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Abstmet-We consider first the estimation of the order, i.e., 
the number of states, of a discrete-time finite-alphabet station- 
ary ergodic hidden Markov source (HMS). Our estimator uses a 
description of the observed data in terms of a uniquely dead- 
able code with respect to a mixture distriiw obtained by 
suitably mixing a parametric family of dletribntiom on the 
observation space. This procedure avoids nrsxinvlm likelihood 
calculations. The order estimator is shown to be strongly eongis- 
tent with the probability of underestim;rtion decaying exponen- 
tialIy fast in the number n of observations, -e the prthbility 
of overestimation does not exceed cn -', where E is a constant.. 
Next, we present a seqoential algorithm fw the uniquely decod- 
able univerapl data compression of the IIMS, which performs an 
on-line estimation of source order followed by arithmetic COQins. 
This code asymptotically attains optimum average redundancy. 

Index Tenns-Hidden Markov source, order, estimator, con- 
sistency, mixture distribution, universal data compression, 
uniquely decodable, pointwise redundancy, average redundancy. 

I. INTRODUCITON 
KEY feature of current research in speech process- A ing involves the development of mathematical mod- 

els for the speech signal. A popular choice of such a 
model is the hidden Markov model, also referred to as the 
hidden Markov source (HMS) [21]. This paper is con- 
cerned with two important problems arising in the study 
of the HMS, namely order estimation and sequential (i.e., 
symbol-by-symbol), noiseless universal data compression. 
The difficulty encountered by the statistical approach to 
these problems, viz., the computation of maximum likeli- 
hood functions, is circumvented by employing an informa- 
tion-theoretic approach. 

Order estimation and noiseless universal data compres- 
sion are fundamental to the statistical modeling of ob- 
served data, i.e., finding a model or class of models that 
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completely capture the salient features of the observed 
data. A widely-studied approach to modeling data, adve 
cated by several authors (cf., e.g., Rissanen [22]-[25], 
Merhav ef al. [16], Barron [l]) involves representing the 
data by its shortest noiseless universal (data-compression) 
code. On the other hand, the length of such a codeword 
for the data in terms of a given model is closely related to 
the notion of order or complexity of the model. Often, 
this complexity is determined by the number of parame- 
ters that specify the models in a given class. For a discrete 
alphabet Markov process, the number of parameters is 
determined by the size of the alphabet and the order 
(memory) of the process. For an HMS, the number of 

* parameters is determined by its order (number of states of 
the underlying Markov process), and the size of the obser- 
vation alphabet. 

The problems of estimating the order of a Markov 
process 171, [15], 1161 and that of a finite-state source and 
an HMS [7], [30] have recently received much attention. 
Merhav, Gutman, and Ziv [16] have proposed an algo- 
rithm (the MGZ algorithm) for estimating the order of a 
discrete-time discrete-alphabet Markov process. Their ap- 
proach is also employed to estimate the number of param- 
eters of an independent and identically distributed (IID) 
exponential family of distributions [17], and the number 
of states of a finite-state source 1301. It employs a Ney- 
man-Pearson-like criteion, namely, minimizing the prob- 
ability of underestimation (i.e., selecting an order that is 
smaller than the true order) while constraining the over- 
estimation probability to decrease exponentially fast in 
the number of observations. For the Markov case, Mer- 
hav, Gutman, and Ziv 1161 have also shown that if the 
exponent governing the overestimation probability is small 
enough, the optimal order estimator yields an exponen- 
tially decreasing underestimation probability and is 
consistent under this condition. However, when the pre- 
scribed overestimation exponent is too large, the estima- 
tor becomes inconsistent with the probability of underesti- 
mation approaching unity. From the point of view of data 
compression, this tendency to underestimate can be very 
serious. Intuitively, if models of higher orders are allowed 
so that they include the true data-generating distribution, 
even though the redundancy may not be optimal in encod- 
ing the data, its normalized value with respect to the 
number of observations tends to zero almost surely. On 
the other hand, a restriction to lower order models may 
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preclude the true distribution so that the average normal- 
ized redundancy does not vanish as the number of obser- 
vations increases. 

A variant of the Merhav-Gutman-Ziv (MGZ) method 
has been employed by Weinberger et al. [28] to compress 
data emitted by an unifilar source (a subclass of the set of 
finite-state sources), assuming the source state at each 
time instant to depend on at most a k e d  number of past 
source symbols. Their approach consists of estimating first 
the states at each time instant and subsequently using 
these estimates in an arithmetic code. This procedure 
does not generalize immediately to the compression of 
(general) finite-state sources or hidden Markov sources. 
Ziv and Merhav [30] have proposed an estimator for the 
order of a finite-state source wherein for each possible 
value of order, a function of the maximum likelihood 
probability of the observed data is compared with its 
average Lempel-Ziv data compression length. Their esti- 
mator asymptotically attains the minimum probability of 
underestimation among all estimators with a prescribed 
exponential decay rate of overestimation probability. On 
the other hand, this estimator tends to underestimate the 
source order. We shall show that a slight modification of 
the Ziv-Merhav [30] approach results in consistency. 

Finesso [7] has recently finessed a technique for esti- 
mating the order of a Markov source, which involves the 
minimization of a description length consisting of a likeli- 
hood function together with a compensation term. The 
“smallest” possible compensation terms are obtained via 
the law of itemted logarithm for the maximum likelihood 
function. A generalization of this approach to an HMS is 
as yet elusive; the major obstacle is the lack of a law of 
iterated algorithm for the corresponding maximum likeli- 
hood estimate (MLE). Nonetheless, for an HMS, by ap- 
proximating the maximum likelihood function by model 
complexity, Finesso [7] has succeeded in choosing com- 
pensation terms that ensure the strong consistency of the 
corresponding estimator. Kieffer [ll] has proposed an 
estimator for the order of a class of sources, including 
Markov, hidden Markov, and finite-state sources. His esti- 
mator, which is strongly consistent, is based on Rissanen’s 
minimum description length (MDL) principle (cf., e.g., 

The modified MGZ algorithm [281, Finesso’s approach 
171, and Kieffer’s estimator [ l l ]  all rely on maximum 
likelihood estimates. In general, the MLE is very difficult 
to compute exactly; furthermore, there is no known algo- 
rithm (including the EM algorithm) that guarantees a 
convergence of its estimate to the true MLE. Thus, al- 
though theoretically sound, the actual estimates in [7], 
[U], 1281 may be intractable in practice. 

In this paper, we first consider the estimation of the 
order of a discrete-time finite-alphabet stationary ergodic 
HMS. Our estimator employs a description of the ob- 
served data in terms of a uniquely decodable code with 
respect to a mixture distribution, obtained by suitably 
mixing a parametric family of distributions on the obser- 
vation space. The mixture distribution for the HMS, pro- 

. [221). 

posed by CsiszPr [3], was motivated by the work of 
Davisson et al. [6] and Shtar’kov 1271. Our approach avoids 
computationally burdensome maximum likelihood calcu- 
lations; however, the evaluation of the mixture distribu- 
tion is itself arduous. The resulting order estimator is 
shown to be strongly consistent. 

We next propose a uniquely decodable universal code 
for the sequential data compression of the HMS. This 
scheme employs the previous estimate of HMS order 
followed by arithmetic coding. It is shown that our code 
asymptotically attains optimum average redundancy by 
dint of the adequacy of the rate of convergence of the 
HMS order estimator. 

The remainder of the paper is organized as follows. 
Section I1 describes the problem of HMS order estimation 
as well as that of a general stationary ergodic source. The 
HMS order estimator based on mixture distributions is 
treated in Section 111, and the universal data-compression 
scheme is presented in Section IV. Section V discusses a 
problem of inexact or mismatched modeling; the consis- 
tent estimation of the order of a general stationary er- 
godic process is also addressed using a minor modification 
of the Ziv-Merhav approach [30]. 

