, (8.18)

where the previous inequality is by (8.10).
Finally, upon combining (8.13), (8.15), and (8.18), and using the

su�cient condition HpXMq ´ RCO ° “, we get

E�
”

›

›

›

PGn�pXn
Mq ´ PGn ˆ P�pXn

Mq
›

›

›

ı

§ 7m2´n mintc{2,c1,“{8u,

which establishes (8.12), thereby completing the proof of Theorem 8.5.

Remark 8.7. We have shown that, under the su�ciency condition
HpGq † Cs, there exists a communication F which attains omniscience
and satisfies for every i P M,

‡varpFi; Gn, F´iq § 2´nc

for a constant c ° 0. Using Lemma 2.4, this in turn implies

‡divpFi; Gn, F´iq “ nRi ´ H pFiq ` I pFi ^ Gn, F´iq Ñ 0 as n Ñ 8.

Note that by the chain rule for mutual information

I pGn ^ Fq §
m
ÿ

i“1
I pFi ^ Gn, F´iq ,

which along with the observation above yields

lim
nÑ8 I pGn ^ Fq “ 0,

namely the secrecy of communication F under the Kullback-Leibler
divergence-based secrecy criterion.

8.3 General necessary condition for secure computability

We close this chapter with a necessary condition for secure computabil-
ity of a function in a “single-shot” setting. Specifically, given ‘, ” ° 0
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such that ‘ ` ” † 1, we seek to characterize functions g : XM Ñ Y that
are p‘, ”q-SC in the sense of Definition 8.1 for n “ 1. Throughout this
section, we refer to such a function g as an p‘, ”q-SC function.

Recall that the necessary condition in Theorem 8.5 for the asymp-
totic formulation (i.e., for n large) of the characterization sought above
follows upon observing that if the terminals can compute securely the
function g, then they can extract a SK of rate HpGq from Gn. There-
fore, HpGq must be necessarily less than the maximum rate of a SK that
can be generated, namely the SK capacity CS . We extend this principle
to the single-shot setting by using the conditional independence testing
upper bound for SK length given in Theorem 4.12.

Corollary 8.8. For 0 § ‘, ” † 1 with ‘ ` ” † 1, if a function g is
p‘, ”q-SC, then

H›
minpPGq

§ 1
|fi| ´ 1

„

´ log —µ

`

PXM , Qfi
XM

˘ ` |fi| logp1{÷q
⇢

` 2 logp1{2’q ` 1, Qfi
XM P Qpfiq, (8.19)

for every µ “ ‘ ` ” ` 2› ` ’ ` ÷ with ›, ’, ÷ ° 0 such that µ † 1, and for
every partition fi of M, where Qfi

XM
is as in (4.8) with Z “ constant.

Proof. The proof is based on extracting an p‘, ” ` 2› ` ’q-SK from the
securely computed function G. Specifically, suppose that g is p‘, ”q-SC
from public communication F. Using Lemma 5.17 with U “ G and
V1 “ V2 “ constant, we get that there exists a K-valued rv K “ KpGq
with log |K| “ tH›

minpPGq ´ 2 logp1{2’qu satisfying
›

›PKpGq ´ P K
unif

›

› § 2› ` ’.

Therefore,
›

›PKpGqF ´ Punif ˆ PF
›

›

§ ›

›PKpGqF ´ PKpGq ˆ PF
›

›

` ›

›PKpGq ˆ PF ´ Punif ˆ PF
›

›

§ }PGF ´ PG ˆ PF} ` ›

›PKpGq ´ Punif
›

›

§ ” ` 2› ` ’,
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where the final inequality uses the fact that g is p‘, ”q-SC from F. Fur-
thermore, since G is ‘-recoverable from F, so is K “ KpGq. Therefore,
K constitutes an p‘, ”q-SK of length tH›

minpPGq ´ 2 logp1{2’qu and the
claimed necessary condition follows from the bound for the maximum
length of an p‘, ”q-SK given in Theorem 4.12.

We conclude this section with two illustrative examples.

Example 8.9. (Computing functions of independent observa-
tions using a perfect SK). Suppose that each terminal i in M
observes Ui, where the rvs U1, ..., Um are mutually independent. Fur-
thermore, all the terminals share a k-bit perfect SK K which is inde-
pendent of UM. How many bits k are required to render the function
g pU1, ..., Umq an p‘, ”q-SC function?

Note that the observation of Terminal i is Xi “ pUi, Kq. For a
partition fi of M, in order to bound ´ log —‘

´

PXM ,
±|fi|

i“1 PXfii

¯

, we
take recourse to Lemma 4.15. Specifically, noting that

PXM
±|fi|

i“1 PXfii

“ PK
p1´|fi|q,

it follows from Lemma 4.15 with “ “ p|fi| ´ 1qk that

´ log —µ

¨

˝PXM ,
|fi|
π

i“1
PXfii

˛

‚§ p|fi| ´ 1qk ` logp1 ´ µq.

Therefore, by Corollary 8.8 a necessary condition for g to be p‘, ”q-SC
is

H›
minpPGq § k ` 1

|fi| ´ 1

ˆ

|fi| log 1
÷

` log 1
1 ´ µ

˙

` 2 log 1
2’

` 1, (8.20)

for every ›, ’, ÷ ° 0 satisfying µ “ ‘ ` ” ` 2› ` ’ ` ÷ † 1. Note that
the finest partition, i.e., |fi| “ m, gives the best lower bound on k in
(8.20).

For the special case when Ui “ Bn
i , a sequence of independent,

unbiased bits, and

g pBn
1 , ..., Bn

mq “ B11 ‘ ... ‘ Bm1, ..., B1n ‘ ... ‘ Bmn,
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i.e., the terminals seek to compute the (element-wise) parities of the bit
sequences, it holds that H›

minpPGq • n. Therefore, g is p‘, ”q-SC only if
n § k ` Op1q. We remark that this necessary condition is also (almost)
su�cient. Indeed, if n § k, all the terminals but Terminal m can reveal
all their bits Bn

1 , . . . , Bn
m´1 and Terminal m can communicate Bn

1 ‘
. . . ‘ Bn

m ‘ Kn, where Kn denotes any n out of k bits of K. Clearly,
this results in a secure computation of g.

Example 8.10. (Secure transmission). Terminal 1 seeks to transmit
to Terminal 2 a message rv M of known pmf PM , with the terminals
sharing a k-bit perfect SK K. To this end, they communicate interac-
tively using a communication F, enabling Terminal 2 to form an esti-
mate M̂ of M . This protocol accomplishes p‘, ”q-secure transmission if
P

´

M “ M̂
¯

• 1 ´ ‘ and

}PMF ´ PM ˆ PF} § ”.

