
414 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 4, JULY 1981 

The Two-User Cutoff Rate for an 
Asynchronous and a Synchronous 

Multiple-Access Channel 
Are the Same 

PRAKASH NARAYAN, STUDENT MEMBER, IEEE, AND DONALD L. SNYDER, FELLOW, IEEE 

A b s t r a c t-T h e  cutoff rate region for block coding of a two-sender 
one-receiver multiple-access channel is shown to be the same with and 
without frame synchronization between the two senders. 

I. INTRODUCTION 

C OVER, McELIECE, AND POSNER [l] have shown 
in a recent report that for block coding, the capacity 

region for a discrete memoryless two-user multiple-access 
channel with one receiver does not depend on whether the 
two users have frame synchronization. Our objective is to 
establish for their model that the same is true for the cutoff 
rate region. This is important because the cutoff rate is 
generally more readily achieved practically than is capac- 
ity. Also, at least for single user communication, the cutoff 
rate parameter R, has proven to be convenient and tracta- 
ble in design considerations. 

The use of the cutoff rate parameter R, in the study of 
single user coded communication systems was first advo- 
cated by Wozencraft and Kennedy [2] in 1966. In 1974, 
Massey [3] gave an eloquent argument in favor of R, as a 
criterion for the coordinated design of the modulation and 
coding in a communication system. By interpreting R, as a 
function of the modulator and demodulator, it became 
evident how R, could be used to design the best discrete 
channel seen by the encoder and decoder. 

For a single user system with block coding, the cutoff 
rate parameter is obtained by maximizing the negative 
exponent in the expression for the upper bound on the 
average error probability as a function of a free parameter 
p in order to obtain the tightest upper bound [4, p. 1421. 
For a block encoder of rate R and codeword length II, the 
probability of decoding error is bounded above according 
to P, I exp[ -n( R, - R)] for all rates R less than or equal 
to R,. Similarly, for convolutional coding with maximum 
likelihood decoding, Viterbi [5] has shown that the proba- 
bility of error is upper bounded according to P, i 
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k, exp(-nR,) for all rates R less than or equal to R,, 
where n is the constraint length, R is the code rate, and k, 
is a weakly dependent function of R. Also, R, is the 
“R comp” of sequential decoding; that is, R, is the rate 
above which the average number of decoding steps per 
decoded digit becomes unbounded. It is evident from these 
results, and has been noted.by others, that for both block 
and convolutional coding R, determines a range of rates 
over which reliable communication can be assured as well 
as the coding complexity needed to achieve a specified 
level of reliability. Thus as a single parameter characteriz- 
ing a channel, R, is more informative than the more 
fundamental channel capacity because the capacity indi- 
cates nothing about complexity even though it does give 
the entire range of rates over which any degree of reliabil- 
ity can be achieved. 

Compared to other single parameters that might be 
adopted to characterize a channel, such as R,, Rctit, and R, 
[2,4 (p. 160)], the cutoff rate R, has several advantages. It 
is more tractable than the others, especially in the context 
of optimal modulator design. Also, since R, is larger than 
the other three parameters, it provides a better estimate of 
the capacity and a tighter upper bound on the error 
probability and, therefore, yields a less conservative esti- 
mate of the complexity needed to achieve a specified 
reliability. 

The practical implications of the R, parameter for single 
user channels were first demonstrated by Massey [3] who 
used it to identify optimal modulator designs for an addi- 
tive white Gaussian noise channel. Snyder and Rhodes [6] 
used similar ideas for direct detection optical communica- 
tion systems. Lee [7] used the R, parameter to obtain 
necessary conditions for the optimal coherent demodula- 
tion of M-ary signals on an additive white Gaussian chan- 
nel. These studies and several others [8]-[lo] suggest that 
the cutoff rate is a very useful parameter characterizing a 
single user channel. 

We have generalized the cutoff rate parameter for a 
single user channel to a “cutoff rate region” for a multiple 
access channel. Our preliminary studies indicate that the 
cutoff rate region is likewise a tractable parameter useful in 
design considerations. As an example, for any rate pair in 
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the cutoff rate region, we shall estimate the additional 
encoding/decoding complexity required without frame 
synchronization to assure the same reliability as with syn- 
chronization. Issues associated with the coordinated design 
of encoders and modulators for multiple access channels 
will be explored using the cutoff rate region in another 
paper. 