11. PRELIMINARIES 
Let 9= {l,..., k}  be a finite set of integers. Let {S,}:=, 

be an 9-valued first-order, stationary ergodic Markov 
process, generated by a k X k-stochastic matrix A = {auu}, 
and an initial probability distribution T on 9. Here, 
auu P(S ,  = u I S , - ~  = U), U and U in 9, denote the 
transition probabilities of the process {S,}i= ,. Throughout 
this paper, we shall use the notation sk to refer to the 
subsequence (sm;. . , s , ) ,  0 I m < n,  of symbols from 9. 

Let 2= {l,.-. ,q}, q 2 2, be a finite set of integers. Let 
{X,} i= be an %-valued stochastic process, which is gener- 
ated by the process {S,}~,, according to the following 
probabilistic mechanism: 

b,, A P ( X ,  = IIS, = i ,  Sn-l S , , X , - ,  X , )  
= P ( X ,  = ZIS, = i), 1 I i I k 1 I 1 1  q (2.1) 

for n 2 1, where B = {bJ is a k X q-stochastic matrix. 
The process {X,}:,, so generated, which is a function of 
the Markov chain { S n } i = O ,  is commonly referred to as a 
hidden Markov source (HMS). The n-dimensional joint 
probability distribution of the HMS {X,}:= is completely 
determined by an initial distribution T on 9, and the 
stochastic matrices A, B. In particular, we have 

P(x; = x;1s0 = so) = P(x; = xys; = $,So = so) 
s; €Y 

.P(S? = s;Is, = so) 
n 

= n P ( X m  =ZmIS, =s,) 
sn e n  m = I 
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where, in keeping with previous notation, Xi 4 
(X,,.-,X,) and x$ p (sm,- - . ,xn) ,  1 I m < n. Hereafter, 
the order of the HMS {X,c=, will refer to the cardinality 
of the state space 9 of the underlying Markov process 
{S,E=,. For IID and Markov processes, order will be 
defined in terms of "memory." Thus, an %-valued Markov 
process {X,J;=, with P(X, =x,Pr;-' = xr- ' )  = P(X, 
= x,lX,"Ii = x,"::), for n > k ,  will be said to have order 
k,  k L 1; an IID process will have order 0. We shall 
assume that the HMS {X,E= , is observed, and that its order 
k is unknown, except that it does not exceed a known integer 
k, 2 1; the stochastic matices A and B are also assumed to 
be unknown. Our first objective is to obtain a consistent 
estimate of the order k based on observations of the 
process {X ,c= , .  A second objective is to find uniquely 
decodable (UD) universal codes for the HMS {X,E=, 
achieving minimal redundancy in a suitable sense. 

To this end, we begin by distinguishing between three 
parametric spaces for each k,  1 I k I k,. First, let Ok 
denote the set of all pairs of stochastic matrices ( A , B ) ,  
where A is a k x k-stochastic matrix and E is a k X q- 
stochastic matrix. Next, for 6 > 0, let 0: E Ok denote the 
set of pairs of such stochastic matrices (A, S), as satisfy 
a,,.> 6, bi, L 6, 1 i i ,  j i k,  1 I 1 i q. (Clearly, this re- 
quirement cannot be met for all 6 > 0.) Finally, Ogk E Ok 
is defined to be the set of pairs of stochastic matrices 
(A, B), where each matrix A generates a unique station- 
ary distribution that is necessarily ergodic; note that 0: E 
0;. Let 2F' denote the set of all infinite sequences of 
symbols from 2. Throughout this paper, hidden Markov 
measures on SF will refer to those generated in accordance 
with (2.1) and (2.21, with the underlying Markov process 
having a unique stationary distribution; for 8 in 06, 1 I k 
I k,, let Pe denote a (stationary ergodic) hidden Markov 
measure on zzp". 
Lemma 2.1: For each 8 in Ogk, 1 I k < k,, there exists 

e' in 0;' such that Pe and Pi constitute equal measures 
on S. 

0 
An obvious ambiguity that may arise in the aforemen- 

tioned estimation problem concerns the possible lack of 
uniqueness of the "true" order of the HMS: more than 
one distinct parameter (corresponding to different values 
of k )  may yield the same measure on P. The mathemati- 
cal difficulty posed by this identifiability issue is usually 
circumvented in a standard manner by assuming the HMS 
{X,}:=, to be regular (cf. [23, [201): a regular HMS of 
order k cannot induce the same measure on Y as any 
other HMS of a lower order 1201. However, the ambiguity 
concerning the "true" order can be resolved without 
recourse to the assumption of regularity by adopting 
Rissanen's guiding principle of model-building [221, namely 
that the simplest model in the class of models that con- 
forms to the observed data indeed constitutes the best 
model of the data. Thus, the "true" order of the HMS is 
the smallest v h e  of k, 1 i k I k,, for which there exists 
a parameter 8 in Ogk, such that Pe and the measure on 
S?@' corresponding to the observed process {X,t,, are 

Froofi The claim is perfectly trivial. 

equal. We define a set of minimal models A as the set of 
pairs (k, e), 1 I k i k,, 8 in Ogk, with the property that 
for any (k, 8 )  in A, there exists no pair (k ' ,  8% 1 I k' < 
k, 8' in et', such that Pe and Per are equal measures on 
P. We shall assume that the observed process { X , c = ,  is 
generated in accordance with Pe, 8 in Ogk, for some (k, 8 )  in 
A. Our first objective then is to search for an estimator of 
order that is consistent in the sense that the correspond- 
ing estimate converges, for large observed samples, to a 
value of k associated with a minimal model in 4. 

We begin with two pertinent technical lemmas for an 
HMS. The first lemma, stated and proved in [7, Lemma 
1.4.31, establishes the relationship between the parametric 
sets e:, 1 I k I k,. For the sake of completeness, we 
repeat the result below. 

Lemma 2.2 (Finesso): For each 8 in Oi, there exists e' 
in such that Pe and Pi are equal measures on 3F'. 

Proofi The proof is based on a straightforward state- 
splitting argument. Let 8 = (A, B), where 

A = {au,",  1 i U I k ,  1 I U i k ) ,  

B = { b t , [ ,  1 I i I k ,  1 I 1 i q } .  

Set 6 = (A', B'), where 

A' = 1 I U I k + 1, 1 I U I k + l}, 

B' = {b ; , [ ,  1 I i I k + 1, 1 I 1 1  q }  

with 

a;," = aU,",  
% , U  

a;," = - 2 '  

1 I U 5 k ,  1 I U I k - 1 

1 s u s k ,  k s v s k +  1 

1 I U 5 k + 1. ai+, ," = ai ,",  
Clearly e' is in -t 1, and PG = Po. U 

We define the Kullback-Leibler distance or information 
divergence between two stationary ergodic hidden Markov 
measures P and P' on 2" as 

where E p  denotes expectation with respect to the mea- 
sure P. The information divergence in (2.3) is well- 
defined; a proof of this fact can be found in [7, Theorem 
2.3.31. 

The following is a key result used in this paper, with 
independent proofs by Leroux [ 14, Theorem 21, Finesso [7, 
Theorem 2.3.31 and Csiszlr-Shields [51. 

Lemma 2.3 (Csiszh-Shields, Finesso, Leroux): If Pe and 
Per are stationary ergodic hidden Markov measures on 
.2", then 

If Pe and Pet are not equal measures on S?", then 
D(PeIIPe,) > 0- 
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1 P ( x ;  =x;> 

n P(Y; = x ; )  1 -  1% 

Remark: If P, is a "general" stationary ergodic mea- 
sure on 2", lim, l/n log P,(x;)/P,,(x;) exists when P,, is 
a Markov measure of finite order. Although an HMS is 
usually not a Markov process of finite order, the limit in 
Lemma 2.3 nonetheless exists (cf. [7, Theorem 2.3.1). 

