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Perfect Omniscience, Perfect Secrecy,
and Steiner Tree Packing
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Abstract—We consider perfect secret key generation for a “pair-
wise independent network” model in which every pair of termi-
nals share a random binary string, with the strings shared by dis-
tinct terminal pairs being mutually independent. The terminals
are then allowed to communicate interactively over a public noise-
less channel of unlimited capacity. All the terminals as well as an
eavesdropper observe this communication. The objective is to gen-
erate a perfect secret key shared by a given set of terminals at the
largest rate possible, and concealed from the eavesdropper. First,
we show how the notion of perfect omniscience plays a central role
in characterizing perfect secret key capacity. Second, a multigraph
representation of the underlying secrecy model leads us to an effi-
cient algorithm for perfect secret key generation based on maximal
Steiner tree packing. This algorithm attains capacity when all the
terminals seek to share a key, and, in general, attains at least half
the capacity. Third, when a single “helper” terminal assists the re-
maining “user” terminals in generating a perfect secret key, we give
necessary and sufficient conditions for the optimality of the algo-
rithm; also, a “weak” helper is shown to be sufficient for optimality.

Index Terms—Perfect omniscience, perfect secret key, perfect se-
cret key capacity, PIN model, public communication, spanning tree
packing, Steiner tree packing.

I. INTRODUCTION

G IVEN a collection of terminals , sup-
pose that every pair , of terminals, ,

share a random binary string of length (bits), with the strings
shared by distinct pairs of terminals being mutually indepen-
dent. Then all the terminals are allowed to communicate in-
teractively in multiple rounds over a public noiseless channel
of unlimited capacity, with all such communication being ob-
served by all the terminals. The main goal is to generate, for
a given subset of the terminals in , a perfect secret key
(SK) namely shared uniformly distributed random bits—of the
largest size—such that these shared bits are exactly independent
of an eavesdropper’s observations of the interterminal commu-
nication. All the terminals in cooperate in generating such a
perfect SK for .
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This model for perfect SK generation, hereafter referred to as
a “pairwise independent network” (PIN) model, is a specialized
version of an earlier PIN model [20], [19], [14]. In the latter,
every pair of terminals observe a pair of correlated signals (not
necessarily identical as here) that are independent of pairs of sig-
nals observed by all other terminal pairs. In [14], we had studied
Shannon theoretic SK generation (not in the perfect sense) in the
asymptotic limit of large signal observation lengths, and its con-
nection to the combinatorial problem of Steiner tree packing of
a multigraph. Leading work on Shannon theoretic SK genera-
tion with public communication originated in [9], [10], [1]; see
also [2] for related models.

In contrast with [14], the present work bears the essence of
“zero-error information theory,” and accordingly, we rely on
mathematical techniques of a combinatorial nature. Specifically,
our emphasis here is on perfect SK generation for fixed signal
observation lengths as well as for their asymptotic limits. For
convenience, we shall continue to refer to our present model as
the PIN model. This model possesses the appropriate structure
for investigating the concept of perfect SK in which the gener-
ated key is exactly recoverable by every terminal in the secrecy
seeking set ; is exactly independent of the eavesdropper’s ob-
servations; and is uniformly distributed. Also, its special struc-
ture makes for a new concept of perfect omniscience, which
plays a central role. Furthermore, in the spirit of [14], the PIN
model reveals points of contact between perfect SK generation
and the combinatorial problem of maximal Steiner tree packing
of a multigraph. We remark that tree packing has been used in
the context of network coding (see, for instance [7], [17]).

Our three main contributions described below are motivated
by a known general connection between (not necessarily per-
fect) SK generation at the maximum rate and the minimum
communication for (not necessarily perfect) omniscience [3],
[4], and by the mentioned connection between the former and
the combinatorial problem of maximal Steiner tree packing of a
multigraph [14].

First, the concept of perfect omniscience enables us to ob-
tain a single-letter formula for the perfect SK capacity of the
PIN model; moreover, this capacity is shown to be achieved
by linear noninteractive communication, and coincides with the
(standard) SK capacity derived in our previous work [14]. This
result establishes a connection between perfect SK capacity and
the minimum rate of communication for perfect omniscience,
thereby particularizing to the PIN model a known general link
between these notions sans the requirement of the omniscience
or secrecy being perfect [3].