Shannon’s classic result implies that p0, 0q-secure transmission is fea-
sible only if k is at least log |M|, where |M| denotes the size of the
message set.2 This prompts the question: Can we relax this constraint
for ‘, ” ° 0? We give a necessary condition below for the feasibility of
p‘, ”q-secure transmission by relating it to the previous example.

Specifically, let the observations of Terminals 1 and 2 be X1 “
pM, Kq and X2 “ K, respectively. Then, p‘, ”q-secure transmission of
M is equivalent to the function gpX1, X2q “ M being p‘, ”q-SC. There-
fore, using (8.20), p‘, ”q-secure transmission of M is feasible only if

H›
minpPM q § k ` 2 log 1

÷
` log 1

1 ´ µ
` 2 log 1

2’
` 1, (8.21)

for every ›, ’, ÷ ° 0 satisfying µ “ ‘ ` ” ` 2› ` ’ ` ÷ † 1.
Condition (8.21) brings out a tradeo� between k and ‘ ` ”. As an

illustration, consider a message M as a rv Y taking values in a set
Y “ t0, 1un Y t0, 1u2n with the following pmf:

PY pyq “
" 1

2 ¨ 1
2n y P t0, 1un

1
2 ¨ 1

22n y P t0, 1u2n .

2This is a slight generalization of Shannon’s original result.
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For ‘`” “ 0, we know that secure transmission will require k to exceed
the worst-case message length 2n. By allowing ‘ ` ” ° 0, can we make
do with fewer SK bits, for instance, with k “ HpMq “ p3{2qn ` 1
(noting that the average message length equals p3{2qn)? The necessary
condition above says that this is not possible if ‘ ` ” † 1{2. Indeed,
since H›

minpPY q • 2n for › “ 1{4, we get from (8.21) that the message
M “ Y can be p‘, ”q-securely transmitted only if 2n § k ` Op1q, where
the constant depends on ‘ and ”.

8.4 Story of results and open problems

Shannon’s information theoretic analysis of the one-time pad in his
seminal paper [72] is indeed the first instance of the secure computing
problem considered here, as pointed out in Example 8.10. A general-
ization that entails secure computing of a function, in the sense con-
sidered in this chapter, by two terminals that share perfect SKs was
introduced in [63]. Both these formulations di�er from the standard
notion of secure computing considered in the cryptography literature,
following Yao’s seminal work [100], where the communication channel
is trusted but both terminals strive to reveal the least amount of infor-
mation about themselves to each other. Also, as for the SK generation
problem in Chapter 6, we have restricted ourselves to the honest-but-
curious setting where the adversary can only eavesdrop without tam-
pering with the protocol. The contents of this chapter are drawn largely
from [81, 82, 83] where our secure computing problem was defined, and
Theorem 8.5 proved. The linear Slepian-Wolf compression scheme of
Example 8.4 was given in [97], and the corresponding SK generation
scheme in [102]. The general necessary condition and the single-shot
examples of §8.3 are from [85, 87]. Note that several extensions of
Shannon’s original one-time pad result allowing nonzero leakage and
probability of error are available; see, for instance, [45, Problems 2.12
and 2.13]. Example 8.10 strengthens such results by allowing interactive
communication.

Extensions and open problems. In [82, 83], securely computable
functions were characterized in a larger setting of the helper model
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(see §6.4) where only a subset A of the terminals in M seek to se-
curely compute the function g (with terminals in Ac serving as helpers
for communication). An even further generalization was considered in
[74, 77] where each terminal seeks to compute a di�erent function with-
out revealing the value of a (yet possibly di�erent) function g0. A gen-
eral conjecture regarding the characterization of securely computable
functions was made in [77], with justification only in special cases (see
[76] for a discussion). A characterization of securely computable func-
tions in this context, and its extension where the eavesdropper has
access to correlated side information Zn, constitute an open avenue.

A di�erent view of secure computing, and a sketch of an alterna-
tive proof of characterization of a securely computable function, was
given in [12]. In another direction, secure sampling and secure channel
simulation were considered in [91] and [27], respectively. Secure dis-
tributed source coding (see, for instance, [64, 31, 73]), which addresses
the tradeo� between communication rate and equivocation, albeit not
for interactive communication, is also related closely to secure comput-
ing in our sense. All these directions have seen progress only in fits and
starts, and interesting open problems beckon.





9
Secret Key Capacity for the Multiterminal

Channel Model

In the multiterminal channel model, a subset of k terminals, 1 § k §
m ´ 1, govern the inputs of a noisy but secure discrete memoryless
multiaccess channel with the remaining m ´ k terminals receiving the
channel outputs. In between transmissions over the channel, all the ter-
minals additionally can communicate among themselves publicly as in
the source model of Chapter 6. The secret key capacity problem is for-
mulated in §9.1 with secrecy required from an eavesdropper observing
the communication. A general single-letter characterization of secret
key capacity remains defiant. General lower bounds for secret key ca-
pacity are obtained in §9.2 through achievability proofs using source
emulation techniques that are redolent of Chapter 6. Also, a general
upper bound is presented that is built upon a precursor bound from
Chapter 4; this upper bound can be improved for special channels. A
full characterization of secret key capacity is presented in §9.3 when the
channel has a single input terminal. For the mirroring channel model
with a single output terminal, a general characterization of secret key
capacity is open. However, interesting connections exist between it and
the transmission capacity region of the multiple access channel with
and without feedback.

127
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9.1 Multiterminal channel model

The multiterminal channel model with m • 2 terminals is based on an
underlying discrete memoryless channel (DMC) with multiple inputs
and multiple outputs. Consider a DMC

W : X1 ˆ ¨ ¨ ¨ ˆ Xk Ñ Xk`1 ˆ ¨ ¨ ¨ ˆ Xm

with finite input and output alphabets X1, . . . , Xk and Xk`1, . . . , Xm,
respectively, 1 § k § m ´ 1. Terminals 1, . . . , k control the inputs of
the DMC W over which they transmit n-length sequences, while termi-
nals k ` 1, . . . , m receive the corresponding n-length output sequences.
Transmission and reception over the DMC W are secure. After every
transmission over the DMC and corresponding reception, and prior to
any next transmission, the terminals in M can engage in interactive
communication over a public noiseless channel of unlimited capacity.
Hereafter, we note a distinction between secure “transmission” over
the DMC from the input terminals 1, . . . , k to the output terminals
k ` 1, . . . , m, and public “communication” among the terminals in M,
and accordingly term them simply as transmission or communication.
The communication is observed by all the terminals in M as also by an
eavesdropper. Randomization is permitted at the terminals for trans-
mission or communication, with the finite-valued rv Ui representing the
local randomness at terminal i P M. The rvs U1, . . . , Um are taken to
be mutually independent.