We close this section with a series of technical results 
for a (general) 2-valued stationary ergodic process, which 
is not necessarily an HMS. These results will be applied in 
the next section to an HMS in proving the consistency of 
its order estimator. They are also of independent interest 
(cf. the comment in Section V concerning the Ziv-Merhav 
estimator [30] of the order of a general stationary ergodic 
process). 

Let {Y,}:, be an Z-valued stationary ergodic process. 
Let {Pk)tn1 be a sequence of families of stationary er- 
godic probability measures on (Zm, r), where AF is the 
standard a-field on Zm, and k ,  2 1 is a known integer as 
in Section 11. If the process {Y,}:= is generated according 
to a probability measure'in Pk, we refer to k as the order 
of the stationary ergodic process. 

Let Y and y denote, respectively, the infinite sequence 
of %-valued random variables (Yl,-*-,Y,, ), and an ele- 
ment (yl ,**-,  y,, ) in T. We assume that { P k } ~ ~  satis- 
fies the following conditions. 

011): For each k,  1 I k I k, ,  Pk is a parametric fam- 
ily, namely Pk = {P, : e E nk}, where nk is a compact 
subset of a metric space with metric d( - ,  * ). Furthermore, 
pk E P k + l ,  1 I k < ko. 
012): For each n 2 1, we assume for 8 in U 

that P,(y;) > 0 for all y ;  in P. Furthermore, for 8 , 8 '  in 
Ilk, 1 s k I k, ,  and y = (y l , -*- ,  y, ,  . - a )  in 

< D ( A ,  A')  + E - 

(2.4) 

is assumed to be equicontinuous in 8'. 
Next, we define 

D,, ,,(y) g lim inf Li,  , , ( y ; ) .  (2.5) 

013): If 8 ,8 '  in nk, 1 I k I k, ,  are such that Po and 
Pet are not equal measures on Zm, then D,,,,(Y) > 0 P, 
- a.s. 

Note that assumption (A3) enables a separation of the 
"true model" of the observed data from an under- 
parametrized model, as is shown in Corollary 2.4 below. 

Remark In view of (Al), we can extend the definition 
of De, ,, in (2.5) to the case 8 in I l k ,  8' in Ilk', where 
k # k' .  Furthermore, for 1 I k ,  k' I k,, 8 in nk, 8' in 
Ilk', and y in Y, is continuous in 8' by virtue of 
the assumed equicontinuity of L;, ,,Cy;). 

Corollary 2.4: If 8 in Ilk, 1 I k I k,, is such that there 
exists no 0' in nk', 1 I k' < k,  for which P, and P,, are 
equal, then inf,,, n ~ , D , , e . ( Y )  = minot= =vD,, ,XY) > 0 P, 
- a.s. 

For each 1 I k 5 k, ,  we define the maximum likelihdod 
estimate of the parameter 8 in I l k ,  given the observation 
sequence. y: = (yl ,*-*,  y , )  in P by 

6k(y ,"  ) = arg m a  log P, 0.; 

n 

ecnk 

for n 2 1; observe that the previous maximum exists by 
virtue of assumptions (Al) and (A2). For convenience, we 
shall hereafter use the abbreviated notation 8; for 8ko . f ) .  

Lemma 2.5: For 1 I k ,  k' I k,, 8 in Ilk, we have 

for all y in 2'". 
Proofi Fix E > 0 and y in T. For each 8' in nk', let 

S ( E ,  8 ' , y )  and N ( E ,  8,',yi be chosen a? in assumption 

Clearly, {O(8')},,En~~ is an open cover for Ilk'; and by 
the compactness assumption (AI), there exists a finite 
subcover {O(8i)},'-l for Ilk'. Hence, there exists an ele- 
ment of {e,'},', 1, say e; (where j may depend on n), such 

(~2) .  Let o(w) 5 { e  : e E nk', d e f ,  e )  < S ( E ,  e',yN. 

that 

By (M), for 

whence 

Thus, 

and since E > 0 is arbitrary, the assertion of the lemma 
follows. 0 

Assumptions (Al)-(A3) above are satisfied by certain 
classes of (stationary ergodic) Markov processes and (sta- 
tionary ergodic) hidden Markov sources, as illustrated by 
Examples 1 and 2 below. Before proceeding to the exam- 
ples, we present a technical lemma for checking the 
validity of assumption (A21 for the Markov processes of 
Example 1. 

Lemma 2.6: Let <X,}:= 1, {Y,}:= be two %-valued 
first-order, Markov processes generated, respectively, by 
the q X q-stochastic matrices A 4 {aij} ,  A' {aij}, both 
with positive entries. Given E > 0, there exists an integer 
N such that for every x ;  in 2'' 

for all n 2 N, where D ( A ,  A') 
Proofi Let N ( i , j k ; )  denote the number of transi- 

tions from symbol i to symbol j in the sequence x;. By 
the assumption that aij  > 0, aij > 0, 1 I i,j I q, the 
processes {A',):= and {Y,};= have unique steady-state 

C~=l,j=lllog aij/aijl.  
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distributions, say wX and vY, respectively, with all proba- 
bilities positive. We then have 

I E + D ( A ,  A' )  

for n 2 N,,  where Nl l / ~  max, llog T,&)/T&)~. 
Similarly, we can show 

1 P(Y1" =x;) 
< E + D ( A , A ' )  - 

nlogP(X; = x;) - 

for n 2 N, 0 I / E  max,,, llog T ~ ( X ) / T ~ ( X ) ~ .  Setting 
0 

Example 1: Let I lk ,  0 I k I k,, be the set of all q" X 
q-stochastic matrices A, = {a,,} with entries satisfying 
aij 2 S > 0, where 6 is a suitably prespecified constant. 
Let (P,}:: be the corresponding sequence of families 'of 
%?valued homogeneous stationary ergodic Markov pro- 
cesses, with P, representing all Markov measures of order 
k, 0 I k I k,. Assumption (All is readily seen to be 
satisfied. Assumption (A2) holds by virtue of Lemma 2.6 
and the compactness of I lk ,  0 I k I k,. Finally, the limit 
infimum defining De,O,(Y) in (A31 is, by the law of large 
numbers, indeed a limit that equals a positive constant 
P, - as. 

Example 2: Consider the HMS of (2.1142.21, with 191 
= k. Fix 6 > 0 and for each k, 1 I k I k,, let I l k  be 
chosen to be the set OSk, where 6, = 2-,S. Lemma 2.2 
then guarantees the embedding I lk  G Ilk+' of assump- 
tion (Al). Assumption (A3) is true by virtue of Lemma 
2.3. Finally, note that [(S,, X,>E=, is a Markov process, 
and since Pe(X; = y;) = CSl,,.Pe(X; = y;, S; = s;): a 
result analogous to Lemma 2.6 can be derived by which 
(A21 is readily verified. 

III. ORDER ESTIMATION OF AN HMS VIA CODING 
OF DISTRIBUTIONS 

In this section, we present an estimator of the order of 
an HMS based on the method of coding of mixture 
distributions introduced in [31, [61,[27b among other liter- 
ature, in.the context of universal data compression. This 
technique directly yields an estimate of the said 
order-our real objective-rather than involving also the 
estimation of the parameter 8 in the appropriate para- 
metric family. 

We begin with two technical lemmas for the H M S  of 
(2.042.21, the first of which is an analog of Lemma 2.5, 
but without the compactness assumption (Al). 