A two-user multiple access channel is specified by a set 
of transition probabilities p(w 1 u, u), where w is a received 
letter in the alphabet Y, and u and v are codeletters sent by 
sender-l and sender-2, respectively, from their alphabets 
X, and X,. Codewords are assumed to be selected indepen- 
dently by the two senders so that if Q,(xu) is the probabil- 
ity that sender-l chooses his i th codeword, and if QZ(xZj) 
is the probability that sender-2 chooses his j th codeword, 
then the joint probability Q(xu, xZj) that sender-l and 
sender-2 choose these codewords satisfies 

Q<x, i ,  X2j) = Q, (X, i)Q2(X2j)y 
for all i, j. 

We assume that the channel is memoryless and that 
codewords of length n are constructed by independently 
selecting n codeletters according to a common distribution 
4, for sender-l and q2 for sender-2. Then 

Q, (x, )  = . f ,  dx,mh  

and 

m=l 

Slepian and Wolf [ 1 l] haye demonstrated for a synchro- 
nous discrete memoryless two-sender one-receiver multiple- 
access channel that there exists a block code of codeword 
length n and a rate pair (R,, R2) such that the average 
probability of decoding error, for maximum likelihood 
decoding, satisfies 

&Sync 5 i  exp{ -n[-PA+ -%(pa2 4,  p)]  > (1)  
IX=1 

for all pa between or equal to 0 and 1, where 

R,= R,, a= 1, 
= R 29 a = 2, 

= R, + R,, (Y = 3, 

and where 

E,(P,, 4, P) 

[ 

~, (l+Pl) 
1) 24,(U)P(WlU, u)(‘+p’) 

Xl 1 

E ,(P,, 4, P > 

= -1n 2 24,(u) ~q2(~)p(wlu,~)(1+p2) 
i [ 

_, ( ‘+ P z) 

, 
y Xl x 2 I i 

and 

E,(P,, 4, P> 

= -In 2 x ~q(u,v)p(Wlu,U)“+p”- i [ 
, u+P3) 

. 
y Xl x 2 I 1 

In order to identify the cutoff rate region for a synchro- 
nous two-user multiple-access channel, we minimize the 
bound in (1) as a function of pa for ~1 = 1,2,3. This 
minimization can be effected by minimizing each exponen- 
tial term separately using Gallager’s method [6, p. 1421 and 
occurs at p, = p2 = p3 = 1. The cutoff rate region is then 
the convex hull of the union, over all independent proba- 
bility distributions q( u, U) = ql( u)q2(u), of the set of all 
rate pairs (R,, R2) that satisfy 

J 
7 (3) 

and 

With frame synchronization, time sharing achieves any rate 
pair (R,, R2) in the convex hull. It will be demonstrated 
that this cutoff rate region remains the same without frame 
synchronization between the two users, provided a finite 
upper bound “d” on the time shifts between them is 
known. 

II. REVIEW OF THE COVER-MCELIECE-POSNER MODEL 

We adopt the following definitions due to Cover, Mc- 
Eliece, and Posner [I]. 

Definition I: The relative maximum delay d is the maxi- 
mum amount by which a message from sender-l and a 
message from sender-2 can be out of synchronism relative 
to a universally known time. 

Definition 2: An {(M,, M,), n, d, P,} code for a two- 
user multiple access channel with a relative maximum 
delay d is a pair of encoding maps x,: { 1,2; . .,M,} + X; 
and x2: {1,2;..,M,} + Xt, and a decoding map g: Y”-+ 
{1,2;** ,M,} x { 1,2,- * *,44,}, where Xi is the code al- 
phabet of sender-i, J4, is the next integer greater or equal 
to exp(nRi), and Ri is the rate of sender-i, i = 1,2. Y is the 
output alphabet. 

Definition 3: For any given maximum relative delay d, a 
pair of rates (R,, R2) will be said to be achievable if there 
exists a sequence of {(M,, M2), n, d, P,,} codes such that 
P,, tends to zero as as n tends to infinity. 
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Example 1 (Binary Adder Channel): Let X, = X, = (0, l} 
and y = x, + x2. Then, Y = (0, 1,2}. The output symbol 
y = 1 is an erasure. Cover, McEliece, and Posner [l] and 
Gaarder and Wolf [12] proved the capacity region for this 
two-sender binary-adder multiple-access channel to be R, 
I 1, R,I 1, R, + R,I 1.5 bits. Using (2)-(4), we find 
thecutoffrateregiontobeR,I 1, R,S 1, R,+ R,I 1.42 
bits. 