It will be convenient to use the following shorthand notation. For
integers 1 § a § b § m, we write ra, bs “ pa, . . . , bq. Given rvs Zi, i P
M, we denote Zra,bs “ pZa, . . . , Zbq.

The protocol for transmission and communication is as follows. At
each time instant t “ 1, . . . , n, the input terminals in r1, ks transmit
the symbols X1t, . . . , Xkt over the DMC and the output terminals in
rk ` 1, ms observe (instantaneously) the corresponding output symbols
Xk`1,t, . . . , Xmt. Additionally, during each time interval pt, t ` 1q be-
tween the tth and pt ` 1qth transmissions — for t “ 1, . . . , n ´ 1 and
after the nth transmission for t “ n — the input and output terminals
in M participate in interactive communication as in Definition 3.1. In
each interval pt, t ` 1q, hereafter simply called interval t, the commu-
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nication of the terminals in M will be represented collectively by Fptq,
and furthermore, we denote F ptq “ `

Fp1q, . . . , Fptq
˘

, t “ 2, . . . , n ´ 1,
and F “ `

Fp1q, . . . , Fpnq
˘

.
Each input terminal i P r1, ks, determines its tth transmission sym-

bol Xit as a function of Ui for t “ 1 and of
`

Ui, Fp1q, . . . , Fpt´1q
˘

for
t “ 2, . . . , n. Furthermore, in interval t, the communication of termi-
nal i P M in any round is allowed to be a function of Ui, the symbols
pXi1, . . . , Xitq earlier generated or observed by terminal i, and all earlier
communication

`

Fp1q, . . . , Fpt´1q
˘

in previous intervals along with com-
munication in prior rounds in the current interval. The terminals in M
cooperate, through transmission and communication, to generate a SK
which is concealed from an eavesdropper observing the communication
F.

9.2 Secret key capacity: General lower and upper bounds

Achievable SK rates and SK capacity for a mutiterminal channel model
with DMC W , hereafter termed simply channel model W , are defined
analogously as in Definition 6.1.

Definition 9.1. R • 0 is an achievable SK rate for the terminals
in M if there exist p‘n, ”nq-SKs Kpnq for M with values in Kpnq,
obtained by means of n uses of the DMC W together with inter-
active communication Fpnq, i.e., there exist local estimates Kpnq

i “
Kpnq

i

`

Ui, Xn
i , Fpnq˘ , i P M, of Kpnq satisfying

P
`

Kpnq
i “ Kpnq, i P M

˘ • 1 ´ ‘n, ‡var
`

Kpnq; Fpnq˘ § ”n (9.1)

where

‘n Ñ 0, ”n Ñ 0 and 1
n

log
ˇ

ˇKpnqˇ
ˇ Ñ R as n Ñ 8.

The largest achievable SK rate is the SK capacity CS .

A general single-letter characterization of SK capacity for the chan-
nel model W , unlike for its source model counterpart in Chapter 6,
remains unresolved. General single-letter lower and upper bounds for
SK capacity are described below. An achievability technique of “source
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emulation” gives rise to a variant of the source model of Chapter 6;
achievable SK rates for the latter yield, in turn, a general lower bound
for the SK capacity of the channel model. A general upper bound is
obtained by means of a converse proof based on methods developed in
Chapter 4 combined with suitable entropy inequalities. The lower and
upper bounds agree only in special cases. Both admit improvements
for a particular class of channel models.

9.2.1 General lower bound for SK capacity by source emulation

Simple source emulation a�ords an obvious means for generating a
SK for a channel model W . Consider finite-valued independent rvs
X1, . . . , Xk with a given joint pmf

PXr1,ks “
k
π

i“1
PXi . (9.2)

The input terminals in r1, ks generate – using local randomness
U1, . . . , Uk – n i.i.d. repetitions of X1, . . . , Xk, respectively, and trans-
mit them over the DMC W , thereby creating i.i.d. repetitions of
XM “ pX1, . . . , Xmq with joint pmf

PXM

`

xr1,ms
˘ “

˜

k
π

i“1
PXi pxiq

¸

W
`

xrk`1,ms | xr1,ks
˘

, xr1,ms P
m
°

i“1
Xi,

(9.3)

with each output terminal i P rk ` 1, ms observing n i.i.d. repetitions
of Xi. By this operational strategy, the channel model W emulates a
multiterminal source model with generic rv XM where PXM is specified
by (9.3), and ipso facto the SK capacity of the latter model, given
by Theorem 6.2, is a lower bound for the SK capacity of the former.
Furthermore, this bound can be improved by maximization over all
input pmfs PXr1,ks of the form (9.2). Thus, recalling Theorem 6.2,

CS • max
PXr1,ks

min
⁄

HpXMq ´
ÿ

SPSM

⁄SHpXS |XScq. (9.4)

General source emulation is an improved operational strategy for
generating a SK of enhanced rate for a channel model by using, in



9.2. Secret key capacity: General lower and upper bounds 131

e�ect, an auxiliary source. For an auxiliary rv V with values in a finite
set V, consider rvs V, X1, . . . , Xk such that X1, . . . , Xk are conditionally
independent given V . If the rvs X1, . . . , Xk are inputs to the DMC W ,
the corresponding output rvs satisfy the Markov condition

V ´̋́ Xr1,ks ´̋́ Xrk`1,ms. (9.5)

Then the pmf of pV, XMq is given by

PV XM

`

v, xr1,ms
˘ “ PV pvq

˜

k
π

i“1
PXi|V pxi | vq

¸

W
`

xrk`1,ms | xr1,ks
˘

,

v P V, xr1,ms P XM.
(9.6)

Terminal 1, say, using local randomness U1 generates V n “
pV1, . . . , Vnq comprising n i.i.d. repetitions of V and communicates V n

publicly to all the remaining terminals in M; the eavesdropper, too,
has access to V n. Knowing V n “ vn “ pv1, . . . , vnq , vn P Vn, the input
terminals in r1, ks – using their local randomness U1, . . . , Uk – gener-
ate and transmit i.i.d. rvs Xr1,kst, t “ 1, . . . , n, over the DMC W , with
conditional pmf given V n “ vn as

PXn
r1,ks|V n

´

xn
r1,ks | vn

¯

“
n
π

t“1

˜

k
π

i“1
PXi|V pxit | vtq

¸

,

xn
r1,ks P X n

r1,ks, vn P Vn.