N = max{N,, N,}, the proof is completed. 

Lemma 3.1: For 1 I k, k' I k,, 8 in Ogk, we have 

Proofi Fix k, k', 1 I k, k '  I k,, and 8 in 0;. Then, 
for every e r  in 0;' 

lim sup - log 
1 P,<x;> 

n n SuPsEe;, P'(X;) 

so that 

I inf D(P,IIP,,) P, - a.s. 

For every S > 0 and 8' in e;', we can obtian a modi- 
fied 8; in 0:' by suitably using the maximum entry in the 
associated stochastic matrices to compensate for those 
entries less than S. Correspondingly, max, Ez P,(xls) = t 
2 l/q is reduced by a factor no larger than t - M 6 / r  2 
1 - q2S. Similarly, max,,, Pe.(sls') is reduced by a factor 
no larger than 1 - k'*S. Therefore, 

8'  E 86' 

1 
2 - log sup P,,(X;)(l - q2S)"(l - k'*S)" 

,'E@;' 

etset' 

1 
= - log SUP P,,(X;) + lOg(1 - q2S)(l - kt2S). 

(3.1) 

Note that -log(l - q2SX1 - kt2S) decreases to 0 with S.  
Hence, given any E > 0 there exists 6 > O-for instance, 
6 satisfying E I -log(l - q2SX1 - k'2S)-with 

(3.2) 

by Lemma 2.5 since 0:' is compact. Since De,e,(X) = 

D(P,IIP,,) Po - a.s. by (2.4) and (2.51, it follows from (3.2) 
that 

2 inf D(P,IIP,,) - E Po - a.s. 

Since E was chosen arbitrarily, our proof is completed. 0 
Lemma 3.2: For (k, 8 )  in A and k' < k, it holds that 

8' E et' 

D(PeIIPe,) > 0. 
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Proofi Pick 8' in 0;'. By Lemma 2.3, 

for every positive integer 1, where the last inequality 
follows from Finesso [7, Theorem 2.3.31. 

Thus, 

since l/nEp,[log Pe(X;)] is nondecreasing in n [lo, Theo- 
rem 3.511. Next, by [20, Proposition 2.71, for positive 
integers m,  n ,  we have that 

Ep,[log Pe,(X;+m)l I Ep8[log Per(X;)l 

+ Ep,[log P ~ * ( X ~ ) l .  
Consequently, 

for all A in e. The mixture distribution e,(*) on 
(Z", e) is then defined by 

for all A in SP. (The assumption of equiprobable initial 
states in (3.5) .above is convenient, but not necessary. For 
our purposes, any initial distribution on 9 will suffice, 
which assigns positive mass to every state in 9.) For a 
finite sequence xy in P, the probability Qk(x;) is for- 
mally the Q,-measure of the set of all infinite sequences 
in 2" whose initial segment is x;. 

The observed sequence x ;  in P can be encoded with 
respect to the mixture distribution Qk by a Shannon-Fano 
(prefix) code (cf. [4, pp. 61-65]) of length logl/Q,(x;> 
bits. If P,, 8 in Ogk, is the "true" distribution generating 
the observations, then the pointwise coding redundancy 
(up to 1 bit) is 

1 

n nl 
In general, we can define the pointwise coding redun- 
dancy for an uniquely decodable code as follows. Consider 
any UD code for encoding sequences from P; without 
any loss of essential generality, we can assume [3] that the 
code satisfies Kraft's inequality with equality, and hence is 
a Shannon-Fano code with respect to some probability 
distribution Q (not necessarily of the mixture type) on P. 
The pointwise coding redundancy of this code relative to 
Pa ( 8  in Oh, 1 I k s k,) is defined as 

lim - E ~ ,  [ log P,, ( X  ;' )] 
1 n - 1  

n nl i = o  

1 

I lim - Ep,[log P , , ( X : ~ : : ) ]  

= TEpe[log P,,<x:>]  9 

which, combined with (3.31, yields that 

for every positive integer 1. 
Finally, observe that -Pen equals Pi for some e' in Ogk; 

however, since ( k ,  8 )  belongs to M and k' < k ,  Pi is not 
equal to P,. From [18, Theorem 3.2, pp. 61-621, if e,, 8,  
are in Ogk, then Po, and Po, are equal iff for 12 2k,  it 
holds that P,,(x:) = P,Jx;) for all xi in Z?. Thus, with P, 
and P,, (and hence Pi)  not being equal, if follows that 
Ep,[log Pe(X{)/Pe,(X:)] > 0 for every 8' in 0;' and 1 2 
2k. The assertion of the lemma then follows by the 
semicontinuity of E,,[log P ~ ( X ~ ) / P ~ , ( X ~ ) ]  on 0,'. 

We now introduce the notion of a mixture distribution 
on (Zm, S) (cf. Csiszhr [3], Davisson et al. [6], Shtar'kov 
[27]), together with some pertinent properties. Let vk be a 
prior distribution on Ogk, 1 I k s ko.  The conditional 
mixture distribution Qk(-lso) on (Z", e), conditioned on 
an initial state so in 9, is defined by 

Qk(AlS0) 1 Pe(AlSo)vk(d8) 
@,k 

for x; in P. The pointwise coding redundancy, relative to 
P,, of a Shannon-Fano code on P with respect to the 
mixture distribution Qk will then be denoted, as earlier, 
by RP>;: Qk),  where x; is in %"". 

It is clear that the auerage redundance of a uniquely 
decodable code Q on P' relative to Po, namely 
Ep,[ Rp$X;; Q)]  is nonnegative; however, Rp$x;; Q )  could 
be negative for some x ;  in P. The next lemma, due to 
Barron [13 and stated here without proof, asserts that 
Rp$X;; Q) is essentially nonnegative for all large n. 

Lemma 3.3 (Barron [l, Theorem 3.11): Let ( k ,  8 )  belong 
to A. For each k' and mixture distribution e,., 1 I k' I 
ko,  it holds that Rp$X;; Q,,) 2 -21og n eventually 
Po - a.s.' 

'Given a sequence of R-valued random variables (Z,x=, and a 
R-valued sequence (a,x= ,, we say that Z ,  2 a, eventually as. if there 
exists a R-valued random variable N = N ( o ) ,  which is infinite as., and 
Z ,  2 a, for all n 2 N. 
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Typically, the pointwise redundancy of a code con- 
structed in ignorance of the "true" distribution Pe is not 
only essentially nonnegative, but increases with n to in- 
finity; a good code is one for which this redundancy 
increases slowly with n. The following lemma, due to 
Csiszhr [31, establishes the existence of such a good code 
based on a mixture distribution. 

Lemma 3.4 (Csiszh [3]): For each k ,  1 I k I k,, there 
exists a prior distribution vk on @,k such that the 
corresponding mixture distribution Qk(x  ;) = 

l / k &  E9.1eaPe(x;lso)vk(d8) satisfies 

for all x ;  in P, n 2 NYk,  q), where ck,q is a constant 
depending only on k ,  q. 

Remark: The pointwise coding redundancy of Lemma 
3.4 is asymptotically optimal in the following sense. Con- 
sider any uniquely decodable code Q on 12"". Suppose that 
we weaken the requirement of a uniformly small point- 
wise redundancy (i.e., for every x ;  in %") to that of a 
small average redundancy, viz., EpJR,$X;; a)], where 8 
belongs to @,k, 1 I k I k,. Then it follows from Rissanen 
[22, Theorem 3.1, p. 7111 together with Baum and Petrie 
[2, Theorem, p. 15621 that the previouS average redun- 
dancy is, in effect, bounded below for all large n by 
[ k ( k  + 4 - 2)/2]log n - A ,  where A = A ( k )  does not 
depend on n. 

