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Signal Set Design for Band-Limited Memoryless 
Multiple-Access Channels with Soft 

Decision Demodulation 
PRAKASH NARAYAN, MEMBER, IEEE, AND DONALD L. SNYDER, FELLOW, IEEE 

Absfract -Signal sets are identified that maximize the cutoff rate 
region for a multiple-access channel with an additive white Gaussian noise, 
in which the demodulator output alphabet is allowed to he infinite (“in- 
finitely soft decisions”). The optimizing designs consist of a simplex signal 
set for each sender, such that each sender’s set is orthogonal to those of 
the other senders. For “second moment” and for “fractional out-of-hand- 
energy” bandwidth constraints on the signals of each sender, conditions 
are derived under which mutually orthogonal simplex sets are still optimal. 
For the second moment constraint, simplex sets derived from sinusoidal 
functions yield an optimal design and, for the out-of-hand energy con- 
straint, simplex sets derived from prolate spheroidal wave functions are 
optimal. Choices of signal sets that maximize the cutoff rate region for an 
additive shot-noise limited multiple-access optical channel, subject to aver- 
age energy and peak amplitude constraints, are also identified. 

I. INTRODUCTION 

I N A CODED digital communication system, the combi- 
nation of the modulator, waveform channel, and demod- 

ulator can be considered to form a discrete channel for 
communication from the encoder to the decoder, which act 
to combat errors between a transmitted message and its 
reproduced version at the receiver. One would then like to 
design modulation schemes which would present the “best” 
discrete channel to the encoder and decoder, resulting in 
the optimum performance of the overall system. This is 
achieved by optimizing a suitable measure of performance 
of the discrete channel. Several parameters characterizing a 
single-user communication channel, such as channel capac- 
ity and error probability, have been proposed and used. 

The use of the cutoff rate parameter R, as a criterion in 
evaluating the relative merits of different coding and mod- 
ulation schemes was first proposed by Wozencraft and 
Kennedy [l] in 1966. In 1974, Massey [2] gave an eloquent 
argument in favor, of the cutoff rate parameter R, as a 
measure of performance for the coordinated design of 
modulation and coding in a communication system. By 
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interpreting R, as a function of the modulator and de- 
modulator, Massey demonstrated how it could be used to 
design the best discrete channel as seen by the encoder and 
decoder. Although the “optimality” (with respect to the 
error probability criterion) of a simplex signal set on a 
single-user infinite-bandwidth additive white Gaussian 
noise channel had been conjectured for several years be- 
fore 1974, it was not until then that Massey [2J rigorously 
demonstrated that such a signal set maximized the cutoff 
rate of this channel for infinitely soft decisions. To our 
knowledge, the simplex set has not yet been shown to 
optimize other performance measures such as channel 
capacity or the probability of a decoding error, nor has it 
been shown to be optimal under the R, criterion for other 
channels with Gaussian noise, such as a band-limited 
channel or a multiple-access channel. In this paper, we 
extend Massey’s results to the multiple-access Gaussian 
channel by adopting the size of the cutoff rate region as the 
measure of goodness of the signal sets for the several 
senders. We show that mutually orthogonal simplex sets 
are the best choice of modulation when the senders are 
constrained only in their average energies. When the 
senders are also constrained in their bandwidth utilization, 
we establish conditions under which simplex sets remain 
optimal. 

Snyder and Rhodes [3] identified modulation formats 
that maximize the cutoff rate parameter for a single-user 
shot-noise limited optical channel with infinite bandwidth 
under simultaneous constraints on average energy and 
peak amplitude. When the modulator uses up all the 
available energy, they showed that pulse-position modula- 
tion maximizes the cutoff rate R,. We extend these results 
to two senders by maximizing the cutoff rate region and 
identifying the optimal signal sets. We also establish condi- 
tions under which this optimality is preserved when con- 
straints are imposed on signal bandwidth. 

A two+ender one-receiver multiple-access channel that 
is constant, discrete, and memoryless is specified by a set 
of transition probabilities 

(1) 
where u and u are codeletters transmitted by sender 1 and 
sender 2 from their code alphabets Xi = (1,. * *, a} and 
x2 = (1;. f) b }, respectively, and where w is a received 
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letter in the alphabet Y = { 1,. * . , c}, in a manner that, for 
every positive integer n, 

n 

where xl,,,, x2,,,, and y, are the m th digits transmitted by 
user 1, transmitted by user 2, and received over the chan- 
nel, respectively. 

We now assume that both senders employ block codes 
of length n with Mi and M2 codewords, respectively, for 
sender 1 and sender 2. Then the rate for sender i is defined 
to be 

In i$ 
Ri=- nats/channel use 

n (3) 

for i = 1,2. We also assume that the encoders are fed by 
independent information sources so that the codeword 
Xl = (x11, $2,. . ., xi,J transmitted by sender 1 is indepen- 
dent of the codeword x2 = (x2i, x22,‘. ., x2,J transmitted 
by sender 2. 

alphabets Xi- and X2, respectively, and let C, and C,-be 
the particular codes employed by sender 1 and sender 2, 
respectively. To each choice (C,, C,), we assign the prob- 
ability equal to the joint probability that one would pick 

Consider now random coding for this two-user channel. 
Let 4, and q2 be probability distributions over the input 

with 

Ri+h/u) = -1n c &1(u)p’/2(~/u~ u> 2 
[ 

(6) 
w u 1 

where R:(q) and Rz(q2/u) are similarly defined, and 
where 

is bounded according to 
3 

Fe I C exp 
i=l 

R:(q) = -1n 1 c &du, u)p1/2(w/u, u> 2. 
[ 

(7) 
w U” 1 

We shall call R,*(q) the q-dependent cutoff rate of sender 
1 and shall call R:(q,/u) the q-dependent cutoff rate of 
sender 1 given that sender 2 transmits the letter u. Similarly, 
we shall call R;(q) the q-dependent cutoff rate of the 
product channel. The region .9&(q) will be called the 
q-dependent cutoff region of the multiple-access channel it- 
self. In [4], the cutoff region LA’,, of the multiple-access 
channel was defined as the convex hull of the union of the 
regions .%‘,J q) taken over all product distributions q. 

Using the results of Slepian and Wolf [5], we argued in 
[4] that there exists a block code with the rate pair (R,, R,) 
and codeword length p, such that the average probability 
of any decoding error P, for maximum likelihood decoding 

1 (8) 
C, when choosing each of the n digits in the A4i code- where 
words independently according to q1 and would pick C, 
,when choosing each of the n digits in the M2 codewords Ri= R,, 

independently according to q2. Let P, denote the error =R,, - 

for i=l 
for i = 2 

probability for a particular code, and let P, denote the 
average of P, for the above assignment of probabilities to 
the codes. We assume that an error occurs if the decoding 
decision for either sender 1 or sender 2 or both is in error. 

__ 
=R,+R,, for i = 3 

for all rate pairs (R,, R,) in the cutoff rate region. Thus, 
for block codes, the cutoff rate region provides a region of 
rates wherein the two senders can operate with an arbi- 
trarily small error probability and also provides a measure 
of the coding complexity, as reflected by 12, required to 
achieve this .performance. In [4], we demonstrated that the 
senders need not have their frames synchronized for the 
validity of this assertion. 

Let q denote a product distribution Q( u, u) = ql( u)q2( u) 
on Xi x X2, and let .9&(q) denote the region consisting of 
all rate pairs (R,, R2) such that 

0 I RI,_< R:(q) (44 

0s R,< R;(q) (4b) 

R,+%-:(q) (44 

where 

R:(q) = -lnb2bh { - 4%/u)) (5) ” 

Peterson and Costello [6, theorem l] have derived an 
upper bound on the average decoding error probability Fe 
for a two-sender one-receiver channel, using tree codes and 
maximum-likelihood decoding. Minimizing their bound 
as a function of pi, where 0 5 pi I 1 for i = 1,2,3, using 
‘Gallager’s method [7, p. 1421, we obtain for rate pairs 
(R,, R,) lying in the cutoff rate region 

p,<exp{ -bTR:(q)}* 
exP{ -WWd-R~1~ 

l-exp{ -b[Rf(q)-R,]} +exP’-bTR,*(q)‘* 1 exp{ -b[RZ(q)-&I) 
1-exp{ -b[R,*(q)- R2]} 1 

+exp{ 
exp{ -b[RT(q)-(Rl+Rdl) 

l-exp{ -b[R,*(q)-(Rl+Rdl) 1 
l+exp{ -b[R,*(q)--Rll) ~~P(-WG(d-R21~ 
l-exp{-b[R:(q)--RI]} +l-exp(-h[R?(q)-&l) 1 (9) 
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where b is the number of codeletters assigned to each where i(t) denotes the time derivative of s(t). If the 
branch of the tree and T is the length of the tail of the tree energy in the signal s(t) is fixed, then (12) constrains the 
[6]. The constraint length of the tree code is defined to be energy in its time derivative. This ensures that s(t) is a 
bT. Equation (9) can be used to obtain estimates of b and “smooth” function of t. 
T needed to achieve a specified level of performance with 
tree codes. 