The corresponding channel outputs Xn
rk`1,ms satisfy

V n ´̋́ Xn
r1,ks ´̋́ Xn

rk`1,ms, PXn
rk`1,ms|Xn

r1,ks
“ W n,

with Xrk`1,mst, t “ 1, . . . , n, being i.i.d.
The channel model thereby emulates a multiterminal source model

with generic rv XM, initiating it with communication V n where PV XM

is given by (9.6). This initial public communication, to which the eaves-
dropper is also privy, makes the latter model vary somewhat from the
standard source model of §6.1. The SK capacity of this emulated source
model makes for a lower bound for the SK capacity of the channel
model. Note that for V “ constant, simple source emulation obtains.
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Theorem 9.2 (Lower bound for SK capacity). The SK capacity of a
channel model W is bounded below as

CS • max
PV Xr1,ks

min
⁄

HpXM | V q ´
ÿ

SPSM

⁄SHpXS |XSc , V q (9.7)

where PV XM is as in (9.6) (with W given). The right-side represents the
largest SK rate achievable by general source emulation. This SK rate
can be achieved also by a protocol in which the input terminals do not
communicate publicly and transmit mutually independent sequences
over the DMC W that are not necessarily i.i.d.

Remark 9.3. The maximum in (9.7) with respect to PV XM is achieved
as the cardinality of V can be bounded by standard techniques involving
the “support lemma.”

Proof. The proof of the first two assertions of the theorem entails
a minor modification of the proof of Theorem 6.2, and is sketched.
Let PV XM attain the maximum in (9.7). Terminal 1 generates V n “
pV1, . . . , Vnq as above and communicates it publicly to all the (remain-
ing) terminals in M.

By general source emulation as above, a multiterminal source model
results with generic rv XM and with all the terminals in M hav-
ing additional access to V n. Considering this model, a straightforward
modification of the achievability proof of Theorem 6.6 with each de-
coder Âi, i P M, now possessing additional side information V n, yields
that the terminals in M can form Xn

M as ‘n-CR using communication
F “ Fpnq of range F pnq and rate

R “ 1
n

log |F pnq| “ max
⁄

ÿ

SPSM

⁄SHpXS |XSc , V q ` ‹,

where ‘n Ñ 0 as n Ñ 8 and ‹ ° 0 is arbitrary.
Then, Lemma 5.18 with

Un “ Xn
M, V n

1 “ V n, V2 “ Fpnq and V2 “ F pnq

yields, for any number 0 § H § H pXM | V q ´ R, the existence of
Kpnq “ „ pXn

Mq as ‘n-CR with values in Kpnq “  

1, . . . , texppnHqu
(
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and variational secrecy index ‡var
`

Kpnq; V n, Fpnq˘ § ”n, where ‘n Ñ 0
and ”n Ñ 0 exponentially as n Ñ 8. Since

H pXM | V q ´ R “ H pXM | V q ´ max
⁄

ÿ

SPSM

⁄SHpXS |XSc , V q ´ ‹

with arbitrarily small ‹ ° 0, it follows that the right-side of (9.7) is an
achievable SK rate for the channel model W . Furthermore, a natural
and straightforward extension of Theorem 6.2 to a multiterminal source
model with generic rv XM and with all the terminals in M as well
as the eavesdropper having additional access to V n, shows that the
right-side of (9.7) is the largest SK rate achievable by general source
emulation.

In the general source emulation protocol above, first Terminal 1
communicates V n publicly. Then the DMC W is used n times for the
transmission and reception, respectively, of Xn

r1,ks and Xn
rk`1,ms, with

the input terminals in r1, ks using their local randomness U1, . . . , Uk to
generate Xn

r1,ks. Upon completion of the use of the DMC, the ensuing
public communication Fpnq “ pF1, . . . , Fmq entails each terminal i P M
sending at most one public message Fi “ fi pXn

i q without using Ui,
by Theorem 6.2, whereupon the terminals in M form a SK Kpnq of
rate approaching the right-side of (9.7). We show next that the input
terminals in r1, ks need not communicate publicly, by altering the pmfs
of the input rvs Xn

i , i P r1, ks. Consider an p‘n, ”nq-SK Kpnq as above.
The recoverability and variational secrecy index of Kpnq imply that

1
‘n

ÿ

iPM
P

´

Kpnq
i pXn

i , V n, Fpnqq ‰ Kpnq
¯

` 1
”n

‡var
`

Kpnq; V n, Fpnq˘

§ m ` 1.

Since

P
´

Kpnq
i pXn

i , V n, Fpnqq ‰ Kpnq
¯

“
ÿ

vn,j1,...,jk

P pV n “ vn, F1 “ j1, . . . , Fk “ jkq

ˆ P
´

Kpnq
i pXn

i , V n, Fpnqq ‰ Kpnq | V n “ vn, F1 “ j1, . . . , Fk “ jk

¯
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and

‡var
`

Kpnq; V n, Fpnq˘

“
ÿ

vn,j1,...,jk

P pV n “ vn, F1 “ j1, . . . , Fk “ jkq

ˆ ‡var
`

Kpnq; Fk`1, . . . Fm | V n “ vn, F1 “ j1, . . . , Fk “ jk

˘

where ‡var p¨ | ¨q in the right-side above equals
›

›

›

›

PKpnqFk`1¨¨¨Fm|V nF1¨¨¨Fk
p¨ | vn, j1, . . . , jkq

´ P pnq
unif ˆ PFk`1¨¨¨Fm|V nF1¨¨¨Fk

p¨ | vn, j1, . . . , jkq
›

›

›

›

,

it follows that for some v˚n “ pv˚
1 , . . . , v˚

nq and j˚
1 , . . . , j˚

k ,

1
‘n

ÿ

iPM
P

´

Kpnq
i pXn

i , V n, Fpnqq ‰ Kpnq | V n “ v˚n, F1 “ j˚
1 , . . . , Fk “ j˚

k

¯

` 1
”n

‡var
`

Kpnq; Fk`1, . . . , Fm | V n “ v˚n, F1 “ j˚
1 , . . . , Fk “ j˚

k

˘ § m ` 1.