Second, the PIN model can be represented by a multigraph.
Taking advantage of this representation, we put forth an efficient
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algorithm for perfect SK generation using a maximal packing of
Steiner trees of the multigraph. This algorithm involves public
communication that is linear as well as noninteractive, and pro-
duces a perfect SK of length equal to the maximum size of
such Steiner tree packing. When all the terminals in seek
to share a perfect SK, the algorithm is shown to achieve per-
fect SK capacity. However, when only a subset of terminals in

wish to share a perfect SK, the algorithm can fall short
of achieving capacity; nonetheless, it is shown to achieve at least
half of it. Additionally, we obtain nonasymptotic and asymptotic
bounds on the size and rate of the best perfect SKs generated by
the algorithm. These bounds are of independent interest from
a purely graph theoretic viewpoint as they constitute new esti-
mates for the maximum size and rate of Steiner tree packing of
a given multigraph.

Third, a special configuration of the PIN model arises when
a lone “helper” terminal aids the “user” terminals in

generate a perfect SK. This model has two special fea-
tures: first, (a single) terminal possesses all the bit strings that
are not in ; second, a Steiner tree for is a spanning tree for
either or . These features enable us to obtain necessary and
sufficient conditions for Steiner tree packing to achieve perfect
SK capacity, as also a further sufficient condition that posits a
“weak” role for the helper terminal .

Preliminaries and the problem formulation are in Section II.
Our results are described in Section III and proved in Section IV.
A discussion follows in Section V.

II. PRELIMINARIES

Suppose that the terminals in ,
observe, respectively, independent and identically dis-
tributed (i.i.d.) repetitions of the rvs , denoted by

, where .
We shall be concerned throughout with a PIN model

[19], defined by each rv , , being of
the form with components,
and the “reciprocal pairs” of rvs
being mutually independent. We assume further that

, where is uniformly
distributed over the set of all binary strings of length (bits).
Thus, every pair of terminals is associated with a random binary
string that is independent of all other random binary strings
associated with all other pairs of terminals. The assumption
is tantamount to every pair of terminals , sharing at the
outset privileged and pairwise “perfect secrecy” of bits.
Following their observation of the random sequences as above,
the terminals in are allowed to communicate among them-
selves over a public noiseless channel of unlimited capacity;
all such public communication, which maybe interactive and
conducted in multiple rounds, is observed by all the terminals.
A communication from a terminal, in general, can be any
function of its observed sequence as well as all previous public
communication. The public communication of all the terminals
will be denoted collectively by .

Definition 1: The communication is termed linear
noninteractive communication (LC) if

with1 , where is a ma-
trix2 with -valued entries . The integer

, represents the length (in bits) of the
communication from terminal ; the overall communication

has length (bits).
The primary goal is to generate shared perfect secret common

randomness for a given set of terminals at the largest
rate possible, with the remaining terminals (if any) cooperating
in secrecy generation. The resulting perfect secret key must be
accessible to every terminal in ; but it need not be accessible
to the terminals not in and nor does it need to be concealed
from them. It must, of course, be kept perfectly secret from the
eavesdropper that has access to the public interterminal commu-
nication , but is otherwise passive, i.e., unable to tamper with
this communication.

The following basic concepts and definitions are adapted
from [3], [4]. For rvs , , we say that is perfectly re-
coverable from if for some function

. With the rvs and representing a secret key and the
eavesdropper’s knowledge, respectively, information theoretic
perfect secrecy entails that the security index3

(1)

where is the range of and denotes cardinality. This re-
quirement simultaneously renders to be uniformly distributed
and independent of .

Definition 2: Given any set of size , a rv
is a perfect secret key (SK) for the set of terminals achiev-

able with communication , if is perfectly recoverable4 from
for each and, in addition, it satisfies the perfect

secrecy condition (1).