It is evident from (8) and (9) that for both block and 
tree coding, the cutoff rate region describes a region of rate 
pairs wherein one can operate with an arbitrarily small 
error probability. Moreover, (8) and (9) also provide con- 
servative estimates of the coding complexity needed to 
achieve a specified level of performance for rate pairs in 
the cutoff rate region. 

The cutoff rate region for a given communication system 
will depend on the modulation formats adopted by the two 
senders. Here, the optimal modulation scheme is consid- 
ered to be the one that maximizes the cutoff rate region in 
some sense. It is desirable that the cutoff rate region be 
“large” so that high code rates can be accommodated; or 
so that, for a given rate pair, the bounds in (8) and (9) on 
the error probabilities are small, or so that, for a given rate 
pair, the coding complexity sufficient to achieve a specified 
reliability is small. 

The bandwidth constraints adopted by us are described 
in Section II. The problem of “maximizing” the cutoff rate 
region for an additive-signal additive white Gaussian noise 
channel with a bandwidth limitation is examined in Sec- 
tion III. In Section IV, an additive-signal shot-noise limited 
channel with bandwidth constraints is treated. 

II. BANDWIDTH CONSTRAINTS 

Either by virtue of law or nature, it is generally neces- 
sary to impose constraints on the portion of the frequency 
spectrum that the signals transmitted by a sender can 
occupy. There is no universal measure of bandwidth for a 
signal s(t) of finite time duration. Several measures have 
been used [8], [9], and we consider two of these below. 

A. Second-Moment Bandwidth Constraint 

Let S(f ), -cc < f < cc, be the “spectrum” or the 
Fourier transform of the signal s(t), t E [0, T], where 

B. Out-of-Band Energy Constraint 

An alternative way to define the bandwidth of a signal 
s(t) is to limit the fraction of its energy lying outside the 
frequency band [ - B, B]. The signal energy contained in 
this band is 

and its total energy is 

J O” ls(f)12df, -CU 

where S(f) is given by (10). For some specified E, 0 < c < 1, 
one can then define the signal to have a bandwidth less 
than or equal to B if 

(j” lS(f)l’df)ljJm lS(f)12df)~l-r. (13) 
-B --oo 

Note that E is the maximum fraction of energy in s(t) 
allowed to fall outside the frequency band - B <f I B. 

III. ADDITIVE SIGNALS, ADDITIVE WHITE 
GAUSSIAN NOISE CHANNEL 

The model is shown in Fig. 1. The modulators produce 
finite energy signals from the sets 9 = { g(t; i); i,= 
1,2; * * ,a}andX={h(t;Z);Z=1,2;~~,b}forsendersl 
and 2, respectively, where g( t; i) is transmitted by sender 1 
if his encoder produces codeletter i, and h(t; I) is trans- 
mitted by sender 2 if his encoder produces codeletter Z. 
Signals are transmitted and received on the interval [0, T]. 
The signal r(t) received at the output of the channel is 

r(t)=g(t;i)+h(t;Z)+n(t), 0s t<T (14) 

S(f) =Iw s(t)exp(-j2rft)dt. (10) -03 where n(t) is white Gaussian noise with a two-sided power 

The signal s(t) can be defined to have a bandwidth less 
spectral density of N,/2 W/Hz. The demodulator pro- 

than or equal to B if 
duces an output w, from the alphabet Y = (1, * * . , c}. 

From a coding viewpoint, the modulators, waveform 

( jm f 21S(f ,12df)/( jm IS(/)l’df) 5 B2 (11) 
channel, and demodulator together constitute a discrete 

where ]S(T)] d 
--M channel. By virtue of the stationarity and the independent 

enotes the magnitude of S(f). The increments property of the white Gaussian noise process, 

inequality (11) is referred to as the “second-moment band- this is a constant discrete memoryless channel in the sense 

width constraint” as it imposes a constraint on the second of (2). 

moment of the spectrum of s(t). The cutoff rate region of any channel is not decreased 

Using Parseval’s theorem, it is seen that (11) can also be by using a finer output quantization. Thus we initially 

expressed as examine the limiting situation when the output quantiza- 
tion is arbitrarily fine, that is, c = cc. The effect of a finite 

(12) quantization for our model will follow directly from the 
corresponding result of Massey [2]. 
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Demodulator 

h(t.C) 
I 

I 
Modulator 2 I 

I 
L ----------_- _____ J 

Fig. 1. Model of two-sender one-receiver additive white Gaussian noise channel. 

When the demodulator output is unquantized, we dem- 
onstrate in Appendix I that (4)-(7) become 

R,*,(q) = -1n IfI 41(ui)q,(uj)exP(-~ij/4N,) (15) 
i,j=l 

R&&d = -1n 5 q2bl)q2(ukbw(- v,,P~,) (16) 
I,k=l 

R,*,(q) = -In i!l 5 41(“i>41(uj)42(u,)42(uk) 
i,j=l I,k=l 

’ exP ( - Yij,k /4No) 07) 
where R,*,(q), R,*,(q), and R&(q) denote, respectively, 
the values of R:(q), R:(q), and R;(q) for c=cc, and 
where 

Cij=i’{ g(t; i)-g(t; j)}2dt, 

ll,k=JUT{h(f;z)--h(f;k)}2dt, 
(18) 

(19) 

and 

yij,k=/T{g(t;i)-g(t;j)+h(t;Z)-h(t;k)}2dt. (20) 
0 

By defining 
(1 

A= c db,) (21) 
i=l 

and by using Jensen’s inequality, Massey [2] has shown 
that the right side of (15) can be bounded above as 

R,*,(q) 5 -ln[A+(I- A)exp{ -4N,(I- A)-’ 

II ) (22) 

. with equality holding if and only if tij has the same value 
whenever i # j. The right side of (22) is a monotonically 
increasing function of Eij, i # j. Thus if E denotes the 

maximum of tij, we obtain 
R,*,(q) I -ln[A+(l- A)exp(-[/4No)] (23) 

with equality holding if and only if tij = E whenever i Z j. 
Similarly, letting 

B = 5 d(U,)? (24 
I=1 

we find that 
R&(q) I -ln[B+(l- B)exp(-q/4No)] (25) 

where n denotes the maximum of TI,~ and where equality 
holds in (25) if and only if qlk = 17 whenever Z # k. 

If y denotes the maximum of yijlk for i # j and Z# k, it 
follows similarly that 

R,*,(q) I -ln[AB+B(l-A)exp(-[/4N,) 
+ A(l- B)exp(- q/4No) 

+(1-A)(1-B)exp(-y/4No)] (26) 
with equality holding if and only if, in addition to $ij and 
q/k being equal to [, for i # j, and 7, for Z + k, lt also 
holds that yijrk = y whenever i # j and Z # k. 

A simple proof given in Appendix II shows that for all 
i f j and Z f k, a necessary and sufficient condition for 
yijrk to be constant when Eij and T),~ are constant is that 
the signal sets 9= {g(t; i): i=1,2;**, a} and %‘= 
{ h(t; 1): Z =1,2;. ., b} of the two senders lie in mutually 
orthogonal spaces. Thus, if (26) holds with equality, so also 
do (23) and (25) with 

v=t+17. 

In this case, it follows from (26) and (27) that 
(27) 

Ko(d =Ghl)+%(q). (28) 
Hence, in the definition of the cutoff rate region (4)-(7) 
the condition (4~) on the sum of the rates becomes redun- 
dant by virtue of (28). Furthermore, we see from (21) that 
the right side of (23) depends on the codeletter probability 
distribution q1 for the first sender but not on the code- 
letter probability distribution q2 for the second sender. 
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Similarly, the right side of (25) is a function of q2 but not on the cutoff rate region is the region of all rate pairs 
of qt. The maximizing distributions for the right sides of (R,, R2) satisfying 
(23) and (25) are easily seen to be the uniform probability 
distributions R,I -ln[a-‘+(1-a -‘)exp{-aE,/2N,(a-l)}] 

and 

ql( Ui) = a-l (29) 

(31) 

for i=l;..,a, and 

R,s -ln[b-‘+(1-b-1)exp(-n2/4N0)] 

42h) = b-l (30) 
for l=l; . ., b. Consequently, we obtain from (21) that 
A = a-‘, B = b-‘. It then easily follows that an outer 
bound on the cutoff rate region is the region of all rate 
pairs (R,, R2) satisfying the simplified conditions 

R,1-In[a-~+(l-a-‘)exp(-~/4&)] 

and (38) 
R,r -ln[b-‘+(l-b-‘)exp{ -bE,/2N,(b-l)}]. 