This shows that if the joint pmf of V n, Xn
1 , . . . Xn

k is changed to its
conditional pmf given

V n “ v˚n, F1 “ f1 pXn
1 q “ j˚

1 , . . . , Fk “ fk pXn
k q “ j˚

k ,

the same protocol as above renders Kpnq an ppm ` 1q‘n, pm ` 1q”nq-SK.
Under this conditional pmf, with probability 1 the i.i.d. sequence V ˚n

becomes a deterministic sequence v˚n and the public message Fi “
fi pXn

i q of each input terminal i P r1, ks equals a constant j˚
i , implying

in e�ect no public communication by the input terminals. Furthermore,
the input terminals in r1, ks can transmit over the DMC W at each
t “ 1, . . . , n, mutually independent rvs X1t, . . . , Xkt with joint pmf

PXr1,kst
“ PXr1,kst|V “v˚

t
“

k
π

i“1
PXit|V “v˚

t
,

noting that the second equality invokes the conditional independence
of X1, . . . , Xk given V in (9.6) that underlies general source emulation.
Finally, for each i P r1, ks, changing the pmf of Xn

i to the conditional
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pmf of Xn
i given V n “ v˚n, F1 “ j˚

1 , . . . , Fk “ j˚
k , which now becomes

the conditional pmf of Xn
i given fi pXn

i q “ j˚
i , makes each channel

input sequence Xn
i possibly non-i.i.d.

9.2.2 General upper bound for SK capacity

In order to state our general upper bound for SK capacity, for rvs
V, XM satisfying (9.5) and

PV XM

`

v, xr1,ms
˘ “ PV pvq PXr1,ks|V

`

xr1,ks | v
˘

W
`

xrk`1,ms | xr1,ks
˘

,

v P V, xr1,ms P XM
(9.8)

(but not necessarily the conditional independence of X1, . . . , Xk given
V in (9.6)) and any fractional partition ⁄ of M, denote

G pPV XM , ⁄q “ H pXM | V q ´
ÿ

SPSM

⁄SH pXS | XSc , V q (9.9)

and

G
´

PV Xr1,ks , ⁄
¯

“ H
`

Xr1,ks | V
˘ ´

ÿ

SPSM

⁄SH
`

Xr1,ksXS | Xr1,ksXSc , V
˘

.

(9.10)

By Lemma 3.5, observe that

G pPV XM , ⁄q • 0

upon setting F “ XM and Y “ V therein. In the same vein, we have

G
´

PV Xr1,ks , ⁄
¯

“ H
`

Xr1,ks | V
˘ ´

ÿ

S1PSr1,ks

⁄1
S1H pXS1 | XS1c , V q • 0,

where ⁄1 “  

⁄1
S1 , S1 P Sr1,ks

(

with

⁄1
S1 “

ÿ

SPSM : r1,ksXS“S1
⁄S
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is a fractional partition of r1, ks since
ÿ

S1PSr1,ks : S1Qi

⁄1
S1 “

ÿ

S1PSr1,ks : S1Qi

ÿ

SPSM : r1,ksXS“S1
⁄S

“
ÿ

SPSM : SQi

⁄S “ 1 for all i P r1, ks.

Suppose that Kpnq represents an p‘n, ”nq-SK for M with values in
Kpnq, achievable with randomization UM, n uses of the DMC W and
interactive communication Fpnq, and with ‡var

`

Kpnq; Fpnq˘ § ”n where
‘n Ñ 0 and ”n Ñ 0 as n Ñ 8. Then, by Remark 4.7 with pUi, Xn

i q in
the role of Xi, i P M, and Fpnq in the role of Z, we get

1
n

log
ˇ

ˇKpnqˇ
ˇ § –n

n

„

H
´

UM, Xn
M | Fpnq

¯

(9.11)

´
ÿ

SPSM

⁄SH
´

US , Xn
S | USc , Xn

Sc , Fpnq
¯

⇢

` —n

with

–n “ 1
1 ´ m‘n ´ ”n

Ñ 1 and —n “ mhp‘nq ` hp”nq
1 ´ m‘n ´ ”n

Ñ 0 as n Ñ 8.

A main step in obtaining our upper bound for CS is to show that
the expression within

„

¨ ¨ ¨
⇢

in the right-side is bounded above by

n
ÿ

t“1

„ˆ

H pXMtq ´
ÿ

SPSM

⁄SH pXSt | XSctq
˙

(9.12)

´
ˆ

H
`

Xr1,kst
˘ ´

ÿ

SPSM

⁄SH
`

Xpr1,ksXSqt | Xpr1,ksXScqt

˘

˙⇢

,

where the pmf of XMt, t “ 1, . . . , n, is

PXMtpxMq “ PXr1,kst
pxr1,ksqW

`

xrk`1,ms | xr1,ks
˘

, xM P XM.

This step, involving a rather tortuous manipulation of information
quantities, is omitted.

Finally, we simplify (9.12) by the following standard technique of
“single-letterization.” Let V be an auxiliary rv distributed uniformly
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on t1, . . . , nu and independent of Xn
M, and set X̃i “ XiV , i P M. Then

n
ÿ

t“1
H pXMtq “ nH

`

X̃M | V
˘

,

n
ÿ

t“1

ÿ

SPSM

⁄SH pXSt | XSctq “ n
ÿ

SPSM

⁄SH
`

X̃S | X̃Sc , V
˘

, etc.,

and it holds that

V ´̋́ X̃r1,ks ´̋́ X̃rk`1,ms and PX̃rk`1,ms|X̃r1,ks “ W.

Shedding the tildes we obtain for the new XM, from (9.11), (9.12) and
recalling (9.9), (9.10), that

lim sup
n

1
n

log
ˇ

ˇKpnqˇ
ˇ § G pPV XM , ⁄q ´ G

´

PV Xr1,ks , ⁄
¯

for every fractional partition ⁄ of M. This leads to the following general
upper bound for CS .

Theorem 9.4 (Upper bound for SK capacity). The SK capacity of a
channel model W is bounded above as

CS § sup
PV Xr1,ks

inf
⁄

G pPV XM , ⁄q ´ G
´

PV Xr1,ks , ⁄
¯

, (9.13)

where PV XM is as in (9.8) (with W given).

Remark 9.5. The upper bound in (9.13) can be weakened as

CS § max
PV XM

min
⁄

G pPV XM , ⁄q (9.14)

“ max
PV XM

min
⁄

H pXM | V q ´
ÿ

SPSM

⁄SH pXS | XSc , V q ,

where the maximum is over all PV XM in (9.8). This weakening di�ers
from the lower bound in Theorem 9.2 by the lack of the conditional
independence of X1, . . . , Xk given V . In fact, even the upper bound in
(9.13) can be improved for a special class of channel models.
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9.3 Special cases

9.3.1 Channel model with single input

In the special case of a channel model with a sole input terminal, the
SK capacity is characterized fully.