For an asynchronous multiple-access channel, the cutoff 
rate region may not be convex. Then we must find a 
convex combination of rate pairs (R,, R,) and (R;, R;) to 
achieve the pair (RT, R;) = P(R,, R,) + (1 - P)(R;, R;) 
for arbitrary p, 0 I p I 1. This will be accomplished in 
the remainder of the paper as follows. First we let Q(x,, x2) 
induce a cutoff-rate region that has (R,, R2) as an extreme 
point. In the same way, we let Q’(x,, x2) induce a cutoff- 
rate region that has (R;, R;) as an extreme point. Using a 
random coding procedure, generate a random 
{(eSnR~ ePnR, ), pn} code with codewords x of length j3n 
and lodeword probability Q and a random 
{(e” -B)nRi e(’ -BW’, ), (1 - P)n} code with codewords x’ 
of length il - P)n and codeword probability Q’. The 
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Fig. 1. Asynchronous sender codewords and their overlap windows in 
the received word. 

III. CUTOFF RATE REGION WITHOUT FM 
SYNCHRONIZATION 

transmitted codewords are obtained by the concatenation 
xx’ and have length n. Assuming that message (i, j) is transmitted and that y is 

Corresponding to the message pair (i, j), sender- 1 trans- decoded as (i*, j*), a decoding error can occur in the 

mits codewords xlixii, and sender-2 transmits codeword following three ways: (i* # i, j* = j), (i* = i, j* # j), and 

xZjx;,. Assume that messages transmitted by each sender (i* # i, j* # j). Denote the probability for each of these 

are selected with equal probability, so (i, j) is transmitted errors by 

with probability (M,M,)-‘. The receiver observes y and P, = Pr(i* # i, j* =j), (5) 
searches for x,x; and x2x; with arbitrary time shifts up to 
a maximum relative delay d. Because of the lack of frame 

P2 = Pr(i* = i, j* Zj), (6) 

synchronization, up to d of the leading symbols received in P3 = Pr(i* # i, j* Zj). (7) 
a particular transmission interval may contain interference We initially upper bound P, over the ensemble of codes 
from symbols of previous transmission intervals and must considering only the first window in Fig. 1. Let P, , be the 
be ignored. probability of event (i* # i, j* = j) considering window-l 

For some k, and k, between or equal to 0 and d, the alone, over the ensemble of codes. The following upper 
transmitted and received sequences will have the ap- bound on P, , can be obtained using Gallager’s method [6, 
pearance indicated in Fig. 1. The important feature implied pp. 135- 13ij.I 
in this figure is that x,x; and x*x; will have a sufficient 
overlap to enable decoding with an arbitrarily small error 
probability. The regions of overlap can be preidentified 

Pl,,~ k 

k,,k?=l [  '  
w( ;x, , ,  Q2(  '+ ' [  Tk2 (X2iXi j  )]  )  

I  
and are at least of lengths /3n - d and (1 - P)n - d, 
independent of k, and k,. 

Let T”(v) denote a right shift by k symbols of an 
n-tuple v = (v,, v2; * * ,v,). Also, let W(v) denote the 
window function that extracts the j3n - d symbols of the 
n-tuple v appearing in the first window in Fig. 1. Then 
W(v) = (v,+,, v~+~,. .-,vp,,) and w[Tk(v)l = 
(0 k+d+l, ‘k+d+2,’ ’ .JJkfflJ. 

The decoding algorithm decodes a received n-tuple y as 

IX Ql{ WITkl(Xl,xii)]} 
WY) W~IPI,) 

the message pair (i*, j*) that maximizes the functionf( i, j) 
defined by 

f(i ,  . i> = ,s~ak:,dp( W(~)lw[Tk’(XliX~i)]~ 

for all(i, j) E {1,2;..,M,} X {1,2;*.,M,}. 

.Pr(i* # iii, WITkl(xlix;i), 

'W[Tk2(X2jX;j)]> w(Y>) ' 1 (8) 

The last factor in (8) is the probability of a decoding 
error only in the message transmitted by sender-l condi- 
tioned on the message i of sender-l, the appearance in the 
first window of the particular portion of the ith codeword 
of sender-i after a shift of k, symbols due to asynchronism, 
the appearance in the first window of the particular por- 
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tion of the jth codeword of sender-2 after a shift of k, 
symbols due to asynchronism, and the portion of y in the 
first window. Here the message j of sender-2 is fixed, and 
no error is made in its decoding. 

For a given k,, k,, i, and j, we have i* # i if 

L(i*, i) 2 1, (9) 

where L(z ‘*, i) is the likelihood ratio 

L(i*, i) = p( W(y)lWITk’(xli*x;,*)], W[Tk’(x2,xGj)]) 

P(W(y)lWITk’(XliX;i)], W[Tk2(X2jX;j)]) ’ 

Let D denote the collection of windowed codewords 
{W(x,;.x;;a)}. Al so, for a given i, let ti,( k,, i) be the 
subset of CJ for which L(i*, i) 2 1. Define A(k,, i*) as the 
event that the windowed codeword (W(X,~*X;~*)) is in G2,. 
Then 

Pr( i* # iii, WITkl(xl,.x;,* )]f W[Tk2(x2jx~~)]~ w(Y)) 

IS Pr U A(k,, i*) I z Pr{A(k,, i*)} ‘I 
[ i*#i 1 [ i*#i 1 

(10) 
for all p, between or equal to zero and one. 