Csiszh's proof [3] of Lemma 3.4 above relies on a 
specific construction of the mixture distribution Qk using 
a Dirichlet density as a prior, and is similar to that of 
Shtar'kov 1271 for a mixture of Markov processes. This 
construction will play an explicit role in Section IV, in the 
universal coding of the HMS; Csi&s proof of Lemma 
3.4 is, therefore, reproduced in the Appendix. Hereaper, 
by mixture distributions Qk ,  1 I k I k,, we shall refer solely 
to those constructed in the Appendix. 

Lemmas 3.3 &d 3.4 above provide the necessary tools 
for constructing our estimator of the order of the HMS as 
follows. Geen an observed sequence x ;  in P, the order 
estimator k,  is defined by 

k'(k'  + q - 2) + 5 
> 2 logn} (3.7) 

with the convention Q&) = 1 for all x; in %"". If the set 
above is empty, we set k,(x;) = 1. 

The (strong) consistency of the previous estimator is 
established by the following 

Proposition 3.5: For each ( k ,  8 )  in A, limn kn(X;) = 
k Pe - as. 

proof: Fix ( k ,  0) in A and pick k' 2 k. Then, by 
Lemma 3.3, 

-210g n log Qk,+i(X;) I log Pe(X;) (3.8) 

for all n 2 N'(k' ,  q). 
By combining (3.8) and (3.9) and eliminating log Pe(X;), 

we get that log Qkt+l (X;)  - log Qk,(X;) I [ (k'(k'  + q - 
2) + 52/23 log n eventually Pe - a.s. Hence, 
limsup k,(X;) I k Pe - a.s. 

The -proof is completed by establishing that 
lim inf, k,(X;) 2 k Pe - as. To this end, it suffices to 

a.s. It can be shown that 
Show that lim inf, l /n log Q k ( x ; ) / Q k -  1(xf) > 0 p ,  - 

for k = l , . . . ,  k,, and for all x ;  in P and for all n 2 &k). 
Then 

1 Pe(X;) 
2 lim - log 

n n supiEea-l Pi(X?) 

Pe - as., by Lemma 3.1 

BE et-' 
= inf D(P,llPi) Pe - as., by Lemma 3.1 

> 0 P, - as., by Lemma 3.2 

thereby completing the proof. 0 

IV. UNIVERSAL DATA COMPRESSION OF AN HMS 
In this section we address the problem of universal data 

compression, in a uniquely decodable manner, of an H M S  
{X,t,, of unknown order k,  1 I k I k,; the codes con- 
sidered will be shown to be asymptotically optimal in a 
suitable sense. Note that if the order of the HMS is 
known to the encoder but not the decoder, say k = k (but 
the k x k - and k X q - stochastic matrices A and B 
(cf. sect. 2) are still unknown to both), such an universal 
code is easily obtained. One possible method is based on 
Rissanen's minimum description length (MDL) principle 
[22, sect. 3.61. Given an observed sequence x ;  in P, 
consider a code consisting of a two-stage description of x ;  
within the given parametric family { @ ~ ) ~ o l .  Such a de- 
scription comprises a Chaitin (prefix) code [22, sect. 2.2.41 
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for-the (known) HMS order k, of length L(k)  bits (where 
L ( k )  s log k ,  + 2loglog k ,  + 31, concatenated with a 
Shannon-Fano code for x ;  with respect to the mixtufe 
distribution Qe on t2m. Clearly, this code of length L ( k )  
+ log l /Qn(x;) bits will asymptotically possess the mini- 
mum pointwise redundancy among all UD universal codes 
for the HMS of order k. 

When the HMS order k, 1 I k I k,, is unknown to 
both encoder and decoder, Rissanen's scheme above can 
be modified to encode the observed sequence x ;  in an 
asymptotically optimal manner. This is done by replacing 

by the MDL estimate kyDL(x;) of HMS order, where 
knmL(x;) is the value of k minimizing the length (in bits) 
of the two-stage description of x;, viz., 

The decoder, having correctly decodFd the received 
sequence to retrieve x ; ,  can determine k,(x;), n L 1, in 
exactly the same manner as the encoder. This fact, to- 
gether with the unique decodability of an arithmetic code, 
renders SC uniquely decodable. 

Remarks: 

i) As indicated in [28], the finite arithmetic precision 
employed by arithmetic coding introduces significant 
redundancy in SC, especially when encoding long 
observed sequences. Consequently, SC will asymptot- 
ically achieve optimal redundancy not in the point- 
wise sense, but rather in the average sense as shown 
below in Proposition 4.1. 

ii) In order to asymptotically achieye average optimal 
redundancy, the order estimator k, of (3.7) in SC can 

inMDL<x;> arg min ~ ( k )  + l o g y  . be replaced by any other estimator whose probability 
of incorrect estimation decays to zero rapidly enough 
with n. This is seen in the proof of Proposition 4.1 
below. 

Let Lsc(x;) be the length of the codeword when x ;  is 
encoded using SC, n 2 1. With an abuse of notation, let 
Lsc(x,) ,  i = l , - - - ,n ,  be the length of the corresponding 

l s k s k ,  [ Q k ( X i  l l  

The following proposition is a simple consequence of 
Lemma 3.4. 

Proposition 4.1: For each ( k ,  0)  in A, the pointwise 
redundancy of the two-stage code satisfies 

codeword for symbol xi. 

redundancy of SC is bounded above according to 
Proposition 4.1: For every ( k ,  0)  in A, the average 

for all x; in tz", n 2 "(IC,, q),  where dk, ,q  is a constant 
depending only on k,, q. 

The previous uniquely decodable code for an HMS of 
unknoivn order asymptotically achieves, by Proposition 
4.1, minimum pointwise redundancy. It is handicapped in 
a practical sense, however, by delays in encoding and 
decoding incurred by these operations being performed 
on blocks of symbols, rather than sequentially on individ- 
ual symbols. We present below a sequential code (SC) for 
the HMS, which is similar to that used in 1281 to encode a 
unifilar source. Our SC employs a first-in first-out arith- 
metic code (cf., e.g., [121, [261) in conjunction with the 
order estimate in (3.71, and is uniquely .decodable. It 
avoids the aforementioned delays' at the possible expense 
of pointwise asymptotic optimal redundancy. We shall 
show that (SC) is, however, asymptotically optimal in the 
sense of achieving minimum average redundancy. 

Sequential Code (SC): Given the observed sequence 
{x,} ,  the encoding proceeds as follows. 

Encode the first symbol x1 by an arithmetic code with 
respect to the probability value l / q .  
Encode the ( n  + 1)th symbol x , + ~  by an arithmetic 
code with respect to the conditional probability 
Q~,(xl)(xn+l I x ; ) ,  n L 1 (cf. (A.27) of Appendix for 
the computation of the mixture probabilities). 

'An arithmetic code (and hence SC), unlike a prefix code, need not 
allow instantaneous decoding. However, for the encoding and decoding 
of a symbol, only a few adjacent symbols are needed [13]. 

for all n large enough, where e = e(k,)  is a constant. 
The proof of Proposition 4.1 relies on two technical 

lemmas establishing upper bounds on the probabilities of 
overestimation and underestimation of the HMS order 
estimator of (3.7). We state below these Lemmas 4.2 and 
4.3, followed by the proof of Proposition 4.1. This section 
then concludes with the proofs of Lemmas 4.2 and 4.3. 

Lemma 4.2 (Probability of Ovyestimation): For every 
(k ,0 )  in A, the order estimator k, of (3.7) satisfies 

for all n large enough. 