Definition 3: A number is an achievable perfect SK rate
for a set of terminals if there exist perfect SKs
for achievable with appropriate communication, such that

where is the range of . The largest achievable perfect
SK rate is the perfect SK capacity .

Thus, by definition, the perfect SK capacity for is the
largest rate of a rv that is perfectly recoverable at each terminal
in from the aggregate information available to it, and is
uniformly distributed and concealed from an eavesdropper
with access to the public interterminal communication; it need
not be concealed from the terminals in , which
cooperate in secrecy generation. The notion of perfect SK
capacity is more stringent than that of SK capacity under the
requirements of the key being asymptotically recoverable for
each and the security index tending to 0, both as ;
in particular, now the security index must equal zero for all

1All additions and multiplications are modulo 2.
2It is assumed that � � �� � � �� � � � ��.
3All logarithms are to the base 2.
4The extra requirement of perfectness in recoverability is not a limiting factor

for the PIN model in contrast with other models of SK generation.
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sufficiently large . The latter SK capacity for the PIN model
has been characterized in [12]–[14].

A central role is played by the notion of perfect omni-
science which is a strict version of the concept of omniscience
introduced in [3]. This notion does not involve any secrecy
requirements.

Definition 4: The communication is communication
for perfect omniscience for if is perfectly
recoverable from for every . Further, is
linear noninteractive communication for perfect omniscience

if is an LC and satisfies the previous per-
fect recoverability condition. The minimum length (in bits)
of an , i.e., , will be de-

noted by . The minimum rate of is
.

III. RESULTS

A. Perfect SK Capacity for the PIN Model

Our first main contribution is a (single-letter) characterization
of the perfect SK capacity for the PIN model, which brings forth
a connection with the minimum rate of communication for per-
fect omniscience.

Theorem 1: The perfect SK capacity for a set of terminals
is

(2)

where

(3)

with

(4)

Furthermore, this perfect SK capacity can be achieved with
linear noninteractive communication.

Remarks:
i) Clearly, the perfect SK capacity, by definition, cannot ex-

ceed the (standard) SK capacity studied in [12], [14]. In-
deed, Theorem 1 implies that the latter is attained by a
perfect SK.

ii) In the same vein, the minimum rate of communication for
(asymptotic) omniscience [3] can be attained for the PIN
model with perfect recoverability at of
for all sufficiently large, and with linear noninteractive
communication. We mention that noninteractive commu-
nication, without a claim of linearity, was shown to suffice
for (asymptotic) omniscience in [3].

B. Maximal Steiner Tree Packing and Perfect SK Generation

Theorem 1 serves to establish the sufficiency of an LC in
achieving perfect SK capacity through the intermediate attain-
ment of perfect omniscience for , as seen in its proof below.

However, as also evident from the proof, decoding is by exhaus-
tive search of prohibitive complexity.

The PIN model can be represented by a multigraph. This rep-
resentation leads us to an efficient algorithm for perfect SK gen-
eration, not necessarily through perfect omniscience, by a max-
imal packing of Steiner trees of the multigraph. In particular,
this algorithm will be seen to entail public communication in
the form of an LC. On the other hand, such an algorithm based
on maximal Steiner tree packing need not attain perfect SK ca-
pacity. The size of the largest perfect SK that is thus gener-
ated can be estimated in terms of the minimum length of an

.

Definition 5: A multigraph with vertex set
and edge set is a connected undirected graph with no

selfloops and with multiple edges possible between any pair
of vertices. Given and a positive integer , let

denote the multigraph with vertex set and
edge set wherein every vertex pair is connected by times
as many edges as in ; in particular, . Furthermore,

will denote the total number of edges in .
To the PIN model (cf. Section II), we can asso-

ciate a multigraph with and the
number of edges connecting a vertex pair in equal to

; in particular, the edge connecting will be associated
with the random binary string .

