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ACTIVE POINTING CONTROL FOR SHORT RANGE FREE-SPACE

OPTICAL COMMUNICATION∗

ARASH KOMAEE†, P. S. KRISHNAPRASAD†, AND PRAKASH NARAYAN†

Abstract. Maintaining optical alignment between stations of a free-space optical link requires

an active pointing mechanism to persistently aim an optical beam toward the receiving station with

an acceptable accuracy. This mechanism ensures delivery of maximum optical power to the receiving

station in spite of the relative motion of the stations. In the active pointing scheme proposed in

the present paper, the receiving station estimates the center of the incident optical beam based on

the output of a position-sensitive photodetector. The transmitting station receives this estimate

via an independent communication link and uses it to accurately aim at the receiving station. The

overall mechanism which implements this scheme can be described in terms of a diffusion process

which modulates the rate of a doubly stochastic space-time Poisson process. At the receiving station,

observation of the space-time process over a subset of R
2 is provided in order to control the diffusion

process. Our goal is to determine a control law, measurable with respect to the history of the

space-time process, which minimizes a quadratic cost functional.

1. Introduction. Free-space optical communication is increasingly regarded as

a high-bandwidth power-efficient means for point-to-point communication. The range

of applications include fixed-location terrestrial communication [1], communication

between mobile robots [2], airborne communication [3], and intersatellite communi-

cation [4].

In free-space optical communication using (narrow) laser beams, it is necessary

to maintain the alignment of the transmitter and the receiver in spite of their relative

motion. This relative motion might be caused by the mobile nature of the stations,

mechanical vibration, or accidental shocks. Maintaining alignment is achieved through

two operations: spatial tracking and active pointing. Spatial tracking properly adjusts

the orientation of the receiver to hold the transmitter within its field of view [5].

Pointing serves to aim the transmitted beam toward the receiver within an acceptable

accuracy [5]. While coarse pointing is essential for initiating a free-space optical

link, active pointing—a persistent fine pointing operation—is required during data

transmission in order to compensate for pointing error caused by relative motion.

The last operation attempts to maximize the received optical power during the course
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of communication. In this paper, our focus is on active pointing for short range

applications.

The one-way optical link under consideration comprises an optical transmitter

and an optical receiver which are subject to relative motion. The optical transmitter

is equipped with a servo-driven pointing assembly which can control the azimuth and

elevation of a transmitting laser source. The optical beam emitted by the laser source

has a nonuniform intensity profile which is assumed to be Gaussian [5]. Normally, the

aperture of the receiver is smaller than the received optical beam, so that the receiver

can collect only a fraction of the optical beam. In order to enlarge this captured frac-

tion, the goal of active pointing is to hold the center of the optical beam at the center

of the receiving aperture. The receiver employs a position-sensitive photodetector to

measure the intensity profile of the optical beam that strikes its aperture. The out-

put of the photodetector is used to estimate the center of the received optical beam,

which is then conveyed to the transmitter through an optical link or a low-bandwidth

RF channel. The pointing assembly then adjusts the orientation of the transmitter

based on this estimate.

The performance of the proposed active pointing scheme depends significantly on

the accuracy of the estimate of the beam center. In order to achieve a good estimate of

the beam center, it is necessary that the size of the receiving aperture be comparable

with the size of the beam. This requirement limits the application of our method to

short distance links.

The rest of this paper is organized as follows. In the next two sections we develop

a stochastic model for the overall scheme and state the control problem associated

with the model. Based on this model, in Section 4, we formulate and solve the problem

of estimating the center of the beam. The results of this section will be used later in

Section 5 to discuss the optimal control problem.

2. The Model. The structure of our model follows that introduced in [6] for

spatial tracking systems. Although the model in [6] describes a spatial tracking system

rather than an active pointing one, since the two systems share similar components,

the models for pointing assembly, relative motion, and the photodetector are adopted

from [6]. We refer the reader to [6] for a detailed description and justification of the

models.

Let the two-dimensional vector θt denote the azimuth and elevation angles of the

transmitter axis with respect to some fixed coordinate system, where the subscript t

indicates time dependence. Similarly, αt denotes the azimuth and elevation angles

of the line-of-sight of the stations (passing through the center of receiving aperture)

with respect to the same coordinate system. The pointing error is ϕt = θt − αt. We

assume that the receiving aperture is held perpendicular to the line-of-sight by means
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of a spatial tracking system. Then, for a small pointing error, the displacement of

the center of optical beam with respect to the center of receiving aperture is given

by yt = lϕt, where l is the distance between the stations which is assumed to be a

constant.

The pointing assembly is an electro-mechanical system with input vector ut ∈

R
2 and output vector θt ∈ R

2, which correspond, respectively, to the azimuth and

elevation angles. The associated stochastic state space model is

dxp
t = Ap

tx
p
tdt+Bp

t utdt+Dp
t dw

p
t

θt = Cp
t x

p
t

(1)

where xp
t ∈ R

np is the state vector, {wp
t , t > 0} is a mp-dimensional standard Wiener

process, and Ap
t , B

p
t , Dp

t , and Cp
t are known uniformly bounded matrices of appro-

priate dimensions. The use of a linear model for the pointing assembly is justified by

the fact that the system operates over small angles during the active pointing regime.