It remains to be shown when, with the given energy 

A. Signal Sets with Minimum Second Moment Bandwidths 

constraints in (36) and (37) and with bandwidth con- 
straints, there exist mutually orthogonal simplex sets which 
achieve the outer bounds in (38), with E and n taking on 
the maximum values allowed by the constraints. Specifi- 
cally, we shall identify signal sets with minimum band- 
widths (in the sense of (12) and (13)) which achieve these 
outer bounds. 

where 5 and TJ are the allowed maxima of Eij and nij, 
respectively. Moreover, the actual cutoff rate region coin- 
cides with this outer bound if and only if the two users’ 
signal sets can be chosen as mutually orthogonal simplexes 
with tij = 5 for i # j, and nlrk = n for If k. That the signal 
sets achieving the maximal outer bounds in (31) are sim- 
plex sets [lo, pp. 259-2611, follows from Massey [2] and is 
easily seen as follows. Rewriting [ as 

k’= /b’[g(t; i>- dt; j)12dt (32) 

for i # j, we obtain upon summation over i # j that 

Clearly, 5 is maximized when the second term on the right 
side of (33) is zero, i.e., when the signal set of the first 
sender achieving the outer bound in (31) is also a simplex. 
The same is true of the signal set of the second sender 
achieving the maximal outer bound in (31). The corre- 
sponding maximum values of 5 and n are given by 

(=2(a-l)-’ i JT(g(t;i)}ldt (34) is&l 0 

q=2(b-l)-l i JT{h(t;Z)}‘dt. (35) 
I=1 0 

We define the squared second moment bandwidths Bf 
and Bz (see (12)) of the signals in 9 = { g(t; i): i = 
1; * .) a} and .P= {h(t;l): I=l;..,b}, respectively, as 

B:(g) = --& ,$ /gT{ i(t; i)}2dt 
1 r-l 

(3% 

B%@‘) = j-$ 5 j-‘{ li(t; Z)}‘dt 
2 I-1 0 

(40) 

where g(t; i) and h(t; I) represent time derivatives of 
g( t; i) and h(t; I). Our aim is to identify signal sets with 
minimal bandwidths, as defined by (39) and (40), which 
achieve the outer bounds in (38). 

This leads us to the following optimization problem: 
select signal sets 3 = { g( t; i): i = 1,. . . , a } and &’ = 
{h(t;f): I=l;..,b} tominimize 

and 

jI= i /‘(g(t;i)}2dt 
i=l 0 

subject to the average energy constraints (36), (37), and the 
constraint that %’ and # are mutually orthogonal simplex 
sets. Because we are restricting ourselves to simplex signal 
sets, it follows that (36) is met in the following manner: 

(43) 
If we now constrain the average energies of the signals 

‘in 3 and G? to be equal to E, and E,, respectively, i.e., if 
for i = 1 . . 0, a. A similar statement holds for (37). We 
shall preient below the minimization of (41). The minimi- 

and 

(36) 
zation of (42), which is identical, will be omitted; only the 
results will be stated whenever appropriate. 

The existence of the integrals in (41) requires the con- 
tinuityatt=Oandatt=Tofg(t;i)fori=l;~~,a.This 

(37) gives rise to the following boundary conditions: 
g(0; i) = g(T; i) = 0 (44 

then from (31) and (34)-(37) it ‘follows that an outer bound for i = 1; . *, a. 
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The minimization problem is simplified by temporarily 
ignoring the constraint of mutually orthogonal simplex sets 
in obtaining the solutions. It will be seen that solutions to 
this relaxed problem can be used to construct solutions to 
the fully constrained problem. 

We first minimize Ji, given by (41) subject to the 
constraint (43) and to the boundary conditions (44). Con- 
sider the functional L, given by 

L= e [/7(d(f;i)}2dt]+ ~~(i)[lr(p(r;i)}~~] 
i=l 0 i=l 

(45) 
where the {p(i); i =l; me, a } are Lagrange multipliers. 
The Euler-Lagrange equation [ll, p. 53, eq. (2.3.9)] then 
gives the following necessary condition for optimality: 

p(i)g*(t; i)- g*(t; i) =0 (46) 
for i =l; * *, a, where the g* denote the optimum signals 
and where g*( t; i) denotes the second time derivative of 
g*( t; i). 

The optimal signal set ‘??* = { g*(t; i): i =l; . a, u} thus 
has to satisfy the following necessary conditions for i = 
1;. a, a: 

g*(O; i) = g*(T; i) = 0 (47) 
p(i)g*(t;i)-g*(t;i)=O (48) 

JOT{ g*(t; i)}2dt = E,. 

Furthermore, from [ll, p. 409, cond. N,, S,, S,; p. 373, 
def. 6.10; p. 375, theorem 6.101, we observe that the 
necessary conditions (47)-(49) for optimality are also suf- 
ficient. 

In an identical manner, it can be shown that the minimum 
squared bandwidth B;(&‘*) of the second sender is given 
by 

Thus (47)-(49) define solutions to the “relaxed” optimi-- 
zation problem in the absence of the mutually orthogonal 
simplex constraint. For the fully constrained problem, the 
optimal signal set g* = { g*(t; i): i =l; * ., a} must be a 
simplex set satisfying (47)-(50) and be orthogonal to the 
optimal signal set &‘* = {h(t; 1); l=l;.., b} for the 
second sender. 

It remains only to pick the sets { ni: i = 1,. . . , a} and {m,: 
l=i;**,b} suitably. For the case a 2 b, it is easily veri- 
fied from (54) and (55) that the sum of the squared 
bandwidths (Bf + Bi) is minimized by choosing 

The solutions to the ordinary differential equations (48) 
with the boundary conditions specified in (47) are 
sinusoids. We can then specify the optimal signal sets 9* 
and .X* as follows using the standard procedure for the 
construction of simplex sets [lo, pp. 259-2611. Beginning 
with sets of orthonormal functions derived from sinusoids, 
we construct two sets of simplex signals satisfying all the 
conditions for optimality. Consider the following mutually 
orthonormal sets of sinusoidal functions defined on the 
time interval [0, T], assuming without any loss of generality 
that a 2 b: 

{m,: l=l;**,b} = {l;**,b} 

and (56) 
{ni: i=l;..,a} = {b+l;..,b+a}. 

An analogous choice can be made when b > a. 

@ = (+(t; i) = (2/T)“2sinni7rt/T: i=l;**, a) (50) 

We remark here that the orthogonality between the 
optimal signal sets 9* and &‘* in (52), (53) and (56) is 
achieved by means of frequency-division multiplexing. 
Thus ‘??* and .x?* can be interpreted as being the signal 
sets with minimum second-moment bandwidths for which 
frequency-division multiple access (FDMA) actually 
achieves the outer bound to the cutoff rate region in (38). 

The results obtained for the two-sender single-receiver 
multiple-access channel can be directly extended to the 
general multiple-access channel with M senders and one 
receiver. The optimal signal set for each sender is a sim- 
plex set derived from sinusoidal functions and constructed 
in a manner similar to that for the two-sender multiple- 

and 

\k= (#(t;I)=(2/T)“2sinm,lrt/T: I=l;**,b) (51) 
where n, and m, are positive integers. Note that to obtain 
mutually orthogonal simplex sets from (50) and (51), we 

need the sets {ni: i=l;..,a} and {m,: l=l;..,b} to 
be disjoint. The optimal signal sets %* = { g*(t; i): i = 
1; * *, a} and .X*={h*(t;Z): Z=l;--,b} are then de- 
scribed by 

g*(t; i) = { aE,/(a -l)}“’ 

’ {(u-l)/u}+(t;i)-a-‘i $(t; j) (52) 
j=l 
j#i I 

for i=l;..,a, and 

h*(t;l) = {bE2/(b-1)}“2 

{(b-l)/b}J,(t;Z)-b-’ i #(t;k) (53) 
k=l 
k#l 1 

for Z=l;.*, b. 
It is easily verified that the signal sets g* and X*, 

specified by (52) and (53), respectively, constitute mutually 
orthogonal simplexes that satisfy conditions (47)-(49). By 
substituting (52) into (39), we obtain upon simplification 
that for a given number a of signals for the first sender 
and given the set { n i: i = 1,. . . , a }, the minimum square 
bandwidth Bz(Y*) of the optimal signal set g*, which 
achieves the outer bound in (38), is 

(54) 
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access channel. The signal sets for the M senders lie in 
mutually orthogonal spaces. 

It would be interesting to obtain the optimal signal sets 
for the two senders and the corresponding maximal cutoff 
rate region when the bandwidths B, and B, are less than 
those specified by (54) and (55), respectively. This problem 
remains unsolved to date. 

the {x(Z): l=l;.*, b} are Lagrange multipliers. Further- 
more, from [ll, p. 409, cond. Nl, Sl, and S2; p. 373, def. 
6.10; and p. 375, theorem 6.101, we see that the necessary 
conditions for optima&y are also sufficient. 

Thus the solutions to the optimization problem without 
the mutually orthogonal simplex constraint are defined by 
(43), (60), (37) and (61). For the fully constrained prob- 
lem, the optimal signal sets g* and Z* must additionally 

B. Signal Sets with Minimum Out-of-Band Energy constitute simplex sets that are mutually orthogonal. 
The optimal modulator designs can then be specified as 

We define the amount of energy E(S; B,) of the signal follows. A comparison of (60) with equations defining 
set 9, lying outside the frequency band [ - B,, &I, i.e., its prolate spheroidal wave functions [12, p. 451 shows that, 
out-of-band energy, as for i=l;.-, a, g*(t; i) is of the form 

lG(f;i)12df -j:blG(f;i)12df 
1 1 g*(t; i) = k(i)+[t - 5; n(i)] 

or, equivalently, as where k(i) is independent of t, n(i) is a nonnegative 

E[9;B,]= 2 [j~[g(t;i)]2dt-67g(t;i)[~‘{(sin2*BB,(t-i))/n(f-7)}g(7;i)d7]dt]. 
i-1 0 

(57) 

The amount of energy E( &‘; B2) of the signal set Z’ lying outside the frequency band [ - B,, B,] can be defined in an 
identical manner. We wish to identify signal sets with minimal out-of-band energies, as defined by (57) which achieve 
the outer bounds in (38). 