By this association, it will be convenient to represent (3) and
(4) as

(5)

with

(6)

whereupon (2) can be restated as

(7)

Furthermore, it is easy and useful to note that for every ,

(8)

Definition 6: For , a Steiner tree (for ) of
is a subgraph of that is a tree, i.e., containing no cycle,

and whose vertex set contains ; such a Steiner tree is said to
cover . A Steiner tree packing of is any collection of edge-
disjoint Steiner trees of . Let denote the maximum
size of such a packing (cf. [5]), i.e., the maximum number of
trees in the packing. The maximum rate5 of Steiner tree packing
of is . When , a Steiner
tree becomes a spanning tree, with corresponding notions of
spanning tree packing, maximum size and rate.

Given a PIN model, the notion of Steiner tree packing of the
associated multigraph leads to an efficient algorithm for con-
structing an and thereby generating a perfect SK.

5In fact, ��� ����� � exists, as shown later in Proposition 4.
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The next Theorem 2 indicates that the largest size of a perfect SK
that the algorithm generates is the maximum size of the Steiner
tree packing. Furthermore, Theorem 2 and its corollary, and
Theorem 5 provide nonasymptotic and asymptotic bounds on
the size and rate, respectively, of the best perfect SKs generated
by the algorithm. Of independent interest from a purely graph
theoretic viewpoint, these results also constitute new bounds for
the maximum size and rate of Steiner tree packing of a given
multigraph.

Theorem 2: For the multigraph associated with
a PIN model and for , it holds for every that

i) the terminals in can devise an of total
length and subsequently generate
a perfect SK with ;

ii)

(9)

iii) furthermore, is bounded below by the value
of an integer linear program according to

where

(10)

with

(11)

Corollary 3: For every , the maximum size of Steiner
tree packing of a multigraph satisfies

(12)

with equality when .

Remarks:
i) Note that the bounds in Theorem 2 are nonasymptotic,

i.e., valid for every . Also, note in the bound in Theorem
2 ii) for that is defined in terms
of its operational significance.

ii) Further, Theorem 2 provides a nonasymptotic computable
lower bound for in terms of an integer linear
program. The optimum value of its linear programming
relaxation constitutes a further lower bound which equals

, by (8).
Next, we turn to connections between perfect SK capacity

and the maximum rate of Steiner tree packing of
. The following concept of “fractional” Steiner

tree packing will be relevant.
For , consider the collection

of all distinct Steiner trees (for ) of , where
. Consider the region

(13)

Fig. 1. Example.

Definition 7: For a multigraph and ,
the maximal “fractional” Steiner tree packing of , denoted

, is .

Remarks:
(i) Clearly, corresponds to a linear program with

finite optimum value, and the maximum is attained. Fur-
thermore, it is readily verified that for every ,

(14)

(ii) We observe that in Definition 6,
.

Proposition 4: For a multigraph and ,
it holds that the maximum rate of Steiner tree packing (for )
of satisfies

(15)

Theorem 5: For the multigraph associated with
the PIN model and for , it holds that

(16)

Furthermore, when ,

(17)

Remark: For the PIN model with terminals, every Steiner
tree has at most edges. Also, from (16),

for all large . Hence, the overall complexity of the per-
fect SK generation algorithm based on Steiner tree packing is
linear (in ).

The upper bound on in Theorem 5 is
not tight, in general, as seen by the following example.

Example: Consider the multigraph [7] in Fig. 1 with
and ; the terminals in are represented by the solid
circles and every shown edge is single. Computations give that

by (7), (5), while by
Proposition 4 and the scheme in Lemma 1.

C. The Single Helper Case

As observed after Theorem 5, the maximum rate of Steiner
tree packing can fail to achieve perfect SK capacity. A nat-
ural question that remains open is whether the maximum rate
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of Steiner tree packing equals perfect SK capacity for the spe-
cial case of the PIN model in which a lone “helper” terminal
assists the “user” terminals in generate a
perfect SK. In this section, we provide partial answers.

First, we derive necessary and sufficient conditions for the
maximum rate of Steiner tree packing to equal perfect SK ca-
pacity in (16) and, analogously, the (nonasymptotic) maximum
size of Steiner tree packing to meet its upper bound in (12).
These conditions entail the notion of a fractional multigraph.
Throughout this section, we shall assume that

.