We now bound the probability of event A( k, , i*) accord- 
ing to 

Pr[A(k,, i*>] = ~Q[w(xli*X;i*), W(X?jXij)] 

I x Q[~(x,~.x;~.), W(x2jx;j)] L”(i*, i) 
cl 

(11) 

for all s 1 0. 
Using (11) in (10) and defining M, = exp[(pn - d)R,] 

as the number of distinct codeletter sequences that can 
appear in window-l due to sender-l, we obtain 

Pr(i* # ili,W[Tkl(x,ix;i)],W[Tk2(x2jx;j)],W(y)) 

(M,- l)~Q[W(x,,~~~~~),W(x,,x~~)]L”(i*,i) ‘I. 
ii? 1 

02) 
Substituting (12) into (8) and interchanging the order of 

summation, we obtain 

417 

Using the definition of L(i*, i), setting s = (1 + p,)-‘, 
and recognizing that Q2 I 1, we obtain 

P,,,S (M,- 1)“’ 2 Q2( J+‘[‘k2(X2jXij)]) 

. r, { 2 Q,{ ~[~k’(w~~)l~ 
W.Y) Q 

’ (P( W(.Y)lWITk’(xli*x;i*>]~ , ‘+Pl WITk~(x*jX;j)])](l+p’)- . 1 I (14) 

Using the assumed memoryless and independence proper- 
ties of the channel and code selection, and recognizing that 
xlixli’ and x2jx2j’ are dummy summation variables, we 
then obtain 

f’,,,~ i exp{-(~n-d)[El(pl,q,P)-pp,Rl]} 
k,,k,=l 

~d2exp{-(~n-d)[El(pl,q,P)-plRl]}, (15) 

where we define 

E,(ww) 

(16) 
Hence, 

C r 
P,,,sexp 

i 
-(fin-d) El(pl,q,p)--prRt-~]}. 

L 
(17) 

Since all messages are equiprobable, P, , is also the 
average probability of error p,,, in decoding the first 
sender’s message inspecting window- 1 alone. By inspecting 
window-2 alone, we similarly find the average probability 
of error, P, 2, in decoding the first sender’s message as 

F, ,2 5 exp 
i 

-[(I -P)n-4 

21n(d) 
E,(P;,q,P)-P;R;-((l-p)n-d II ’ (18) 

where 0 I p ,’ I 1. Thus, the average probability of error F, 
in- decoding the first sender’s message incorrectly while 

P,,,S (M,- 1)“’ ; 
k,, k, = 1 

2 Q2( W[Tk’(X2jX;j)]) IX {ZQl{ J+‘[‘k’(xl;Xi;)]} 
WXZ,~,) WY) Q 

.P( W(~)lW[~kl(xlix;i)]~ W[TkZ(X2jX;j)]) [X Ql[w( li* x 
n 

Xii*)] Q~[W(x~jx;j)]Ls(i*~ i)]“}]. (13) 
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decoding the second sender’s message correctly satisfies and 

F, IF, , + F, 2 R,+ R,I -In x z xq(u,v)p’/2(wIu,v) 2 
l [ y xi x2 Ii ~exp{-(P,-d)[El(,l~q~~~-~l~~-~]} - (2ln(d))[pn -d]-‘. (23) 

1 
’ 

Since In (d)[ j3n - d] - ’ tends to zero as n tends to 
+exp -[(l-p)n-6] infinity, the cutoff rate region defined by (21)-(23) for an 

asynchronous channel is the same as that defined by 

[ 

21n(d) II 
(2)-(4) for a synchronous channel. We note that the rate 

’ E,b;d~d-p;R’- cl -/j)n-d . (19) pair for the code is (RT, R*,) = P(R,, R2) + (1 - 
/3)( R,‘, R,‘) and the average probability of error, &ync, 
tends to zero as n tends to infinity. 