As with the previous optimization problem, we shall proceed to minimize E(P; B,) given by (57) subject to the 
average energy constraint (43) first, temporarily ignoring the constraint of mutually orthogonal simplex sets. The 
solutions to this relaxed optimization problem will then be used to obtain solutions to the fully constrained problem. 

For the functional L, given by 

L= 2 [~‘{g(t;i))‘dt-/o’g(t;i){/or{(si~2~B2(t-~))/n(t-~)}g(~;i)d~}dt] 
i=l 0 

where the {v(i): i =1,-a ., a } are Lagrange multipliers, 
the Euler-Lagrange equation [ll, p. 53, (2.3.9)] gives the 
following necessary condition for optimality: 

2[g*(t; i> + qti)g*(C i)l 
= / [{ 0 

T sin2rB,(t-r))/n(t--T)]g*(T;i)dT (59) 

for i=l;-*, a, where the g* denote the optimal signals. 
Upon rewriting (51) we obtain 

1 

’ *J [{ sin2aB,(t - T)}/r(t - r)] g*(r; i) dt (60) 
0 

for i=l;.*, u. The optimal signal set 9* = { g*(t; i): 
i=l,.. ., a } therefore has to satisfy (43) and (60). Simi- 
larly, it can be shown that the optimal signals in &‘* = 
{ h*(t; 1): I =l; . ., b} must satisfy 

1 
h*w)= 2[1+xQ)] 

’ .J [{ sin2rB2(t - T)}/n(t - T)] h*(T; 1) d7 (61) 
0 

for l=l;.-, b, in addition to satisfying (37); once again, 

integer, and +[t; n(i)] is a prolate spheroidal wave func- 
tion with eigenvalue X[n(i),2rB,T] (see Appendix III). 
(The signals in g* and &?* are restricted to the time 
interval [0, T], whereas the functions in [12, p. 451 are 
restricted to the time interval [ - T/2, T/2]. Hence (62) 
requires suitably time-shifted versions of the prolate 
spheroidal wave functions defined in [12].) Similarly, it is 
seen that h*(t; Z), in (61), is of the form 

h*(t;l)=p(i)+[t-T;m(i)] (63) 

for I =l; . -, b, where p(Z) is independent of t, m(Z) is a 
nonnegative integer, and #[t; m(l)] is a prolate spheroidal 
wave function with eigenvalue X[m(l), 27rB,T]. 

In general, the bandwidths B, and B, are not equal and 
the orthogonality between the sets g* and X’* is achieved 
by means of time sharing, that is, by transmitting the 
signals in g* and .X* during the nonoverlapping time- 
intervals [0, cwT] and (cwT, T], respectively, where LY E (0,l) 
and is as yet undetermined. When B, = B,, an alternative 
means of achieving orthogonality is frequency-division 
multiplexing where the signals in c!?* and &‘* .are con-’ 
strutted from a sequence of prolate spheroidal wave func- 
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tions with orthogonal frequencies. We shall treat the case 
where B, is not equal to B, below. 

We demonstrate in Appendix III that the optimal signal 
sets 9*= {g(t;i): i=l;--,a} and X*= {h*(t;Z): I= 
1,. - ., b), which achieve the outer bounds in (38) with 
minimum out-of-band energies, are specified by 

r 
g*(t;i)= [c~E,/(a-l)]~‘~ 

I 

{(a-l)/a}+[t;n(i)] 

- ~$&+b; n(j)] (64) 
jti 

h*(t; 1) = [bE2/(b-1)]1’2 {(b-l)/b}#[t; m(l)] 

[ 

for I=l;.-,b. 

-b-l i #[t;m(k)] (65) 
k=l 
k#l 1 

On substituting (64) into (57) and simplifying, we see 
that the signal set 9 *, for a given number a of signals, 
produces a minimal out-of-band energy given by 

E(9*; B,) = E, 
[ 

a-l 
a- c A[n(i),2rB,aT] . (66) 

i=O I 
In an identical manner, it can be shown for the second 
sender that the minimal out-of-band energy is 

[ 

b-l 

E(.%‘*; B2) = E, b- c X[m(Z),2nB,ZT] 
I 

(67) 
I=0 

where Z=l- a. 
It still remains to be seen how to pick CY, and the sets 

{n(i): i=O;.., a-l} and {m(l): =O;..,b--1). The 
signal energy contained in the bandwidth B, of the first 
sender is 

e JB1 IG*(f; i)12df = E,ai1h[n(i),2vrBlaT]. (68) 
i=l -Bl i=O 

We would like to pick {n(i): i=O;*.,a-1) so as to 
maximize the right side of (68). In view of (3.1) and (3.6) 
from Appendix III, we see that this is accomplished by 
choosing 

n(i) = i (69) 
for i=O;.., a - 1. For the signals transmitted by the 
second sender, the energy contained in the bandwidth B, 
is, similarly, 

b-l 
E, c A[m(l),2aB2ZT]. (70) 

I=0 
Again, in view of (3.2) and (3.9) from Appendix III, we see 
that this in-band energy is greatest when 

m(1) = 1 (71) 

The best choice of (Y E (0,l) is the one that maximizes 
the “total fractional in-band energy” for the two senders, 
i.e., the quantity (CyLJ X[n(i), 2vrB,aT] + Cf:i X 
[m(l),2sB,GT]). Using (69) and (71), we thus pick a as 
follows: 

b-l 

+ c x(l,2nB,(l-P)T) . (72) 1 
I=0 J 

The existence of the maximum in (72) is guaranteed by [15, 
pp. 105,106]. 

The orthogonality between the optimal signal sets c!?* 
and X* in (64), (65), (69), (71), and (72) is achieved by 
means of time-division multiplexing. This leads to the 
following interpretation: c??* and .&‘* are the signal sets 
with minimum out-of-band energies for which time-divi- 
sion multiple access (TDMA) actually achieves the outer 
bound to the cutoff rate region in (38). 

The extension of the results shown above to the general 
multiple-access channel with M senders and a single re- 
ceiver is straightforward. The best choice of signals for 
each sender is a simplex set derived from prolate spheroidal 
wave functions with the signal sets for the M senders lying 
in mutually orthogonal spaces. 

IV. ADDITIVE SIGNALS, SHOT-NOISE-LIMITED 
MULTIPLE-ACCESS OPTICAL CHANNEL 

The model is shown in Fig. 2. The modulators, channel, 
and detector constitute the optical portion of the overall 
optical digital communication system. For senders 1 and 2, 
the complex envelopes of the optical fields, which are 
functions of both time and space, are denoted by E,(t, 7) 
and E,(t, r’), respectively. The optical fields of the two 
senders are taken to be additive in the channel. The 
received signal N(t) represents the counting process asso- 
ciated with the output of an ideal direct-detection device. 
The counting process is assumed to be an inhomogeneous 
Poisson process with rate function 

h(t)=;//E,(t,F)+E2(t,F),2dF+ho (73) 

where n is the quantum efficiency of the detector, h is 
Plan&s constant, v is the optical carrier frequency, A is 
the active surface of the detector, and A, represents the 
contribution of the dark current in the detector to the total 
count rate. As indicated in [3], X, also accounts for 
background radiation when this is characterized by many 
weak modal components. The assumption that N(t) is a 
Poisson process is met to a close approximation on the 
free-space channel for coherent sources. For i = 1,2, the 
signal count rates si(t), which are nonnegative, are related 
to E,(t, F) by 

for I= 0,. . . , b - 1. 
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Fig. 2. Model for two-sender one-receiver shot-noise limited optical channel. 

The optical modulators for senders 1 and 2 produce 
signals from the sets 9’r= { E,(t, r’, i): i=l;.., a} and 
Y; = { E2(t, r’; 1): 1 = 1;. ., b}, respectively, where 
E,(t, r’, i) is transmitted by sender 1 if his encoder pro- 
duces the i th codeletter from his alphabet X,. All signals 
are transmitted and received on the time interval [0, T]. 
Associated with the signal sets 9’r and y2, respectively, 
are derived signal sets 9 = { d( t; i) : i = 1, * . . , a } and & = 
{ e(t; 1): 1 =l; * ., b}, where 

d( t; i) = {X1( t; i)}“2 (75) 

h,(l;i)=c/r]E,(t,<i)12d?‘+h,, 

=sl(t; i)+ X, (76) 
for i=l;..,a, and 

e(t;.Z) = { h2(t; 1))“’ 

X,(t; 1) = ;-JE2(t,< 1)12d?‘+ X, 

=s,(t;l)+X, 

for l=l; . ., b. 