( k ,  0)  in A, there exists A > 0 such that 
Lemma 4.3 (Probability of Underestimation): For every 

1 

n n  
limsup - log P ~ ( L , ( x ; )  < k )  I -A. 
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By Lemma 3.4, the second term on the right-hand side is 
bounded by (k(k + q - 21/21 log n + ck,q for all n L 
"(k, q). Hence, the proposition is established by showing 
that 

for all n suitably large, where K is a constant. To this 
end, observe that Epe[Lsc(Xl)I = log q; further, for i 2 2, 

Epe[Lsc(Xi)I = Epe[Lsc(Xi)  l ( i i - l ( X i - l )  = k )  

+ t S C ( X i )  * l ( i i J X ; - ' )  # k)] 
where 1(-) denotes indicator function. By the construction 
of SC, the first term above does not exceed 
Epe[log l /Qk(XiKf -  ' ) I ,  while in the second term 

1 

from which it follows that Epe[Lsc(Xi)l I 1 + log(q + i). 
Thus, for i L 2, 

n 

Hence, 

n 
I log q + [ l  + log(q + i ) IP , ( i , - ' (x; - ' )  # k )  

i =  1 

- < K  
for all n suitably large by virtue of Lemmas 4.2 and 4.3 
above, where K = K(k,) is a constant. 

This establishes (4.1) and, hence, the proposition. 0 
ProofofLemma 4.2: Fix (k, 6 )  in AY where k < k,. For 

any k', k < k' I k,, we have from (3.7) that 

P , ( i n ( x ; )  = k ' )  I P,(x;) 
Xp E P  

By Lemma 3.4, 

P,(x;) (k' - l ) (k'  - 1 + q - 2) 
* log n 

log Q k l - l ( X ; )  ' 2 

-k c k ' - l , q  

for all n 2 "(k' - 1, q), which, when substituted in (4.31, 
yields 

P , ( i n ( x ; )  = k ' )  

- < ( Q k t ( X ; )  

1 
X; E r  

an * 
- k ' ( t '  + q  - 2)+ 5 ( k '  - 1Xk' f q -  3 )  

n 2 2 " k ' - 1  

Q k ( x Y )  = 1 < 2Ck'-ln-(k'ff+l)  since - 
xp €%I" 

- < 2ck,-ln-3 

for all n 2 N'(k' - 1,q). Consequently, 

k0 

P , ( i n ( x ; )  > k )  = P , ( i n ( x ; )  = k ' )  
k ' = k + l  

k0 
< n P 3  2 c k ' - 1  - 

k ' = l  

for all n large enough, whence the assertion of the lemma 
follows. 0 
Proof of Lemma 4.3: Fix (k, 6 )  in A. Let ak = (k(k + 

q - 2) + 5)/2, and define 

A ,  { X y  E p : l o g  Qk(X;) - log Qk-l(X;) 5 ak log n ) .  

Clearly 
+ o( ;). (4.2) 
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> E P, - a.s. 
- < (a, + bk) log n + ck 1 by the choice of E. Hence, by [19, Theorem 2.11, for each 

it follows that A, c B,,, so that by (4.4) 
i = l , -**,m,  there exists 6’(Oi, E) > 0 such that 

1 I 
limsup - log P,(C,(i)) I -6’(8,, E). (4.8) 

Finally, note that for all n 2 maxlsis, N(8,), it holds 
that B,, c U E,C,(i), which combined with (4.8), gives 

P,($,,(X;) < k )  I P,(B,) (4.5) n n  

for all n 2 max{N’(k q), &l - 1)). Next, by (3.0, for 
any E, 0 < E < infOtEeg-l  D(P,IlP,,), there exists 6 = 

N E ,  k, q )  > 0 such that 
1 

limsup - log P,(B,) I - min 6’(8,, E).  
n n  l< i<m 

1 1 E The previous inequality, in conjunction with (4.5), yields 
-log max P,,(x;) 2 -log sup P,dx;) - - (4.6) 
n o‘E0gk-1 e’EOgk-1 4 the assertion of the lemma with A = minI5,<, 6’(8,, E) 

> 0. 0 

for all x; in P. 
Combining the compactness of 0:- with the fact that 

the HMS {X,,}r= , satisfies assumption (A21 (cf. Example 2 
of Section 10, we can find a finite cover {0(8,)}E, for 
0:- and positive integers {N(O,)}E with the following 
property holding for each i = l,...,m: for every 8’ in 
O(8,) and for all n 2 N(8,), we have that 

for all x; in (cf. Lemma 2.6). In conjunction with (4.6), 
this implies for each n 2 maxlsis, N(8,)  that there 
exists i* = i*(n) in {l,..., m} such that 

1 1 E 
- log sup P,#(x;) I - log POi$XY) + - 
It e‘E0gk-1 n 2 

for all x ;  in P; so that 

1 
n 

2 - log P,(X;) - 
E 
- (4.7) 
2 

\ for all x ;  in P. 
Next, for i = l;..,m, define 

V. DISCUSSION 
The order estimator of (3.7) is shown, in Lemmas 4.2 

and 4.3, to yield an overestimation probability which de- 
cays to zero polynomially in the sample size n, while the 
probability of overestimation decays exponentially in n. 
We have been unable to characterize precisely this expo- 
nent. We show in a forthcoming paper [9], however, that 
this estimator, when adapted to the problem of Markov 
order estimation, is indeed asymptotically optimal over 
the class of strongly consistent order estimators in that it 
achieves the optimal error exponent in the underestima- 
tion probability characterized in [81 and [91. 

We have assumed heretofore that the observed HMS 
can be modeled auctly by a member of the hypothesized 
class of models, i.e., {X,}r= is generated by Po for some 8 
in U t ~ ~ 0 i .  Accordingly, our definition of the minimal 
model set L (cf. Section 11) affords the following inter- 
pretation of the “true model” ( k ,  8):  if ( k ,  8 )  belongs to 
L, it holds that 

k = arg min inf D(P,llP,,). (5.1) 

Thus, from among the models (k’, e’) ,  8’ in Oi’, for each 
of which Po, achieves the minimum Kullback-Leibler 
distance-here, zero-from the probability measure gen- 
erating the observed HMS, the true model is the one 
corresponding to the lowest order. 

Quite often the observed data cannot be characterized 
exactly by any member of the class of hypothesized mod- 
els. This occurs in our context if, for instance, the station- 
ary ergodic measure on 2“ generating the observed 
process {X,,};, corresponds to an HMS of order exceed- 
ing k,, or is not an HMS at all. In such situations, it is 
desirable to approximate the observed data in terms of 
one of the hypothesized models which is closest to it in a 

l < k ’ < k o  ~‘~egk’ 
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suitable sense. To be specific, consider the situation in 
which the observed process {X,K=, is generated by a 
stationary ergodic hidden Markov measure P not belong- 
ing to U , k' k ,  U e,  E @t,Pe,. In analogy with (5.1), a de- 
sirable model order k for the observed HMS would satisfy 

achieved by a slight modification of the procedure pro- 
posed by Merhav et al. [16] and Ziv and Merhav [30] for 
estimating the order of the smaller classes of finite-state 
and Markov processes. The resulting estimator, described 
below, does, however, involve cumbersome maximum like- 
lihood commtations. Given an observed seauence v: in 

- 1  

k = arg min inf D(PIIPer). (5.2) &T, the ordkr estimator i,"" is defined by 
l s k : s k ,  e,Ee;'  

1 1 
if - - log Pi,.(y;) - -Lwz(y;) I A,, for 1 I k I k, 

n n 

max{k: 1 I k I k,, - - log Pi&'> - -Lw,(y,") > A,,) + 1 otherwise, 
1 1 (5.3) 

n n 

i,Z"(y;) = 

Note in (5.2) that k may be less than the maximum 
allowable order k,. An interesting class of order estima- 
tors would then be one for which the estimates corre- 
sponding to increasing sample sizes converge P - as. to 
k. It is unclear whether the estimator of (3.7) possesses 
this property in general; it may do so in special cases as is 
illustrated by the following example. 