Proceeding in exactly the same manner, we obtain simi- A comparison of (1) and (20) indicates, however, that the 
lar upper bounds for the probabilities, p2 and Fs, of average error probability for an asynchronous channel is 
decoding errors in the second sender’s message alone and potentially greater than that for a synchronous channel for 
in both messages, respectively. We conclude that the aver- the same block length and sender rates. Hence, to achieve a 
age error probability on the asynchronous two-sender specified level of performance, one needs to select a larger 
channel satisfies block length for an asynchronous channel in comparison to 

a synchronous channel. For a given rate pair (R,, R2), 
3 

pe,async 5 
4 i 

exp -(/b--d) 
conservative estimates of the block lengths nsync and n,,, 
for the synchronous and asynchronous channels, respec- 

Cl=1 tively, required to achieve a specified level of performance 

1 

21n(d) 
. E,baa+paRa-- II 

can be determined as seen in the following examples. 
Example 2 (Binary Adder Channel): Suppose for the 

channel of Example 1 that the operating rate pair is (0.6, 

+exp -[(l-/3)n-d] 
{ 

0.6), d = 10, and the block error probability is to be less 
than 10M5. Then the block lengths n,,, = 83 and n.,,,, = 
123 assure block codes exist that achieve the desired per- 

. Ea(p;>q’,p)-~Xx- 
[ 

21n(d) III 
formance. About a 50 percent increase in complexity as 

(l-p)n-d ’ measured by the block length is needed for equivalent 

(20) 
performance. 

Example 3 (Additive White Gaussian Noise Channel): 

where p, and pa’ are between or equal to zero and one for 
Suppose the received signal is r(t) = s,(t; i) + s,(t; j) + 

(Y = 1, 2, and 3. This expression for the asynchronous 
w(t), where s,( t; i) is the signal of sender-l for his i th code 

channel is analogous to (1) for the synchronous channel. 
symbol, s2(t; j) is the signal of sender-2 for his jth code 

To obtain the cutoff rate region for the asynchronous 
symbol, and w(t) is a white Gaussian noise. Assume that 

channel, the exponents in (20) must be maximized with 
each sender has a binary code alphabet, that the signal 

respect to p, and pa’ for (Y = 1, 2, and 3. Just as for the 
energy per bit to noise power density ratio is two for each 

synchronous channel, the maximum with respect to p, and 
sender, and that the demodulator alphabet dimension is 

p; occurs at p, = 1 and pa’ = 1 for (Y = 1, 2, and 3. 
infinite (i.e., there is no output quantization). If the signal 

Therefore, the cutoff rate region for the asynchronous 
sets of the two senders form mutually orthogonal sim- 

channel is the convex hull of the union, over all indepen- 
plexes, we find the cutoff rate region to be given by the set 

dent probability distributions q( u, v) = q,( u)qz( v), of the 
of rate pairs (R,, R2) that satisfy R, 5 0.68, R, I 0.68, 

set of all rate pairs (R,, R2) satisfying 
and R, + R, I 1.36 bits. When operating with rate pair 
(0.5, 0.5) d = 10, and a required block error probability of 

R, 5 -1n 
l [ 

x b2b) &1(u)p’/2bIu~ v> 2 
y x2 Xl II 

10 -5, the estimated block lengths needed to assure the 
existence of a code are nsync = 102 and n async = 149, which 
again represents about a 50 percent increase in complexity 
for equivalent performance. 

- (2ln(d))[pn -d]-’ (21) 
IV. CAPACITY REGION WITHOUT FRAME 

&2(v)p’/2(wI~,v) 2 
X2 Ii 

SYNCHRONIZATION 

The conclusion of Cover, McEliece, and Posner [1] that 

- (2ln(d))[pn -d]-’ (22) 
the capacity region remains unaffected in the absence of 
synchronization can be seen in an alternative manner from 
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(20). From Gallager [4], it is evident that, for (Y = 1, 2, and ACKNOWLEDGMENT 
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21n (d) 
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for pa = 0, and noting that the result is nonnegative, yields 
a region of rate pairs whose convex closure is the capacity 
region. On doing this, we obtain the capacity region for an 
asynchronous channel as the convex hull of the union, over 
all independent probability distributions q(u, v) = 

q,(u)q2(v), of the set of all rate pairs (R,, R2) that satisfy 

R, 5 aE,(o, 4, pvap, = G; WI4 (24) 

and 

R, + R, 5 a&(0, q, d/%3 = I+, v; w>. (26) 

This is identical to the capacity region of a synchronous 
channel. 

V. CONCLUSION 

Cover, McEliece, and Posner have established the inter- 
esting and important result that the capacity region for a 
two-sender memoryless discrete channel is the same with 
and without synchronization for block coding. We have 
shown that the cutoff rate region, which is a subregion of 
the capacity region, is likewise the same with and without 
synchronization. We feel this is of potential importance 
because of the way the cutoff rate for a single user channel 
has come to play an important role in system design. 
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