(77) 

(78) 

The demodulator quantizes the point process observed 
on [0, T] and produces one of the c symbols from the 
alphabet Y. As seen by the encoder and the decoder, the 
combination of the optical modulators, optical channel, 
optical detector, and demodulator forms a discrete chan- 
nel. The independent increments property of the Poisson 
process and the constancy of X, make this a constant 
discrete memoryless channel in the sense of (2). The cutoff 
rate region of any channel is not reduced by using a finer 
output quantization; so we examine the limiting case of 
infinitely fine quantization, that is, when c = cc. When the 
output quantization is infinitely fine, we demonstrate in 
Appendix IV that (4)-(7) become 

R,*,(Cl) = -In 2 41(“i)q,(uj)exP(-Lyi,/2) (79) 
i,j=l 

%,(d = -InI ~=lu2(“,)~2(uk)exP(pi*/2) 630) 

R,*,(q) = K+&d + G,(d (81) 

where R,*,(q), RTa(q), and R,*,(q) denote, respectively, 
the values of R,*(q), R,*(q), and R:(q) for c = CO, and 
where 

aij=JT/2[d(t;i)-d(t; j)12dt (82) 
0 

and 

(83) 

We remark here that, as shown in Appendix IV, re- 
stricting the signals in 9 and d to lie in the time intervals 
[0, T/2] and [T/2, T], respectively, is a sufficient condition 
for achieving the upper bounds in (4.10) and (4.11). This 
restriction imposes a time-division multiple access rule on the 
transmitters. Then, in a fashion identical to that in which 
(31) was obtained, we observe that an outer bound on the 
cutoff rate region of this channel when TDMA is employed is 
the region of all rate pairs (R,, R2) satisfying 

R,1-ln[a-‘+(l-a-~)exp(-a/2)] 
and (84) 

R,I -In[b-‘+(l-b-‘)exp(-P/2)] 
where (Y and /? denote the respective maxima of aij for all 
i, j, and Plk for all 1, k. Moreover, the actual cutoff rate 
region for TDMA coincides with this outer bound when 
aij = (Y for i # j, and Plk = p for 1# k. Also, for each 
sender, the optimizing qi distribution achieving the bound 
in (84) is uniform, i.e., ql(ui) = a-‘, for i = 1; * *, a, and 
q2(ul)=b-‘, for l=l;.., b. Furthermore, since we are 
restricting the two senders to using TDMA, the region in 
(84) is only an inner bound on the cutoff rate region of the 
two sender channel. 

The outer bound on the cutoff rate region for TDMA in 
(84) is maximized when (Y and p are maximal with respect 
to the functions in 9 = {d(t; i): i =l; . ., a} and d = 
{ e(t; 1): 1 =l; * ., b}, respectively. It remains to identify 
optimal TDMA signal sets which, in the presence of en- 
ergy, peak amplitude, and bandwidth constraints to be 
specified later, achieve the outer bound in (84) with (Y and 
p taking on the maximum values allowed by the con- 
straints. The choice of the time intervals [0, T/2] and 
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(7,/2,Tl f or tme sharing of the signals is arbitrary. In t’ 
general, we would like to pick these intervals to be [0,8T] 
and (eT, T], respectively, where 0 E (0,l) is to be chosen 
suitably. However, as we shall observe later, this makes the 
problem quite intractable. 

we can rewrite (86) as follows: 

Since we have restricted ourselves to TDMA, the multi- 
ple-access channel reduces to two independent discrete 
channels used by the two senders. It therefore suffices to 
maximize the upper bounds in (84) independently with 
respect to L@ and b, respectively. Thus we shall only 
present the maximization of the upper bound on R, in 
(84) subject to energy, peak amplitude, and bandwidth 
constraints; this is equivalent to maximizing the single-user 
cutoff rate of sender I, assuming that all signals are trans- 
mitted and received during the time interval [0, T/2]. Subse- 
quently, we shall combine this result with TDMA to 
provide an obvious inner bound on the cutoff rate region of 
the two-sender channel with energy, peak amplitude, and 
bandwidth constraints. 

It is also important to point out an essential difference 
between the optimization procedures used for the Gauss- 
ian channel in Section III and those for the present optical 
channel. Given the alphabet sizes and the energies of the 
two senders, the achievable outer bound in (38) for the 
Gaussian channel was not a function of the signal sets 9 
and Z’. Thus the necessary and sufficient conditions 
satisfied by CC? and .X’ to achieve this bound could be used 
as constraints in the minimization of the bandwidths of 
these signal sets. The situation for the optical channel is 
different; as seen from (84), the outer bound on the 
TDMA cutoff rate region is a function of the signal sets 9 
and &. We therefore maximize the upper bounds in (84) 
while restricting the signals in JB and E to those that 
achieve these bounds; additional constraints are placed on 
the energies, peak amplitudes, and bandwidths of these 
signals. 

ST’* i {d(t; i)}2dt 5 aE,. (88) 
0 i=l 

Snyder and Rhodes [3] have shown for the single-user 
optical channel with infinite bandwidth that there are 
different categories of optimal design of modulated sig- 
nals, depending on varying values of the average energy of 
the signals. The most interesting category is the one in which 
all the available energy is used up by the modulated signals, 
that is, the one in which the average energy constraint is 
satisfied with equality (the region where the “average energy 
predominates ” in [3]). We shall determine the choice of 
optimal signal set 9 which satisfies (88) with equality, that 
is, which uses up all the available energy. 

3) Peak Amplitude Constraints: The amplitudes of the 
signals in P’i are bounded above by prespecified value 
P i max for all t E [0, T/2], and for all locations v’ on the 
active surface of the detector, as follows: 

IEl(t, r’; i)l~ Pl+,= (89) 

for i=l;.., a. From (75), (76) and (89), we obtain the 
following constraints on the amplitudes of the signals 
in 9: 

d,, < d( t; i) I d,,, t E [O, T/21 

for i=l;..,a, where d,,=X’,/* and 

(90) 

d = max [ 
$P:m,+*o 1 v* 

’ . 

The cutoff rate for sender 1 is maximized when the 
achievable upper bound on R, in (84) is greatest; this 
occurs when (Y is maximal with respect to the functions in 
9= {d(t;i): i=l;.., a }. The following four constraints, 
the first of which is required for the achievability of the 
upper bound in (84) are imposed on the signals in 2. 

1) aij, in (82), has the same value whenever i # j. 
2) Average Energy Constraints: We assume that the 

average energy E1 of the signals in Yi satisfies 

8,=a-1~7/2~I,E~(t,~i)12d~dtb~~,,, (85) 
I 

where E, max is the maximum allowable average energy. 
From (75) and (76), we are led to the following constraints 
on the average energy Ed of the signals in 9: 

E,=a-‘/r’* 2 {d(t;i)}2dt<(q/hv)EI,,,+X0T/2. 
0 i=l 

(86) 

4) Bandwidth Constraints: The cutoff rate of sender 1 is 
maximized subject to the second moment bandwidth con- 
straint. It would be most appropriate to impose this con- 
straint on the signals in the set { E,(t, r’, i): i = 1; . ., a}; 
however, this renders the optimization problem intracta- 
ble. We therefore constrain the bandwidths of the signals in 
the set B instead. If B, denotes the allocated bandwidth, 
we obtain the following from (12) and (88). 

Second Moment Bandwidth Constraints 

Since the signals in LB are at least as large as d,, in 
amplitude in the time interval [0, T/2] and vanish outside 
this interval, conditions for the continuity of the signals at 
the end points t = 0 and t = T/2, do not obtain here, 
unlike in (44). We are thus led to the following constraints: 

Now, letting 

4 = h/h+%nax + &T/2, (87) 

~T’2{d(t;i)}2dt=E,B~ (91) 

for i=l;.., a, where $( t; i) is the time derivative of 
d(t; i). 
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If constraint 1 is satisfied, we obtain on summing both 
sides of (82) over i # j that 

a=2[a(a-l)]-’ (a--1)iTL2 2 {d(t;i)}2dt 
i=l 

-iT’* i d(t;i)d(t; j)dt (92) 
i,j=l 
i#j 

We now perform the constrained optimization of (Y with 
respect to the signals in 9. Effecting the following change 
of variables: 

y(t;i) =d(t;i)-d,, (93) 
for i=l;*., a, we obtain from (92) that 

r 

a=2[a(a-l)]-l 

I 

(a-l)i”‘i (y(t;i)}2dt 
i=l 

-iT’* t y(t;i)y(t; j)dt . (94) 
i,j=l 
i#j 1 

Thus we can now maximize LY with respect to the 
functions in the set Y = { y(t; i): i =l; . a, a}. The follow- 
ing constraints, which follow, respectively, from con- 
straints l), 2), 3) and 4) on the signals in 9, are imposed 
on the signals in Y. 

la) aij has the same value whenever i # j, where 

alj= /“*[y(t; i)- y(t; j)12dt. 
0 

2a) Average energy constraint: 

JOT’* i { y(t; i)+ d,in}2dt = aE,. 
i=l 

3a) Peak-amplitude constraints: 

0 I y(t; i) I D 

for i = 1; . 0, a, where 

D = d,, - d,in. 

4a) Second moment bandwidth constraints: 

$,““{ )‘(t; i)}‘dt = E,Bf 

for i=l;..,a. 

Optimal Signals for the Second Moment 
Bandwidth Constraint 

(95) 

(96) 

(97) 

(98) 

(99) 

The optimization problem is one of selecting the signal 
set Y= {y(t;i): i=l;.., a } to maximize (Y in (92) sub- 
ject to constraints la)-4a). Once again, the equidistance 
constraint la) is temporarily ignored in solving this optimi- 

zation problem. Subsequently, we shall see that among the 
solutions to the relaxed problem is one that satisfies la) 
which is then the solution to the fully constrained problem. 