Theorem 9.6 (DMC with a single input terminal). The SK capacity of
a channel model W with a single input terminal, i.e., k “ 1, is

CS “ min
⁄

max
PXM

HpXMq ´
ÿ

SPSM

⁄SHpXS |XScq (9.15)

where the maximum is over all PXM in (9.3), and can be achieved by
simple source emulation.

Corollary 9.7 (Single-input single-output channel model). The SK ca-
pacity of a channel model W with m “ 2, k “ 1, is

CS “ max
PX1 : PX2|X1“W

I pX1 ^ X2q

and can be achieved without any public communication.

Proof. Achievability: Denoting

G pPX1 , ⁄q “ HpXMq ´
ÿ

SPSM

⁄SHpXS |XScq, (9.16)

we see by (9.4) that maxPX1
min⁄ G pPX1 , ⁄q is an achievable SK rate by

simple source emulation, noting that the maximum in (9.4) with respect
to PXM when k “ 1 is, in e�ect, over PX1 by (9.3). The achievability
of the right-side of (9.15) is established by showing that

max
PX1

min
⁄

G pPX1 , ⁄q “ min
⁄

max
PX1

G pPX1 , ⁄q . (9.17)

Observe that G pPX1 , ⁄q is a continuous function of PX1 and ⁄, defined
over convex compact sets. Moreover, G pPX1 , ⁄q is a�ne in ⁄ and, as
shown below, concave in PX1 . Hence, (9.17) holds by the minimax
theorem. For the remaining check of the mentioned concavity, since ⁄
is a fractional partition of M (see §3.1), we have

∞

SPSM : SQ1 ⁄S “ 1
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and so (9.16) can be written as

G pPX1 , ⁄q “
ÿ

SPSM : SQ1
⁄S

“

HpXMq ´ HpXS |XScq‰

´
ÿ

SPSM : SS1
⁄SHpXS |XScq

“
ÿ

SPSM : SQ1
⁄SHpXScq

´
ÿ

SPSM : SS1
⁄S

“

H pXM | X1q ´ H pXSc | X1q ‰

.

Since PXSc is a�ne in PX1 , HpXScq is concave in PX1 . Also,
H pXM | X1q and H pXSc | X1q are a�ne in PX1 . Hence, G pPX1 , ⁄q
is concave in PX1 .

Converse: By the weakened form (9.14) of the general upper bound
in Theorem 9.4,

CS § min
⁄

max
PV XM

H pXM | V q ´
ÿ

SPSM

⁄SH pXS | XSc , V q

“ min
⁄

max
PXM

H pXMq ´
ÿ

SPSM

⁄SH pXS | XScq

“ min
⁄

max
PX1

G pPX1 , ⁄q

where the first equality is seen readily from the optimality of a point
mass pmf for V .

The corollary is immediate since the claimed maximum SK rate, a
simplification of (9.15) for m “ 2, k “ 1, can be achieved by Terminal 1
transmitting a message as SK to Terminal 2 using a capacity achieving
code for the DMC W .

9.3.2 Channel model with single output

A general single-letter characterization of SK capacity for a channel
model W with a sole output terminal, is not known. However, there
are intriguing connections between achievable SK rates and the trans-
mission capacity region of the multiple access channel (MAC) defined
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by W , without and with feedback from the output terminal. Some of
these links are described below.

Let W : X1 ˆ¨ ¨ ¨ˆXm´1 Ñ Xm specify a DMC with k “ m´1 input
terminals and a single output terminal. Let C denote the (transmission)
capacity region without feedback of the discrete memoryless MAC W
under the average probability of decoding error criterion. Namely, C is
the set of all achievable encoding rate tuples pR1, . . . , Rm´1q for which
there exist encoders

ei : Ki Ñ X n
i with |Ki| “ rexp

`

nR1
i

˘

s (9.18)

where R1
i is arbitrarily close to Ri, i P M, with the following attribute:

if the MAC inputs are Xn
i “ ei pKiq, where Ki is distributed uniformly

on Ki, i P r1, m ´ 1s, and the rvs Ki, i P r1, m ´ 1s are mutually
independent, then Ki, i P r1, m ´ 1s are recoverable simultaneously by
a decoder from the MAC output Xn

m with probability approaching 1
as n Ñ 8. By definition, C is a closed convex set.

The capacity region C of the MAC W has the following classic
characterization.

Theorem 9.8 (Capacity region of the MAC W ). The capacity region C
of the MAC W is the set of rate tuples pR1, . . . , Rm´1q such that

0 §
ÿ

iPS

Ri § I
`

XS ^ Xm | XScztmu, V
˘

, S Ñ r1, m ´ 1s, (9.19)

for some rvs V, XM with values in V, XM, respectively, and with pmf
satisfying (9.5), (9.6), where |V| § k ´ 1.

When noiseless causal feedback additionally is available from the
MAC output terminal m to the input terminals in r1, m´1s, the encoder
mappings and MAC inputs in (9.18) are modified as

eit : Ki ˆ X t´1
m Ñ Xi, t “ 1, . . . , n,

Xn
i “ `

ei1 pKiq , ei2 pKi, Xm1q , . . . , eim

`

Ki, Xn´1
m

˘˘

, i P r1, m ´ 1s.
(9.20)

Achievable rate tuples pR1, . . . , Rm´1q are defined analogously as for
a MAC without feedback, and the capacity region Cf of the MAC W
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with feedback is the set of all achievable rate tuples. Unlike for C, a
single-letter characterization of Cf is known only in special cases but
not in general. It is known that Cf can properly contain C.

The links between the SK capacity CS for the channel model W
and the capacity regions C and Cf for the MAC W , involve the largest
achievable equal-rate tuples in C and Cf :

R˚ fi max tR : pR, . . . , Rq P Cu , R˚
f fi max tR : pR, . . . , Rq P Cf u .

(9.21)

Whereas a single-letter expression for R˚ obtains from that of C above,
an analogous expression for R˚

f is known only in special cases.

Theorem 9.9 (Lower bound for, and positivity of, SK capacity). (i) The
SK capacity of a channel model W : X1 ˆ ¨ ¨ ¨ ˆ Xm´1 Ñ Xm is bounded
below as

CS • R˚, (9.22)

and R˚ can be achieved as an SK rate by a protocol in which the in-
put terminals do not communicate, and transmit mutually independent
sequences over the DMC W that are not necessarily i.i.d., and the out-
put terminal communicates after completion of transmissions over the
DMC.
(ii) CS ° 0 i� there exists pR1, . . . , Rm´1q P C such that Ri ° 0 for
each i P r1, m ´ 1s.
Proof. (i) Suppose that pR, . . . , Rq P C, with R ° 0. Then, alluding to
(9.18), there exist mutually independent rvs Ki, i P r1, m ´ 1s, each
distributed uniformly on K fi t1, . . . , rexppnR1qsu with R1 arbitrarily
close to R, and codewords Xn

i “ ei pKiq , i P r1, m ´ 1s as inputs to the
DMC W , such that Ki, i P r1, m´1s are ‘n-recoverable simultaneously
from the DMC output Xn

m, where ‘n Ñ 0 as n Ñ 8. Now, fixing an
arbitrary i1 P r1, m ´ 1s, terminal m communicates

F “ pKi1 ` Ki mod |K|, i P r1, m ´ 1szti1uq .