Definition 8: Given a multigraph as
in Definition 5, a fractional multigraph
in (with vertex set ) has edge set

. For any
such , the complementary fractional multigraph

has vertex set and edge set
. The

definitions of in (6), in (5), in (13)
and in Definition 7 all have obvious extensions to

and as well. Further, (8) and (14) also hold for and
.

Proposition 6: For the multigraph associated
with the PIN model, the following hold:

i)

ii)

iii)

iv)

where the optima in i) and ii) are over all fractional multigraphs
in , and the optima in iii) and iv) are over all

multigraphs in for which consists of only
integer-valued .

Theorem 7: For the multigraph associated with
the PIN model:

i)

(18)

iff

(19)

where the minimum is over all fractional multigraphs
in ;

ii)

iff

(20)

where the minimum is over all multigraphs
for which consists of only integer-valued .

Our final result provides another sufficient condition for the
maximum rate of Steiner tree packing to equal perfect SK ca-
pacity. Recall from Theorem 1 that, in general, perfect SK ca-
pacity for can be attained with public communication that
corresponds to the minimum communication for perfect omni-
science. If the latter can be accomplished with the sole helper
terminal communicating “sparingly,” then it transpires that
maximal Steiner tree packing attains the best perfect SK rate.
An analogous nonasymptotic version of this claim also holds.
Heuristically, a sufficient “weak” role of the helper terminal
turns the Steiner tree packing of , in effect, into a spanning
tree packing of .

Let denote the degree of vertex , .
Clearly, any [respectively, ] that at-
tains the minimum corresponding to [cf. (5)] [re-
spectively, (cf. (10))] must satisfy (respec-
tively, ), .

Theorem 8: For the multigraph associated with
the PIN model:

i) if there exists that attains [cf.
(5)] with , then

ii) if there exists that attains [cf.
(10)] with , then

IV. PROOFS

Proof of Theorem 1: From Remark i) following Theorem
1, we need prove only the achievability part. The main step is
to show, using a random coding argument, the existence with
large probability of an of small length under appro-
priate conditions; the terminals in then extract from the cor-
responding perfect omniscience a perfect SK of optimum rate.

Let take values in

, where . We denote a realiza-
tion of by . Fix . Let

consist of mutually independent random matrices
of appropriate dimensions as in Definition 1. Furthermore, the
rv consists of i.i.d. equiprobable components, .
Clearly, makes for a random LC.

Since for to constitute an , it suffices
that the mapping
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be one-to-one for every , we have

does not constitute an

such that
for each

satisfying
for some such that

for each
(21)

satisfying
and

for each

(22)

where (21) is by the linearity of the communication and (22) is
obtained by applying the union bound to the event in (21).

Now, we note by the assumed independence of
and the fact that the components of are i.i.d. and equiprob-
able, , that for each nonempty , and any

satisfying , and , we have

for every

for every

(23)

Continuing with (22) upon using (24), we obtain

does not constitute an

(24)

We note that in this proof, the special structure of the PIN model
is used for the first time in the second inequality above.

Now, let achieve the minimum in the right
side of (3). Pick an arbitrary and choose in (24) as

. Then, by the definition of
, the right side of (24) decays to zero exponentially rapidly

in ; in particular, we get that for all sufficiently large, con-
stitutes an with large probability. This implies the
existence of a (deterministic) that consti-
tutes an for all sufficiently large.

It remains to extract a perfect SK from the perfect omni-
science obtained above. By the definition of the PIN model, ob-
serve that

By the linearity of the above, it is readily seen that
the cardinality is
the same for all feasible where

, and that this common number is at least

For each communication message , we index the
elements of the coset in a
fixed manner. Then, for a realization , every terminal
in (which knows by omniscience) picks as the perfect SK
the index of in its coset, as in [18]. Since takes values
in and since each coset has the same size, it follows that
this random index is uniformly distributed and independent of
the coset (the communication message), thereby constituting a
perfect SK. Lastly, the rate of this perfect SK is at least

where is arbitrary.

Proof of Theorem 2: The proof will rely on the technical
Lemma 1 which is stated next and established in Appendix A.