Example 3: The observation process {X,,}:= ,, generated 
by a stationary ergodic Markov measure P on {0,1}" of 
order 3, is a {O,l}-valued Markov process satisfying the 
following two conditions: i) X,, X,, X, are IID random 
variables with P(Xi = 0) = 1/2, i = 1,2,3; ii) for n 2 
1, X,,,, = X, + W, modulo 2, where (W,,K, , is a (0,1}- 
valued IID process independent of (Xl, X,, X,), and with 
P(W, = 0) = (Y z 1/2, n 2 1. 

It is readily verified that P(X,+,IXy) = P(X,,+,IX:-,) 
for n 2 3. Let E e$ be the set of all stationary ergodic 
Markov measures on (0,1}" of order k, 0 I k I k,. If we 
choose k, 2 4, so that the hypothesized class of models 
includes the one generating the observed process, it is 
evident that k = 4 in (5.0, a,"d by Proposition 3.5, the 
estimator of (3.7) obeys limn k,(X:) = 4 P - as. On the 
other hand, if we pick k, = 3, straightforward but tedious 
calculations show that k = 0 in (5.21, so that an IID 
model best represents the observed process in the sense 
of (5.2). For this case, the estimator of (3.7), suitably 
modified for M$kov order estimation, can also be shown 
to satisfy limn k,(X;) = 0 P - a.s. 

We conclude by addressing the problem of consistent 
estimation of the order of the %-valued (general) station- 
ary ergodic process (Y,}:=, introduced in Section 11. As 
for the HMS, ambiguity about the "true" order is avoided 
by considering a set of minimal models A = {(k, 8 )  : 1 I 
k I k,, 8 with the following property: For any 
(k,8) in A, there exists no pair (k',8'), k' < k, 8' in 
nk', such that Pe and Peg are equal measures on 2". 
Note that the HMS order estimator of (3.7) now ceases to 
be appropriate for two reasons. First, the mixthre distribu- 
tion Qk, 1 s k I k,, for the process {Y,}:,, no longer 
admits a convenient form, in contrast to that for the HMS 
{X,,}'= , (cf. (A.27) in the Appendix). Second, although 
Lemma 3.3 still holds for {Y,,}:=,, the validity of Lemma 
3.4 is unclear. 

Consistent estimation of the order of {Y,}:=, can be 

where Lwz(yf) is the length of the Wyner-Ziv data 
compression codeword [29] for y;, and the sequence 
{A,,}'= , is chosen so as to satisfy simultaneously the condi- 
tions lim,A, = 0 and lim,,nA,, = m. Using Lemma 2.5 in 
conjunction with standard techniques, it is shown in the 
Appendix that under conditions (Al)-(A3) (cf. Section 111, 
the order estimator of (5.3) has the following consistency 
properties. If x=12-"An < a, then for everylk, 8) in A, 
limn kT(Y;) = k Pe - as.; otherwise, limn k,ZM(Y;) = k 
in probability Po. 

It is not clear how the performance of the Ziv-Merhav 
estimator of (5.3) compares with that of the order estima- 
tor of (3.7) when the data is emitted by an HMS. In 
particular, it is not known if the former, like the latter, 
yields an underestimation probability that decays expo- 
nentially with sample size. On the other hand, the 
Ziv-Merhav estimator has the advantage of not requiring 
an a priori upper bound k, on HMS order; the estimator 
of (3.7) relies on this knowledge of k,. 
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APPENDIX 
A. Consistency of the Order Estimator in (5.3) 

Proofi Assume conditions (Al)-(A3) of Section I1 to hold. 
We prov,e below that if x= , 2 - " * n  < m, then fo; every ( k ,  0)  in 
A, limn kZM(Y;) = k Pe - as.; otherwise, limn kZM(Y;) = k in 
probability Po. 

The proof involves separately overbounding the probabilities 
of overestimation and underestimation of the order of (Y,,E=l. 
We first obtain an upper bound on the overeztimation probabil- 
ity in the manner of [161,[301. Fix ( k ,  0 )  in A. For 1 I k' I k,, 
letting 

we observe that 

Po(iz'(Y;) > k )  I Po U .V,, PeWk,) (A.1) 
(k':k ) 

where the previous inequality follows from assumption (Al). 
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Next, observe that 

PRwko) = P@(y;) 
Yf dk, 

I P&) 
Y? #k0 

= 2-n1-+1og~,jp01fil 
Yf dk, 

- < E. 2-"1".+fLwzOIfil 
Y f E Y  

= 2-"& 2-LwzOI") 
Y f E Y  

- < 2-"& (A.2) 
where the last inequality holds since the UD Wyner-Ziv code 
[29] satisfies the Kraft inequality: CyTEP2-'WZ@;) I 1. From 
(A.1) and (A.21, we have that limn PR(knZM(Y;t) > k )  I 
limn 2 - 4  = 0. 

If Zz=,2-nhn < 00, the Borel-Cantelli l empa  yields 
PR(k,ZM(Y;) > k infinitely often) = 0, i.e., limn sup kzM(Y;) I 
k P, - as .  

We consider next t h t  event of underestimation. First note that 
if y; is in Hk- 1, then k,ZMO,;) 2 k. If it can be shown that 

(A.3) 

then, since limn A, = 0, it follows that 

liminf knZM<Y;) 2 k PR - a s .  
n 

Let HR 6 limn{ - l/nEP,[log P@(Y;)]} be the entropy of {ynKp= 
under PR. Then (A.3) is established as follows: 

1 
n 

L;, iP_ JY;) - - log P,(Y;) 

2 lim inf L;, JY;) 
n 

+ liminf - J 
1 

n n  - limsup -LzM(Y;) (by Lemma 2.5) 

> 0 PR - a s .  

where the last inequality results from Corollary 2.4 and [29, 
Theorem 3(b)]. This completes the proof of consistency of the 
order estimator of (5.3). 0 

Proof of Lemma 3.4: To prove Lemma 3.4, it suffices to show 
for each 0 in 0; that 

for all x; in %", so in 9, and n 2 "(k, q), where c;,~ depends 
only on k, q. Then, if so* = s,*(x;) = argmaxSo,, PR(x;ls0), we 
have from (3.5) for each 0 in 0; that 

P@<X;> P@(X;> 
1% 1 log- = 

Q k ( X ? )  - Qk(X;lso) 
s o @  

k(k + - 2) 
2 

< log n + c;,~ + log k (AS) 

where the last inequality follows from (A.4) for all x; in %" and 
n 2 "(k, 4). Setting ck,q = c;,~ + log k, the assertion of the 
Lemma is proved since (AS) is valid for all 0 in 0;. 

We now proceed to establish the claim in (A.4). Note first that 
the conditional mixture distribution for each so in 9 can be 
written, using (2.21, as 

- 

Fix so in 9. For a given s;, let I t , ]  = n,,(s;) denote the number 
of continguous occurrences of the symbols i, j in s;, 1 I i, j I k. 
Let n,  = n,(s;) 4 Ck,ln,, denote the number of Occurrences of 
the symbol i in si - ' ,  1 I i I k. (In order to avoid tedious 
notation, we shall display the dependence of n,, and n, on s; 
only when necessary.) It readily follows that 

pR(s;Is0) = n n a ?  (A.7) 
k k  

l = l  

and, further, that 

with the convention in (A.8) that if nt, = 0 for some i f ,  then 
(nI , ] /nz , )  = 1 for all j ,  1 I j I k. 