Clearly, ‡var pKi1 ; Fq “ 0 and Ki1 is an p‘n, 0q-SK for M with ‘n Ñ 0
as n Ñ 8. Hence, CS • R˚.
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(ii) The su�ciency of the condition for CS ° 0 is obvious from
(i). For necessity, suppose that no pR1, . . . , Rm´1q as in the condition
exists. Then, by the convexity of C it must hold for some i1 P r1, m ´ 1s
that Ri1 “ 0 for every pR1, . . . , Rm´1q P C which, in turn, implies
that W pxm | x1, . . . , xm´1q does not depend on xi1 . Consolidating the
terminals in Mzti1u to form a coalition A, any use of the DMC W is
tantamount to a randomization performed by A (since the DMC input
xi1 does not a�ect the output xm). However, the two parties ti1u and A,
with only local randomization and communication as resources, cannot
generate any secret CR; hence, neither can the terminals in M in the
original model. Thus, CS “ 0.

The proof of Theorem 9.9(i) shows a simple protocol for achieving
R˚ as an SK rate. In fact, the general source emulation protocol of
§9.2.1, too, achieves an SK rate of R˚ but cannot exceed it.

Theorem 9.10 (Maximum SK rate by general source emulation). For a
channel model W : X1 ˆ ¨ ¨ ¨ ˆ Xm´1 Ñ Xm, a necessary and su�cient
condition for R to be an achievable SK rate by general source emulation
is pR, . . . , Rq P C.

Proof. For necessity, consider general source emulation using V, XM
whose pmf PV XM satisfies (9.5), (9.6) with k “ m´1. By Theorem 9.2,
this protocol achieves an SK rate

R “ min
⁄

rG pV, XM, ⁄q “ min
⁄

H pXM | V q ´
ÿ

SPSM

⁄SH pXS | XSc , V q .

(9.23)

Using the conditional independence of X1, . . . , Xm´1 given V and the
Markov condition V ´̋́ Xr1,m´1s ´̋́ Xm, we have in (9.23) that

H pXM | V q “ H
`

Xr1,m´1s | V
˘ ` H

`

Xm | Xr1,m´1s, V
˘

“
m´1
ÿ

i“1
H pXi | V q ` H

`

Xm | Xr1,m´1s
˘

;
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for S Q m,

H pXS | XSc , V q “ H
`

XSztmu, Xm | XSc , V
˘

“ H
`

XSztmu | XSc , V
˘ ` H

`

Xm | Xr1,m´1s, V
˘

“
ÿ

iPSztmu
H pXi | V q ` H

`

Xm | Xr1,m´1s
˘

;

and for S S m,

H pXS | XSc , V q “ H
`

XS | XScztmu, V
˘ ´ I

`

XS ^ Xm | XScztmu, V
˘

“
ÿ

iPS

H pXi | V q ´ I
`

XS ^ Xm | XScztmu, V
˘

.

These, combined with
∞

SPSM : SQi ⁄S “ 1, i P M, yield the simplifica-
tion

rG pV, XM, ⁄q “
ÿ

SPSM : SSm

⁄SI
`

XS ^ Xm | XScztmu, V
˘

. (9.24)

For each fixed rS Ñ r1, m ´ 1s, choose ⁄ “ t⁄S , S P SMu as

⁄S “ 1
| rS| if S “ rS or S “ Mztiu for some i P rS, and ⁄S “ 0 otherwise.

For this choice of ⁄,

rG pV, XM, ⁄q “ 1
| rS|I

´

X
rS ^ Xm | X

rScztmu, V
¯

,

so that R in (9.23) satisfies

R| rS| § I
´

X
rS ^ Xm | X

rScztmu, V
¯

(9.25)

for every rS Ñ r1, m ´ 1s. By Theorem 9.8, we get that pR, . . . , Rq P C.
Turning to su�ciency, suppose that pR, . . . , Rq P C. By Theo-

rem 9.8, for some V, XM with X1, . . . , Xm´1 conditionally independent
given V , V ´̋́ Xr1,m´1s ´̋́ Xm and PXm|Xr1,m´1s “ W , the inequalities
in (9.25) are met. By (9.24), (9.25),

rG pV, XM, ⁄q •
ÿ

SPSM : SSm

⁄SR|S|

• R

˜

ÿ

SPSM

⁄S |S| ´
ÿ

SPSM : SQm

⁄Spm ´ 1q
¸

.
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Since
ÿ

SPSM

⁄S |S| “
m
ÿ

i“1

ÿ

SPSM : SQi

⁄S “ m and
ÿ

SPSM : SQm

⁄S “ 1,

we get that min⁄
rG pV, XM, ⁄q • R, so that by Theorem 9.2 R is an

SK rate achievable by general source emulation.

Remark 9.11. We remark that general source emulation can strictly
outperform simple source emulation by achieving higher SK rates. In
the same vein as Theorem 9.10, it can be seen that R is an achievable
SK rate by simple source emulation i� pR, . . . , Rq is in the polyhedron

"

pR1, . . . , Rm´1q : Ri • 0,
ÿ

iPS

Ri § I
`

XS ^ Xm | XScztmu
˘

,

S Ñ r1, m ´ 1s
*

for some i.i.d. rvs X1, . . . , Xm´1 and with PXm|Xr1,m´1s “ W . The ca-
pacity region C of the MAC W is the convex closure of the union of all
such polyhedra whereas the union is known to be nonconvex in general,
explaining the remark.