Define xl(t) and x,(t; i) for i =l; . a, a,0 I t I T/2, 
according to 

a,(t) = i [ { y(t; i)}*+2&,y(t; i,] 
i=l 

x1(0) = 0 (100) 

and 

22(t;i)= {j(t;i)}* 

x,(0; i) = 0. (101) 

Then (96) and (99) become, respectively, 

x1( T/2) = aE, 004 

and 

x,(T/2; i) = E,Bf (103) 

for i=l;.., a. From (loo), we obtain 

IT’* f {y(t;i)}*dt=x1(T/2) 
0 i=l 

-2dti,LT’* f y(t; i) dt. (104) 
i=l 

A substitution of (104) into (94) yields 

a=2[a(a-l)]-l a(a-l)E,-2d,,,(a--1) 

i 

.jT’*e y(t;i)dt-lT'* i y(t;i)y(t;j)dt . (105) 
0 i=l 0 i,j=l 

i#j 1 
Thus, for a fixed value of E,, LY is maximized by minimiz- 
ing 

J1 = 2dmi,( a - l)i”* 2 y( t; i) dt 
i=l 

+lT’* 2 y(t;i)y(t; j)dt (106) 
0 i,j=l 

i#j 

subject to (lOO)-(103) and the peak-amplitude constraints 
(97). Using the Pontryagin minimum principle [13, pp. 
306-3071, we show in Appendix V that the signal set 
9*= {d*(t;i): i=l;.., a} satisfying the necessary con- 
ditions of optimality is the equidistant pulse-position mod- 
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Fig. 3. Optimal PPM signal set 9* for sender 1. 

ulation (PPM) signal set, shown in Fig. 3 and specified by 

The signal set S* is optimal for values of the average 
energy El in the range [El,min, El,max], where El,min and 
E l,max are given by (5.18) and (5.20) respectively, in 
Appendix V. 

The optimization problem stated in (lOO)-(106) and (97) 
is seen to satisfy the conditions of [14, theorem 5, pp. 3411, 
so that the necessary conditions given by the minimum 
principle are also sufficient. Thus (107)-(110) along with 
(5.21)-(5.24), indeed, specify the solutions to the optimiza- 
tion problem. 

The total “on time” of a pulse in the PPM signal scheme 
described by (lQ7)-(110) must be less than or equal to 
T/2a; thus 

2qd + (J~,~ I T/2a 

or, from (108)-(110), 

~*(dmax - h,in)* (4 - E,,min) T 
2E,B; + (4, -d;,) ’ z’ (“‘) 

which imposes a minimum value on the squared band- 
width Bz for the signal set in (107)-(110) to be optimal. 

The maximum value of (Y is obtained from (94) as 

a= (2/a)iT’* t { y*(t; i)}*dt 
i=l 

= 2iT’*{ y*(t; i)}2dt (112) 

since the integral in (112) is the same for i =l; . ., a. From 
(93), (107)-(llO), and (112) we have 

+ (d,, - 4nd2~2,~ > I 
max+dmin)+(d,,-dmin)COS t-t--(i-1); , 

d max, 

d*(t;i) = 1 
{ Tj 

[ 
G&x +dtin)+(d,,-dtin)cos wd t-(i-1)~-~l,d-~2,d 

i i ill , 

for (i-l)~+o,,,+o,,,1t1(i-1)-$+2~1,d+~2,d 

\dmin, elsewhere for 0 I t I T/2 

(107) 

where which upon simplification yields 

4E,B; 
w(j = 

4LiX - dmin12 

u 1,d = T/% (109) (113) 

u 2,d= (El-El,,i,)/(d~,-d~in). (110) On substituting (5.21) into (113) and simplifying, we 
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obtain 

551 

and 

1 wmax - 4liJ .-- 
Elmin 1 8E, ’ W) 

Following a procedure identical to that used in obtain- 
ing LB*, it can be shown that /? in (84) is maximized by the 
equidistant PPM signal set b* = { e*(t; I): I = 1; * a, b}, 
defined on the time interval [T/2, T] and specified by 

2,rr2( emax - d,,)2 - 
4B2 

The signals in (1X3)-(118) are optimal as long as the 
squared bandwidth Bz has a minimum value obtained in a 
manner identical to (111). The maximum value of /3 is 

f [ 
; (e Inax + 4ni*) + hmx - d&)COS 0, t-~-;-(z-l& 

i i 
) for 

e );I 

5+(z-l)~~ts5c(I-l)~+al,~ 

e*(t; [) = ( emax~ ~+(I-l)~+a~,~_<t~~+(z-l)~+a~,~+a2,~ 
(115) 

&%I~ + dmin) + (emax -d,,)cos w, t-~-(I-1);-a~,e-a2,e 
1 i ))I 

) for 

5+(1-1)~=~~,~+(r2,~~t<~+(l-1)~+20~,=+~2.r 
L A”  

P min 9 elsewhere for T/2 5 t I T 

where obtained as 

4E,B; 
0, = 

4%, - dmin)2 ’ 

a1,e = ?T/w, (117) 

a2,~=(E2-E2,min)(e~ax-d~n), (118) 

and the other undefined quantities are obvious analogs of 
those used in defining B*. 

The set b* is optimal when the average energy E, of the 
signals contained in it lies in the range [ EZ,min, E2,,,J, 
where 

E2,min= dai,~ + ~ 
2T2(e,, - dtin)’ 

B,2 

p = 2( E, - d~i,T/2) 

1 3(e,, - dmin) .-- 
E2,min I 8E, ’ (W 

Combining TDMA with the results above for the two 
single-user channels, we observe that the maximal achiev- 
able outer bound on the cutoff rate region with TDMA, as 
also an obvious inner bound on the cutoff rate region 
without any restrictions, is given by (84) with (Y and fi 
being specified by (114) and (121) respectively; the corre- 
sponding requirements on minimum bandwidths are given, 
for example, by (111). For the channel with infinite band- 
width, the modulator signal designs maximizing the cutoff 
rate region can be obtained by letting B, and B, tend to 
infinity in (107)-(121). It is easily verified that in this 
limit, the results in (107)-(121) for each of the two senders 
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reduce to those of Snyder and Rhodes [3, pp. 329-3311 for 
the case where the “average energy constraint pre- 
dominates.” 

We remark here that, had the intervals used for time 
sharing by the two senders been chosen to be [0,13T] and 
(8T, T], respectively, for some 8 E (0, l), then in (87) for 
example, E, becomes a function of 8, i.e., E, = E,(d). 
Consequently, (Y and /? in (114) and (121) respectively, 
become complicated functions of 8. The problem of choos- 
ing the “best” values of 8 for (Y and /3 simultaneously 
becomes ill-posed as these values may not be the same for 
(Y and p. This additional complexity in the optical channel, 
which was absent in the Gaussian channel, is caused by the 
requirement in (90) that the signals in the sets 9 and 8 be 
bounded below by A1d2. 

These results can extend to the M-sender (A4 2 3) single 
receiver multiple-access channel in a manner analogous to 
the case it4 = 2. 

V. CONCLUSIONS 

In this paper, we have identified modulated signals 
which maximize the cutoff rate regions of the additive-sig- 
nal additive white Gaussian noise and the short-noise 
limited optical multiple-access channels. Furthermore, 
when constraints are imposed on signal bandwidth, opti- 
mal signal sets for the constrained channel were obtained 
from among the class of signal sets that are optimal for the 
unconstrained channel, and the resulting requirements on 
the bandwidths were determined. The problem of identify- 
ing signal sets that yield the maximal cutoff rate region for 
the band-limited channels, without any a priori restrictions 
on the feasible sets, remains unsolved to date. 
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APPENDIX I 
DERIVATION OF (15)-(20) 

From (5) and (6) we have 

F(q) = -lnCCq2(u) Cq1(u)P2(w/u,u) 1 2, (1.1) y x2 Xl 
which can be expressed as 

R?(q) =-In Ii i a(u,) 
m=l I=1 

On interchanging the order of summation, this becomes 

R?(q) = -lnl ~~lql(ui~%(uj) 

.[; 2 q2(u,){ p(w,/ui,u,)p(w,,/uj..,))1/21. (1.2) 
I=1 m=l 

We assume that all the signals in s={g(t;i): i=l;..,a} 
and Z’= {h(t;I): I=l,..+, b} can be expressed as linear com- 
binations of N orthonormal basis functions in the space of 
differentiable functions on [0, T] and, therefore, can be rep- 
resented in signal space by the N-dimensional vectors [g(i): 
i cl,. . .) a] and [h(Z): 1=1; . ., b], respectively. Let r and n be 
N-dimensional vectors obtained by projecting r(t) and n(t), 
respectively, onto the same basis functions. Then from (19), 

r=g(i)+h(l)+n. (1.3) 
The N components of n are statistically independent Gaussian 
random variables, each with mean zero and variance N,/2. From 
[lo, pp. 229-2321, we observe that as a consequence of the 
“theorem of irrelevance,” the N-dimensional vector r contains all 
the data relevant to the determination of the transmitted signals 
using maximum-likelihood decoding. 