Lemma 1: Let be a tree, and associate with each
edge a bit. Then the terminals in can devise a (noninteractive)
LC of length bits enabling every terminal in to recover
all the edges of , i.e., all the bits associated with the edges of .

i, ii) If , say, then is the disjoint union
of Steiner trees (each of which covers ) and the
remaining edge set , so that

(25)

where denote the number of edges in .
Apply Lemma 1 to every Steiner tree , , in (25)

to get LCs that enable every terminal in to recover the edges
of all the , . An additional communication of
bits will lead to the recovery of the leftover edges in . Thus,
there exists an of length

which establishes the first assertion of i); also, clearly,
, thereby proving ii). To establish the

second assertion of i), it remains to extract a perfect SK from the
perfect omniscience obtained using the above of
total length (bits). This is accomplished
exactly as in the proof of Theorem 1, whereby the terminals in

extract a perfect SK with .
iii) Consider an achieving

with (bits), respectively. Fix
, and consider

with cardinality . For every
and every , it holds that .
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Consequently, by the perfect recoverability property of an
, such a terminal must be able to discern all the se-

quences in using only . Note also that for every
and every , it follows that ; there-

fore, the set of all communication messages corresponding to

has cardinality at most . From the mentioned condition
on perfect recoverability at terminal of all sequences

in , it must hold that .
Since this argument is valid for every , , we
have that and, hence, is
at least .

Proof of Corollary 3: The inequality in the Corollary 3
is immediate from (9) and (11). Equality when re-
lies on Lemma 2 and 3 below; Lemma 2 is a classic result of
Nash-Williams [11] and Tutte [16] on the maximal size of span-
ning tree packing of a multigraph, and Lemma 3 [3] provides an
upper bound for (standard) SK capacity.

Lemma 2 [11], [16]: For a multigraph ,

where the minimum is over all partitions of .

Lemma 3: [3] For the multigraph associated
with the PIN model and for

where the minimum is over all partitions of such that each
atom of intersects .

By (6) and (11), with and
in the roles of and in (6), it is clear that

(26)

noting that the value on the right-side above is an integer.
Then the claimed equality follows since

crosses

(27)

where (27) is by Lemma 3.

Proof of Proposition 4: By Remark ii) after Definition 7 in
Section III, we have that

Since

the assertion follows.

Proof of Theorem 5: The second inequality of the theorem
is immediate by Theorem 2 i) and the definition of .

The proof of the first inequality takes recourse to the fol-
lowing result.

Lemma 4 [8], [6]: For a multigraph that is
Eulerian6 and

Now, for every , , and so

By Lemma 3

(28)

Restricting ourselves to even, note that is Eulerian, i.e.,
each vertex has even degree. Then since the term within in
the right side in Lemma 4 is clearly an integer, we have that

thereby establishing the left inequality of the theorem.

6The number of edges incident on each vertex is even.
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Proof of Proposition 6: We prove i) and ii). The proofs of
iii) and iv) are similar but simpler, and are omitted.

i) Similarly as in Remark i) following Definition 7, we note
that the right side of i) corresponds to a linear program with
finite optimum value, and the maximum is attained. Let ,

, attain the maximum in the right
side of i), where and attain the re-
spective maxima in and , with (re-
spectively, ) being the number of all distinct spanning trees in

(respectively, ) of . Clearly,
is feasible for , noting that a Steiner tree for of is
either a spanning tree in or a spanning tree in .

ii) Similarly as in the proof of i), we let ,
attain the minimum in the RHS of ii),

where and attain the re-
spective minima in and .
Clearly, is feasible for

, thereby proving ii).
Similar arguments considering the corresponding integer

linear programs lead to iii) and iv).

Proof of Theorem 7: We shall prove only i); the proof of
ii) is similar and is omitted.

First, we show that (19) implies (18), i.e.,

(29)

(since the reverse inequality always hold by Theorem 5). Let a
fractional multigraph achieve the minimum in
the right side of (19). Then

by (15)

by Proposition 6 i)

(30)

Next, because the linear program in the right side of (19) in-
volves a cost and linear constraints with only integer-valued co-
efficients, can always be taken to be rational,
i.e., all in are rational. Next, let be the least common
multiple of all so that is a multigraph
with edge set . Then

by (14)

by (8) (31)

the second equality is by Proposition 4 and the second assertion
of Theorem 5 noting that the vertex set of is . By a similar
argument, we have that

(32)

Substituting (31) and (32) in (30)

by (19)

thereby giving (29).
Conversely, to prove that (18) implies (19), i.e.