The simple SK generation protocol of Theorem 9.9(i) as well as
general source emulation achieve an SK rate of at most R˚. This SK
rate of R˚ cannot be bettered even if general source emulation were
relaxed so as to free each channel input sequence Xi1, . . . , Xin from
being i.i.d., i P r1, m´1s. Such a relaxation is realized as follows. First,
the terminals in M engage in an initial round of communication, de-
picted collectively by Fp0q “ Fp0q pUMq. Next, channel transmissions
Xi1, . . . , Xin, not necessarily i.i.d., i P r1, m ´ 1s, occur with no inter-
vening communication, i.e., Fptq “ constant in intervals t “ 1, . . . , n´1.
Then the terminals in M enter into a concluding round of communi-
cation Fpnq “ Fpnq

`

UM, Fp0q, Xn
M

˘

. Finally, an SK for M is generated
in the form of local estimates

Kpnq
i “ Kpnq

i

`

Ui, Xn
i , Fp0q, F

˘

, i P M, (9.26)

where F “ `

Fp1q, . . . , Fpnq
˘

.
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We note that in all the three protocols above, the inputs to the
DMC W are chosen without knowledge of its previous outputs. This
raises the question: Can complex protocols that select channel inputs
based on feedback from the output terminal, attain SK rates exceeding
R˚? While the secrecy requirement precludes full public feedback by
terminal m, a coding scheme with judicious partial feedback which
a�ords a gain in (secure) transmission rates that exceed the information
leaked by feedback, might enhance SK rates beyond R˚ and perhaps
nearing R˚

f • R˚.
Consider the following augmented SK generation protocol entailing

feedback-dependent channel transmissions and limited input communi-
cation, of which general source emulation and its relaxation above are
special cases. After an initial round of communication by the terminals
in M, described collectively by Fp0q “ Fp0q pUMq, all the communica-
tion in intervals t “ 1, . . . , n ´ 1 are only by the DMC output terminal
m with Fptq “ Fptq

`

Um, Xt
m, Fp0q, F pt´1q˘. The channel transmissions

Xit “ Xit

`

Ui, Xt´1
i , Fp0q, F pt´1q˘ , t “ 1, . . . , n, from each input ter-

minal i P r1, m ´ 1s depend causally on all the information available
to it. Upon completion of the channel transmissions, a last round of
communication Fpnq “ Fpnq

`

UM, Xn
M, Fp0q, F pn´1q˘ occurs by the ter-

minals in M. Thereupon, an SK for M is generated as in (9.26) with
F “ `

Fp1q, . . . , Fpnq
˘

as described here. Such a protocol can be shown
to achieve an SK rate that is bounded above by R˚

f , and achieves R˚
f

for a symmetric DMC with

W pxm | x1, . . . , xm´1q “ W
`

xm | x‡p1q, . . . , x‡pm´1q
˘

(9.27)

for every permutation ‡ of t1, . . . , m ´ 1u.
Owing to the lack of a general single-letter characterization of Cf

and R˚
f , proof techniques for the previous protocol circumvent this dif-

ficulty by converting transmission schemes for a MAC with feedback
directly into SK generation schemes, all involving multi letter expres-
sions. The proofs of R˚

f as an upper bound for SK rates achieved by
the augmented protocol and the achievability of R˚

f for a symmetric
MAC, are omitted.

It remains open whether a su�ciently complex protocol can attain,
in general, an SK rate of R˚

f or more. We close with an example in-
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volving a MAC W for which a single-letter characterization of Cf Å C
is known.

Example 9.12 (Arithmetic adder MAC). Consider a DMC W : X1 ˆ
X2 Ñ X3 with X1 “ X2 “ t0, 1u , X3 “ t0, 1, 2u, and

W px3 | x1, x2q “ px3 “ x1 ` x2q .

The capacity region of the MAC W is

C “ tpR1, R2q : 0 § R1, R2 § 1, R1 ` R2 § 1.5u
and the capacity region with feedback is

Cf “ tpR1, R2q : 0 § R1, R2 § 1, R1 ` R2 § 1.58226u .

For a class of channel models that include the present W , a refinement
of the proof of Theorem 9.4 yields an improved upper bound CS § R˚

f .
Since W is a symmetric DMC (9.27), R˚

f is an achievable SK rate by
the previous augmented SK generation protocol. Hence, CS “ R˚

f “
0.79113.

9.4 Story of results and open problems

The realization that secure transmission, from a legitimate transmitter
to a legitimate receiver over a noisy channel when an eavesdropper has
access to wiretap side information, can be enhanced by public commu-
nication was illustrated first in [48] and shown comprehensively in [53].
SK capacity for a single-input single-output predecessor of the multi-
terminal channel model of this chapter, stated as Corollary 9.7, was
characterized in [54, 1]. Our treatment follows [22, 23, 84].

The SK capacity for a single-input multiple-output channel model
in Theorem 9.6 was obtained in [22]. Simple source emulation su�ced
to achieve SK capacity, and a general upper bound for achievable SK
rates was shown to be tight. Developed further for a channel model with
multiple input and output terminals, the lower bound for SK capacity
based on general source emulation in Theorem 9.2 and the upper bound
in Theorem 9.4, are from [23]. Links between achievable SK rates for
a channel model with a single output terminal and the transmission
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capacity region of the underlying MAC in §9.3.2, were obtained in [23].
The refinement for a special class of channel models of the upper bound
of Theorem 9.4 in terms of the farthest equal-rate tuple in the MAC
feedback capacity region, and described in the concluding segment of
§9.3.2, was shown to be tight in [84].

Extensions and open problems. As for its source counterpart in
Chapter 6, the multiterminal channel model of this chapter is a spe-
cialization of helper and privacy models of broader scope described in
[22, 23]. The corresponding secrecy capacities for a single-input model
were resolved fully in [22]. These capacities are shown to be achievable
by simple source emulation, and by even simpler means that involve no
public communication by the channel input terminal. When the eaves-
dropper additionally possesses wiretap side information Zn, known se-
crecy capacities for associated privacy models yield upper bounds for
wiretap secrecy capacities that are tight only under special circum-
stances [22]. More general results for this latter model can be found in
[29].

For the expanded helper and privacy settings in [23] of the general
multiterminal channel model of §9.1, only partial results are available.
The SK capacity is unknown even in the simplest setting of a SK for all
the terminals in M that is concealed from an eavesdropper with access
to (only) the public communication. The discussion in §9.3.2 exposes
the inadequacies of both the lower bound in Theorem 9.2 emerging
from general source emulation and the upper bound in Theorem 9.4.
Evidence of the di�culty in creating suitable communication-based cor-
relations among channel input terminals is manifest already in the spe-
cial case of a multiaccess channel model with a sole output terminal
described in that section. However, o�ering potential insights for an
approach are beneficial links to the capacity region (with and without
feedback) of the underlying MAC, identified in [23, 84]. The crux of the
challenge in this SK capacity characterization is a precise understand-
ing of the tradeo�s between gains in channel transmission rates using
coding schemes that are bolstered by interactive communication pro-
tocols, and the information leaked by the latter. Extensions to wiretap
secret key capacity remain unvanquished.
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