The inner product on the space of differentiable functions on 
[0, T] is defined by 

(%a =jo=aww dt, (1.4) 

and the norm of (Y, induced by this inner product, is 

We assume that the demodulator output is unquantized, i.e., 
that the size c of the demodulator alphabet Y is infinite. Then 
(1.2) becomes 

a 
R,*,(q) =-ln C 41("i)ql(uj) 

i,j=l 

where R,*,(q) denotes the value of RT (q) with c = ee, and q,( .) 
is the probability density function of the vector r, given that the 
vectors g(i) and h(l) are transmitted over the channel. 

Now, J,(y) is given by 

I;],(Y) = (vN,) p1’2exp{ -Ilv-~~~~-~~~~ll*/~~) 

and thus 

lrn { MY)qY))1’2dY 
-cc 

=exp[-Il{g(i)+~(~)~-{g(~)+~(~)~l12/4N,] 

= exp { - lIdi) - g(j) 112/4%} 

= exp { - 5,j/4N,} (1.7) 
where 

5,, = lld i) - d j) II2 

=JoT[g(r;i)-g(t;j)12dr, (13) 
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from (1.5). Thus, from (1.6), 

R,*,(q) =-lnj ~~lql(ui)ql(uj)eXP(-~ij/2~~). (1.9 

Equations (16) and (17) along with (19) and (20) can be derived 
in an identical manner. 

APPENDIX II 
PROOF OF ORTHOGONALITY BETWEEN YAND 2’ IN 

SECTION III 

We show that for 

Yjj/k=~T[{g(l;i)-g(r;j)~+{h(f;I)-h(f;k)}]*dr (2.1) 

to have the same value whenever i + j and 1 f k, given that cij 
from (18) and nrk from (19) are invariant, it is both necessary 
and sufficient that the sets 9 = { g( t; i): i = 1,. * . , a } and .%’ = 
{h(t;l): I=&***, b} he in mutually orthogonal vector spaces. 
From (2.1), we may write 

Yij,k=/0T{g(l;i)-g(t;j)}2dl 

+f{h(t;l)-h(t;k)}*dt 

+2L’{g(t;i)-g(t;j)}{h(t;l)-h(t;k)} dt. 

(2.2) 
The first two integrals in (2.2) are constant for all i # j and 
I + k. Thus the condition for yij,k to be constant is that 

k’(g(t;i)-g(t;j)}{h(t;I)-h(t;k)}dt=K (2.3) 

for all i # j and I# k, where K is a constant. Thus (2.3) must 
hold on interchanging i and j; that is, it must hold that 

i*{g(t;j)-g(t;i)}{h(t;l)-h(t;k)} dr=K. (2.4) 

For i and j in {O;.., a - l}, the functions in the set C satisfy 

JaTc[t; n(i)]c[t; n(j)]dt=O, i+ j 
0 

=X[n(i),2aB,aT], i= j, 

(3.5) 
X[n(i),2rB,aT] >X[n(i+1),2?rB,crT], (3.6) 

and 
h[n(i),27rBlaT]c[t;n(i)] 

= r’[{sin2nB,(t-s)}/*(t-s)]c[s;n(i)]ds. (3.7) 

In a similar manner, for 1, k = 0; . ., b - 1, the functions in E 
satisfy 

/Te[t;m(l)]e[t;m(k)]dt=O, Irk 
aT 

=h[m(l),2sB*GT], l=k, 

(3.8) 
X[m(l),2rB,crT] >X[m(l+l),21rB2iiir] (3.9) 

where Z=l- (Y, and 
~[m(l),2aB2GT]e[t;m(Z)] 

= ~T~z[{sin27rB2(f-s)/n(~--s)]e[s;m(Q]~. (3.10) 

The sets Cp and ‘k, where 

@={+[t;n(i)]=c[t;n(i-I)]/ 

{X[n(i-1),27rB,aT]}1’2: i=l;..,a} (3.11) 

and 

‘k={J/[t;m(f)]=e[t;m(f-1),2m~2~T]/ 

{ ~[m(I-1),2aB2ZT]“2: [=l;..,b} (3.12) 

However, from (2.3), we see that the integral in (2.4) is equal to are, therefore, sets of orthonormal functions on [0, aT] and 
- K. This is satisfied if and only if K = 0, that is, if and only if 
thetwosignalsets9={g(t;i): i=l;-~,a}and.P={h(t;I): 

(aT, T], respectively. These are the prolate spheroidal wave func- 
tions. 

1=1;. ., b } lie in mutually orthogonal spaces. The simplex set ‘Z?* = { g*( t; i): i = 1; . . , a }, constructed from 
(3.11) and satisfying (43) and (60), is seen to be specified by 

APPENDIX III 
DERIVATION OF (64) 

Let {n(i): i=O;.*, a-l}‘and {m(l): l=O,...,b-1) be 
subsets of the set of natural numbers {0,1,2, . . . }. We assume 
that 

n(i) <n(i+l) (3.1) 

for i = 0,. . . , a - 1, and 

m(l) Im(l+l) (3.2) 
for I= 0,. + ., b -1. 

Consider the sets C and E of orthogonal functions defined on 
the time intervals [0, aT] and ( (YT, T], respectively, by 

C={c[t;n(i)]: i=O;..,a-1) (3.3) 
and 

E={e[t;m(l)]: =O,..*,b-1). (3.4) 

g*( t; i) = [ uE,/( a - l)]l’* 

. {(u-l)/u}+[t;n(i)]-u-l i +[t;n(j)] (3.13) 

i 
j=l 
j#i I 

for i=l;-., a andOst<uT. 
Similarly, using (3.12) we can construct a simplex set 3’P* = 

{/2*(&I): I=l;.., b} such that (37) and (61) are satisfied. This 
set is specified by 

h*( t; l) = [ bE,/( b A)]“” 

{(b-l)/b}~[t;m(l)]-b-’ 5 J,[t;m(k)] (3.14) 
k=l 
k#I I 

for I=l; . ., b and uT<t<T. 
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APPENDIX IV and using Jensen’s inequality in (4.Q we obtain 
DERIVATION OF (79)-(81) I- 

When sender 1 and sender 2 transmit the ith and jth code- 
letters from their code alphabets Xi and X2, respectively, we see 
from (73) that the rate A,,(t) of the counting process associated 
with the output of the optical detector is 

k,(t) = ;p1t t,~i)+E,(t,~l)1*dr+X,, (4.1) 

for i=l;.. , a. Upon expanding the right side of (4.1) and using 
(74), we obtain 

R;C,(q) 5 -1n i ~~~l(Ui)U1tuj~ 

1. 

.exp 
i 

i q2( u,)f’( i, j, f) }I , (4.10) 
I=1 

with equality holding in (4.10) if and only if f’( i, j, r) is the same 
for l=l,. . ., b. In an identical manner, it can be shown that 

X,,(t)=s,(t;i)+s,(t;l) 

+~~Re[E,(t,i$i)E~(t,~l)]dF+&, (4.2) -xp 2 ql(ui)g’(i,l,k) II (4.11) 
i=l 

where Re [ .] and [ .I* denote, respectively, the real part and the 
complex conjugate of [ .I. 

where 

For a Poisson process with rate A(t), the probability of observ- 
ing n points during [0, T] in n disjoint intervals [t,, t, + A tl), 
[t,,t, + AtA. . . ,[ t,, t, + A tn) is approximated to o(max, Ati) 
by 

g’(i,l,k) =-f~T{(~i,(t))‘/2-(hiXo)l/2j2dt. (4.12) 

with equality holding in (4.12) if and only if g’(i, 1, k) is the same 
for i=l,...,u. 

By expanding (4.9) and (4.12), it is easily verified that a 
sufficient condition for equality to hold in (4.10) and (4.11) is 
thatforeach tE[O,T]and FGA, 

E,(t,J;i)E,(t,z’;) =0, (4.13) 
for i=l;.e,u and f=l;.. , b. An implication of (4.13) is that, 
for each t E [0, T], 

.~(t;i)s,(t;l) =0, (4.14) 
for i=l;..,u and !=l;.. , b. This can be achieved by means 
of time sharing between the signals in Yi and Y2. Thus we have 

for n 21, and by 

(4.4) 

for n = 0. 
When the quantization of the output is infinitely fine, that is, 

when c = 00, R,*,(q) can be written from (1.2) in Appendix I as 

R,,(q) =-In i 41(“i)ql(uj) It q2(q)f(i,j9Q t44 

s,(t;i)=O, t_~t<T 

i,j=l I=1 I for i=l,..*,u, and 

where s2( t; r> = 0, 

(4.15) 

(4.16) 

fti,j,l> =C, { Ptw~/ui~u~)P(wm/uj~u~)}1'2~ (4.6) for I=l; . ., b. Then using (73), (75), (76), (78), (4.15), and (4.16) 
in (4.8), we obtain 

From (4.2)-(4.4) and (4.6), we have 

r(i,j,l)=exp[-l/2/o’{^,,(t)+h,,(t)}dt] 

f(i, j) =exp -~/0T’2{(AI(t;i))i’2-(hI(t; j))‘j2}‘dt 
[ 

. 
[ 

-f~T;2{(A2(t;l))1~2-(A2(t;l))1~2}2dt] 

l+ E /~...~,~I{hi,(t)A,,(t)}1’2dtIdt2~~~dt, 
n=l 1 1 

= exp -5 [ 1 oT’2{d(t;i)-d(t; j)}2dt . 1 (4.17) 

(4.7) Defining ail by 
where the integration is over the region 0 I t, I t, 5 . . . I t, I T. 
By extending this range of integration to 0 I ti I T for i = 

qj=lT”{d(t;i)-d(t; j)}2dt, (4.18) 

1; . .) n, and dividing by n! to compensate for this extension, we 
obtain 

it is seen from (4.10), (4.17), and (4.18) that 

f(i, j,l) =exp[ -f~T[(“,i(t))1/‘-(Aj,(t))1’2]2dt]. R,*,(q) =-In i ~l~lt~i)r2t~,~ex~(-~ij~~~], 
1, 

(4.8) which is (79). 