Next, given s; in 9", x ;  in P, let m,, = m,,(s?, xi') denote 
the number of pairs of symbols (r ,  t ) ,  1 I r I k, 1 I t I q, such 
that sI = r, s1 = t for some I ,  1 I 1 I n .  (Thus, m,, is the 
number of occurrences of the state symbol r and the data 
symbol t at the same time instant.) Let m, = m,(s?) 4 C2=lm,t 
denote the number of Occurrences of the state symbol r in s;. 
Then 

PR(x;ls;) = n n b ; "  (A.9) 
k q  

r = l  I = 1  . 
and 

m,, 

P,(x;~s;) I SUP P,(x;~s;) = 
mrt 

8 6 8 '  

Substituting (A.7) and (A.9) in (A.6), we get 

I k  k 
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Now recall from the passage following (2.2) that each 8 in So" 
is of theform(A, B),where A and b are k X k - and k X q - 
stochastic matrices, respectively. We pick the prior vk on e: to 
be the Dirichlet prior density 131, [6b 1271 given by 

vk(e) = vk(A, B) vt((aij))vc({b, ,))  (A.12) 
where 

and 

and 

From (A.8) and (A.181, we get 

It can be shown as in [6, eqs. (52)-(61)] that the right-hand side 
of (A.20) does not exceed 

which, in turn, by using Stirling's formula for the gamma func- 
tion, is bounded above by 

k ( k -  1) 

we get 

P,(x;lso) log - 
k ( k  + q - 2) 

log n + c;,~ 
2 

1-  1 Qk(X ISo) 

for all so in 9 , x ;  in F, and n 2 N'(k, q), establishing (A.4) 
0 and thereby Lemma 3.4. In a similar manner, a substitution of (A.14) into (A.16) yields 

B. computation of Mixture hbubilities QkfX;)  

We provide below a formula to compute the mixture probabil- 
ities Qk(x;t),x; in P, for use in the sequential code (SC) of 

+ (A.19) 1 Section IV. 
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P , - l ( i , j )  + - 

Given x; in P and s; in Yn, we can alternatively express 
Qk(x;ls;) in (A.19) as 

n 

I =  1 
Q&%;) n QC(z,br:-’, si) (A.23) 

where 

1 
q ( r , t )  + - 4” 
ff*(r) + - 2 

Q $ ( D ~ ~ : - ’ , S { )  e if Z) = t ,  5 ,  = r (A.24) 

with al(r, t ) ,  1 I r s k ,  1 5 t s q, being the number of simulta- 
neous occurrences of the state symbol r and data symbol t at 
the same time instants in si and xi ,  respectively; further q ( r )  4 
X;= q ( r ,  t ) .  

In a similar manner, given so in 9 and s; in Yn, we can 
alternatively express Qk(s;lso) in (A.18) as 

n 

Qk(sYlso) 4 n @(s,lsb-’) (A.25) 
f= 1 

where 

1 
P,- ’ ( i ,  j )  + 2 
P / - l ( i )  + - 

@(s,ls;-’) e if s,-’ = i ,  s, = j (A.26) 

2 
with P I -  ‘(i, j )  being the number of contiguous occurrences of 
the symbols i, j in si-’, 1 I i ,  j I k, and P,- ’ ( i )  4 
E;= PI- l(i, j ) .  

Finally, from (3.51, (A.151, and (A.23)-(A.26), we obtain that 

I. Csisiar and J. Komer, Information Theory: Coding Theorems for 
Discrete Memoryless Systems. New York Academic, 1981. 
I. Csisiar and P. Shields, private communication, 1991. 
L. D. Davisson, R. J. McEliece, M. B. Pursley, and M. S. Wallace, 
“Efficient universal noiseless source codes,” IEEE T M ~ .  Inform. 
Theory, vol. IT-27, pp. 269-279, May 1981. 
L. Finesso, ‘‘Order estimation for functions of Markov chains,” 
Ph.D. dissertation, Dept. Electr. Eng. Univ. Maryland, College 
Park, Dec. 1990. 
L. Finesso, C. Liu and P. Narayan, “The optimal error exponent 
for Markov order estimation,” in Proc: 1993 IEEE Int. Symp. 
Inform. Theory, 1993, p. 186. 
- , “Optimal error exponent and estimators for Markov order 
estimation,” in preparation. 
R. Gallager, Information Theory and Reliable Communication. 
New York Wiley, 1968. 
J. C. Kieffer, “Strongly consistent code-based identification and 
order estimation for constrained finite-state model classes,” IEEE 
Trans. Inform. Theory, vol. 39, pp. 893-902, May 1993. 
G. G. Langdon, “An introduction to arithmetic coding,” IBM J. 
Res, Develop, vol. 28, pp. 135-149, Mar. 1984. 
G. G. Langdon and J. Rissanen, “Compression of black-white 
images and arithmetic coding,” IEEE Trans. Commun., vol. COM- 
39, pp. 858-867, June 1981. 
B. G. Leroux, “Maximum-likelihood estimation for hidden Markov 
models,” Stochastic Processes, Applicat., vol. 40, pp. 127-143, 1992. 
C. Liu, “On the estimation of the order of a stationary ergodic 
Markov source,” Abstr. Papers, Int. Symp. Inform. Theory, San 
Diego, CA, Jan. 1990. 
N. Merhav, M. Gutman, and J. Ziv, “On the estimation of the 
order of a Markov chain and universal data compression,” IEEE 
Trans. Inform. %ory, vol. 35, pp. 1014-1019, Sept. 1989. 
N. Merhav, “The estimation of model order in exponential fami- 
lies,” IEEE Trans. Inform. Theory, vol. 35, pp. 1109-1113, Sept. 
1989. 
A. Paz, Introduction to Probabilistic Automata. New York Aca- 
demic, 1971. 
A. Perez, “Generalization of Chemoffs result on the asymptotic 
discemibility of two random processes,” Colloquia Mathematica 
Societies Jams Bolyai, vol. 9, pp. 619-632, 1972. 
T. Petrie, “Probabilistic functions of finite state Markov chains,” 
Ann. Math. Stat., vol. 40, pp. 97-115, 1969. 
L. R. Rabiner, “A tutorial on hidden Markov models and selected 
applications in speech recognition,” Proc. IEEE, vol. 77, pp. 
257-286, Feb. 1989. 
J. Rissanen, Stochastic Complm‘ity in Statistical Inquiry. World 
Scientific, 1989, Singapore. 
- , “Complexity of strings in the class of Markov sources,” 
IEEE Trans. Inform. Theory, vol. IT-32, pp. 526-532, 1986. 
-, “Consistent order estimates of autoregressive processes by 
shortest description of data,” in Analysis and Optimization of 
Stochastic Systems. New York Academic, 1980. 
-, “Modeling by shortest data description,” Automatica, vol. 14, 

J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBMJ. Res. 
Develop., vol. 23, pp. 149-162, Mar. 1979. 
Yu. M. Shtar’kov, “Universal sequential coding of single messages,” 
Probkmi Perehchi Informatsii, English translation, vol. 23, no. 3, 
pp. 175-186, 1987. 
M. Weinberger, A. Lempel, and J. Ziv, “A sequential algorithm for 
the Universal coding of finite memory sources,” IEEE Trans. Zn- 
form. Theory, vol. 38, pp. 1002-1014, May 1992. 
A. D. Wyner and J. Ziv, “Some asymptotic properties of the 
entropy of a stationary ergodic data source with applications to 
data compression,” IEEE Trans. Inform. Theory, vol. 35, pp. 

J. Ziv and N. Merhav, “Estimating the number of states of a finite 
state source,” IEEE Trans. Inform. Theory, vol. 38, pp. 61-65, Jan. 
1992. 

pp. 465-471, 1978. 

1250-1263, NOV. 1989. 