[since the reverse inequality always holds by Proposition 6 ii)],
we can assume similarly as above that is attained
by with rational components, where
is the number of distinct Steiner trees (for ) of [see pas-
sage preceding (13)]. Next, since ,
the collection of all distinct Steiner trees (for ) of , namely

can be decomposed as , where (respec-
tively, ) comprises all spanning trees in (respectively, ).
Consider the fractional multigraph in defined by

Then, it follows that

(33)

since

by the definition of ; the reverse inequality is always true.
Finally, the right side of (18) satisfies

by (18), (15), and (7).

Proof of Theorem 8: First, we prove ii), and then i) by ap-
plying ii) to and taking appropriate limits.

The proof of ii) entails considering a modification of
obtained by “edge-splitting” at the helper vertex .

Specifically, if has more than one vertex in connecting to ,
then for any two such vertices , , let
denote the multigraph obtained from by splitting off the edges



6498 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010

and , i.e., by reducing and each by unity
and increasing by unity; note that .

The following claim, whose proof is relegated to Appendix B,
will be used to establish the theorem.

Claim: For a multigraph ,
a) if is connected to at most one vertex in or if there

exists attaining with ,
then

(34)

b) if is connected to more than one vertex in and if
there exists attaining with

, then for connecting to there
exists , also connecting to , such
that attains , and so

(35)

c) if is connected to more than one vertex in , then for
, both connecting to ,

In order to prove ii), we observe first that it holds if the hy-
pothesis of Claim a) is met. It remains to consider the realm of
Claim b). Let be as in Claim b). Then we obtain

for some , connecting to , and
with attaining . If or

connects to at most one vertex in in , then by (34), (35),

Else, is back in the realm of Claim b), noting
that the degree of in is and
as .

Thus, we obtain a finite number of multigraphs
, such that for some

in , and satisfying

(36)
and

(37)

Using Claim c) repeatedly

by (37)

(38)

by the repeated use of (36). Then, ii) is immediate from (38) and
Corollary 3.

To establish i), the hypothesis implies (with a slight abuse of
notation) that

(39)

Pick that attains the left side with all rational
components, and let be the least common multiple of their de-
nominators. Thus, for every integer ,
attains . As , it follows from ii) that

by (39).

Upon dividing both sides by and taking limits as
(with fixed), we obtain i).

V. DISCUSSION

We conclude by mentioning several unresolved questions
raised by this work.

When all the terminals in seek to share a perfect SK, i.e.,
, we see from Theorem 5 that maximal spanning tree

packing attains perfect SK capacity; this is no longer true, in
general, when (cf. the example in Section III-B). How-
ever, the single helper model in Section III-C possesses the spe-
cial feature that a Steiner tree for is a spanning tree for either

or . In spite of this, it is unresolved whether a maximal
Steiner tree packing of attains perfect SK capacity (i.e., if the
second inequality in (16) is tight) or if (12) holds with equality
(whereupon the sufficient conditions of Theorem 8 become su-
perfluous). We note that the optimality of maximal spanning tree
packing in (12) and (17), constitutes, in effect, a reformulation
of the classic graph-theoretic results of Nash-Williams [11] and
Tutte [16]. A better information theoretic understanding of (12)
and (17) is desirable, and might suggest alternative interpreta-
tions of related results in combinatorial tree packing.

Perfect SK capacity in Theorem 1 was shown to be achievable
by way of the attainment of perfect omniscience at a minimum
communication rate . However, when , The-
orem 5 asserts that maximal spanning tree packing attains ca-
pacity; an examination of its proof (cf. Lemma 1) shows the cor-
responding rate of communication to be which
can be less than . It remains open to characterize the
minimum rate of public communication needed to attain perfect
SK capacity.