Defining f’( i, j, l) by In an identical fashion, by defining Plk as 

f’(i,j,Q =lnf(i,j,I), (4.9) & =jT>*{ e(t; I)- e(t;-k)}*dt, (4.19) 
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it can be shown that 

G,(q) =-In , ~lq2(ui)q2tuk)orpt-B,k/2)]7 (4.20) 
[, 

which is (80). 
Finally, for c = co, (7) can be written as 

Ii It 41tu,)ql(u,)q2tui)q2t~k) 
i,j=l I,&=1 

. exp ( -f/0’{ (Xi;(t))“‘-(X,,(t))“‘)’ dt]. (4.21) 

Using (73), (75)-(78), (4.15), and (4.16) in (4.21), we obtain upon 
simplication that 

. exp ( -fiT/*{d(t;i)-d(t;j)j2dt} 

. , ~lu2tui)v2(uk) 
{e(t;I)-e(t;k)}*dt 

Using (4.18)-(4.20) in (4.22), we obtain 

%0(q) = W,(q)+ R,*,(q), 
which is (81). 

(4.22) 

(4.23) 

APPENDIX V 
DERIVATION OF (lO7)-(110) 

The Hamilton H is given by 

Hl.~1tf),X2t~),Pl(f),P2tt)~Yt~)~~t~)l 

=2dmi,(u-1) iy(t;i)+ i y(t;i)y(t; j) 
i=l i,j=l 

if] 

+pltt) i [Iy(t:i)12+2d,i,y(tli)] 
i=l 

+ t~,(t;i){.i(t;i)}~. (5.1) 
i=l 

With (9) and [.lT denoting d(.)/dt and the transpose of [.I, 
respectively, the following necessary conditions for y*(t) = 
[y*(t; l), y*(t; 2);. ., y*(t; u)]r and I*(t) = [j*(t; l), 
p*(t;2);. .) j*(t; u)]r to solve the problem defined by (106), 
(lOO)-(103) and (97) are provided, respectively, by the Pontrya- 
gin minimum principle [13, pp. 306-307, Table 5-1, line 4 col- 
umns l-41: 

jQ(t)=O,thatisp:(t)=p:(T/2)=p,,aconstant, (5.2) 
j:(t;i)=O,thatisp$(t;i)=pf(T/2;i)=p,(i), 

a constant, (5.3) 
for i=l;..,u, 

Htx:, x?,P~,P;,Y*,~*] ~H[~iL,d,P1,~2,~,jt], (5.4) 

and 

H[x:(t),x:(t),p,,p,,y*tt),l*(t)] 
=H[~:(T/~),x~(T/~),P,,P,,Y*(T/~),~*(T/~)], 

a constant. (5.5) 
Furthermore, no conditions are imposed on pi, and p2 = 
[P*(l), P,(2),. . .? p2(a>lT. 

To satisfy (5.5), by setting dH/dt = 0, we obtain that, for all 
t E [0, T/2], the following’equation is satisfied: 

i$I.k*(t;i) p2(i)j;*(t;i)+ply*(t;i)+ i y*(t;i) 

i 
j=l 
j#i 

+ d,;,( p1 + a -1) = 0 

1 

(5.6) 

where j;(t; i) denotes the second time derivative of y(t; i). 
Now, in (106), we observe that both integrands in Ji are 

nonnegative. The smallest possible value of J1 is thus zero and 
occurs when each integrand is zero almost everywhere (a.e.) in 
[0, T/2]. In view of constraint (97), it is seen that the second 
integrand in (106) is zero a.e. if and only if a.e. in [0, T/2] either 
all the signals in ‘Y, or all but one, take on the value zero. The 
first integrand is zero a.e. if and only if a.e. in [0, T/2] all the 
signals in g have value zero; in this event, however, the terminal 
constraint (102) is violated. Hence Ji in (106) is minimized when 
a.e. in [0, T/2] either all, or all but one of the signals in the 
optimal signal set ??Ji take on a zero value. 

We can satisfy (5.6) by setting 

j*(t;i) p2(i)J*(t;i)+ply*(t;i)+ i y*(t;i) 

i 
j=l 
j#i 

+d,,,(p,+u-1) =0 (5.7) 1 
for each t E [0, T/2] and for i = 1; . ‘, a. This is satisfied for each 
t E [0, T/2] and for a particular i if either 

j*(t;i) =0 (5.8) 
or 

p2(i)jj*(t;i)+p,y*(t;i)+ i y*(t;i) 
j=l 
j#l 

+d,,,(p,+u-l)=O. (5.9) 

If y*( t; i) is nonzero for a fixed t E [T/2], then in view of the 
previous discussion, (5.9) simplifies to 

p2( i) j;*( t; i) + pg*( t; i) + dmi,( p1 + a - 1) = 0. (5.10) 

The solution to (5.10) is a raised cosine, that is, y*(t; i) is of the 
form 

y*(t;i) =A,[l+cosw,(t-TV)] (5.11) 

where, in accordance with (97), 0 < A, 5 D/2, and where w, and 
T, are yet to be determined. From (5.10) and (5.11), we obtain 

(5.12) 
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and 
p2(i) = ~~/a?. (5.13) 

From (5.2), p1 is a constant; thus from (5.12), A, is the same for 
all i, that is, 

A,=A, fori=l;..,u. 
It then follows from (5.11) and (5.12), respectively, that 

y*(t;i)=A[l+cosw,(t-TV)] (5.14) 
and 

Pl=-d,in(u-l)/(A+d,in). (5.15) 
Thus far, we have seen that for each t E [0, T/2], either all or 

all but one of the signals in the optimal set Y* take on the value 
zero, simultaneously satisfying (5.8). Furthermore, the signal with 
the nonzero value, say y*( t; i), satisfies either (5.8) or (5.14). 

With all the signals in C?/* being zero at some t E [0, T/2], and 
satisfying (5.8), the Hamiltonian H in (5.1) has the value zero. 
When the signal y*( t; i) alone satisfies (5.14) it is verified from 
(5.1) and (5.12)-(5.15) that H = 0, in accordance with (5.5). 
When y*(t; i) alone is nonzero and satisfies (5.8) we see that 
(5.5) is satisfied if 

.[ { y*( t; i)}2+2d,i,y*( t; i)] = 0, 

which upon simplification yields 
y*(t;i) =2A. (5.16) 

Thus, at any t E [0, T/2], either all or all but one of the signals in 
Y* have a zero value. The nonzero signal is either equal to 2 A, as 
in (5.16), or is given by (5.14), where wi will be shown to be 
chosen so as to satisfy (103). For this choice of signals, we 
observe in (94) that the second integral vanishes whereas the first 
one increases with A. Thus OL in (94) is maximized when A takes 
on its greatest value, that is, when A = D/2 (from (5.11)). 

Expressing the signals in Y* in terms of the signals in LB* = 
{d(t;i): i=l;.., a } by the use of (94), we thus conclude that (Y 
in (92) is maximized by the equidistant pulse-position modula- 
tion (PPM) signal set given by (107)-(110). 

In (llO), EI,min is the smallest value of the average energy E1 
for which g* is optimal and corresponds to u*,~ = 0. El,min is 
obtained from 

EI,min =i”*{ d*( t; i)}‘dt, 

which, from (108)-(llO), with u22d = 0 and E1 = Em,,, simplifies 
to 

.[( dmax;dminr+;( dma;dmin)‘-&.], (5.17) 

Upon solving (5.17), we obtain 

El,min = d~i,% + ~ 
T [( ) * 

df&T + 
2n*(d,, - d,,,i,)2 

B: 

.(( dma;dmi’)2+f( dma;dmin)2~&.}~~ (5.18) 

It can be verified that the optimum signal set g* speci- 
fied by (107)-(110) also satisfies the terminal constraint (103). 
Also, the signals in ZB* satisfy the equidistance constraint 1. 

The greatest value E, max of E1 for which g* is optimal 
corresponds to the “full-width” PPM signal set with cr, = (T/2 a 
-2~~). Setting u2 =(T/2u-20,) and E1= E,,,, in (5.17)- 
(5.19), we obtain from 

E,,,, =s,“*{ d*( t; i)}‘dt 

that 

which upon solving gives 

E l.max =;{(u-l)d;in+d;a} 

+; $((a-l)d:,,.+dl,))* [I 
2m2 ( dnmx - dmin12 - 

4B2 

PI 

PI 
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PI 

[91 

WY 
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