Maximal Steiner tree packing is guaranteed by Theorem 5 to
attain a fraction of at least half of the capacity . What is
the best feasible value of this fraction?

Last, the design of efficient algorithms for perfect SK gener-
ation is largely unexplored.

APPENDIX A
PROOF OF LEMMA 1

We prove a slightly stronger result that there exists an LC
whose null space comprises only the all-zero and the all-one
strings (corresponding to the edges in being labelled all zero
or all one) which clearly enables every terminal in to recover
all the edges of . We prove the claim by induction. When

, say, with , then
mod 2 constitutes an LC whose null space is . Next,
suppose the claim is true for all trees with edges, .
Given a tree with edges, pick an end vertex of the tree
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(a vertex with degree one), and let be the sole vertex con-
necting to . Then , and

is a subtree of . By the induction hypoth-
esis, there exists an LC for , say, of length
(bits) and whose null space is . Let be an-
other vertex connecting to and let and

. Then, consider as an LC
of of length . It is now clear that the null space of this
LC is .

APPENDIX B
PROOF OF CLAIM IN (THE PROOF OF) THEOREM 8

a) Let denote a subgraph of in , where
consists only of those edges in whose both end

vertices lie in . Clearly

Thus, it suffices to show that

(B-1)

Consider first the case where attains
. Without loss of generality, let

, be the set of vertices in connecting to . For any
, since , we have that

[see (11)]. Consequently, since ,
we see that , with
components summing to is feasible for

. Thus, , estab-
lishing (B-1). A nearly identical argument would show that
(B-1) holds too for the case when at most vertex 1 is connected
to , and is omitted.

b) Consider any as in the second para-
graph of the proof of Theorem 8, and let at-
tain . Then, is feasible for

, so that

(B-2)

Without loss of generality, let be as in the proof of
Claim a). To prove Claim b), it suffices to show for that
there exists such that is
feasible for if . This would mean
that

(B-3)

which, together with the observation that ,
establishes Claim b). To this end, referring to (11), for ,
set

(B-4)

and let

(B-5)

We make the following
Claim d): For , there exists con-

necting to with the properties that
a) for such that , it holds that ;
b) for such that , it holds that .
Then, with the choice of as in the Claim d), a simple check

of all the possibilities for (in or in ) that are feasible
in (11), shows that is feasible for

, thereby establishing (B-3) [and hence Claim b)].
It only remains to establish Claim d). We first state the fol-

lowing facts with accompanying proofs.
Fact 1: For

. This holds by observing
that

.
Fact 2: For with , it holds that

and are both in . To see this, note first that

by Fact 1.

Also, , since is
feasible in (11). The fact follows.

Fact 3: For , let denote the total number
of edges connecting to all the vertices in . Then, for

, if then , and if then
. To see this, consider first the case .

As (since ), we have . Since
, . Also, since

is feasible in (11), . Subtracting
the latter from the former gives . The second
assertion of the fact is proved similarly.

Fact 4: The intersection of all in satisfying
, when nonempty, is also in . The union of all in satis-

fying , when nonempty, is also in .
The first assertion in Fact 4 is obtained by observing that the

union of all in with , does not contain
, and by a repeated use of Fact 2. The second assertion would

follow similarly by Fact 2 if the union of all in with
, is strictly contained in . Suppose not; then this

union is exactly . The ensuing contradiction can be seen, for
instance, with as above with . Then

by Fact 3 and
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by the assumption

which is a contradiction.
Finally, to prove Claim d), let (respectively, ) represent

the intersection (respectively, union), when nonempty, in Fact
4. It suffices now to show that there exists (when

) such that and connects to ; this follows
from

and

Then, any as in Claim d), a) must contain and hence the
above. On the other hand, any as in Claim d), b) must be

contained in and so cannot contain the above. The cases
or are handled trivially.

c) Let and suppose that
attain . If contains at least one

edge connecting , then is also a Steiner
tree packing of , so that .
Else, let , say, be the Steiner tree that contains an edge
connecting that emerged by splitting off and
of . Then,
is -connected and hence contains a Steiner tree for

in that corresponds to ; clearly, again
.
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