We model αt by a Gauss-Markov stochastic process [6] described by the state

space equations

dxd
t = Ad

tx
d
t dt+Dd

t dw
d
t

αt = Cd
t x

d
t

(2)

with state vector xd
t ∈ R

nd , md-dimensional standard Wiener process {wd
t , t > 0},

and known uniformly bounded matrices Ad
t , D

d
t , and Cd

t of proper dimensions.

The displacement vector yt = lϕt is a linear function of xp
t and xd

t , so that (1)

and (2) can be combined in a compact form:

dxt = Atxtdt+Btutdt+Dtdwt

yt = Ctxt

(3)

with state vector xt ∈ R
n and m-dimensional standard Wiener process {wt, t > 0},

where n = np +nd and m = mp +md. The initial state x0 is assumed to be Gaussian

with mean x̄0 and covariance matrix Σ̄0, and independent of {wt, t > 0}.

Let Φk : R
k×R

k×R
k×k → R

+ be a Gaussian map defined as

Φk (z; z̄,Θ) = (2π)−k/2 (detΘ)−1/2 exp

{
−

1

2
(z − z̄)T Θ−1 (z − z̄)

}
.

Let r denote the position vector of an arbitrary point on the plane of the receiving

aperture with respect to a coordinate system centered at the center of the aperture.

Then, for a Gaussian beam centered at yt = Ctxt, the optical intensity It (r) over the

plane of the aperture is proportional to

It (r) ∝ Φ2 (r;Ctxt, Rt)
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where Rt = RT
t is a 2 × 2 positive definite matrix describing the shape of the beam.

For a circular symmetric beam with constant radius ̺ > 0 we have Rt = ̺2I2
1.

Let A denote the area of the receiving aperture. In a practical system, the optical

field over the receiving aperture is focused on a photodetector of small surface area

by means of a focusing lens. The photodetector measures the intensity profile of

the imaged optical field, which is a scaled-down version of the optical intensity over

the receiving aperture. Therefore, we consider the combination of the lens and the

photodetector as a virtual photodetector of area A, i.e., we assume that the virtual

photodetector provides the observation of the optical intensity over an area A.

The position-sensitive photodetector is a photoelectron converter whose surface

is partitioned into small regions. The output of each region counts the number of

converted electrons regardless of their location within the region. The photoelec-

tron conversion rate depends linearly on the optical power absorbed by the region.

Generally, a photoelectron converter is modeled by a Poisson process with a rate

proportional to the impinging optical power [5, 7]. In the present case, where the

optical power is a stochastic field, the output of each region is modeled by a doubly

stochastic Poisson process. We assume that the receiver employs a high spatial res-

olution photodetector. Following [6], we use an infinite resolution model for such a

sensing device. This idealized model, which is characterized by a doubly stochastic

space-time Poisson process, provides a reasonable approximation for a high spatial

resolution photodetector.

The rate of the space-time process which models the output of the photodetector

is proportional to the optical intensity It (r). Thus, introducing a proportionality

constant µt > 0, we express the rate as

λt (r, xt) = µtΦ2 (r;Ctxt, Rt) .

In a general situation, µt is a nonnegative stochastic process representing the random

optical fade caused by atmospheric turbulence and the information-bearing signal

modulating the optical beam. However, here we simplify the model by assuming

that µt is deterministic and nonnegative.

The space-time Poisson process, defined over [0,∞)×A, characterizes the occur-

rence of discrete events (e.g., release of a single electron) with a temporal component

t ∈ [0,∞) and a spatial component r ∈ A. For T and S Borel sets in [0,∞) and A,

respectively, let N (T × S) denote the number of points occurring in T × S. Define

the random variable

ρ (T × S) =

∫

T ×S

λt (r, xt) dtdr.

1Ik is the k × k identity matrix
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Then N (T × S) is a conditionally Poisson random variable with conditional proba-

bility distribution

Pr {N (T × S) = n|ρ (T × S)} =
e−ρ(T ×S)ρn (T × S)

n!
.

Moreover, for disjoint T1 × S1 and T2 × S2, the random variables N (T1 × S1) and

N (T2 × S2), conditioned on ρ (T1 × S1) and ρ (T2 × S2) are (conditionally) indepen-

dent.

With (Ω,F , P ) as the underlying probability space for the stochastic model

above, define Bt as the σ-algebra generated by the space-time process over [0, t).

We define the counting process Nt as the number of points that occur during [0, t)

over the entire surface of the photodetector regardless of their location, i.e., Nt =

N ([0, t) ×A).

3. Problem Statement. The central objective of an active pointing system is

to maintain the centroid of the optical beam as close as possible to the center of the

photodetector. This control task can be interpreted as one of minimizing yt with

respect to some appropriate norm. We adopt the quadratic form

(4) J = E

[∫ T

0

(
xT

t Qtxt + uT
t Ptut

)
dt+ xT

TSxT

]

with Pt = PT
t > 0, Qt = QT

t > 0, and S = ST > 0, as the cost functional. For

purpose of active pointing, a reasonable choice is Qt = CT
t Ct, Pt = I2, and S = 0.

We say ut is an admissible control if ut is Bt-measurable and the solution to (3) is

well-defined. Based on the cost functional (4), the control problem can be defined as:

Subject to state space equation (3), find the admissible control ut that minimizes the

cost functional (4).

An intermediate step for solving the control problem is to obtain the posterior

density pxt
(x|Bt). In the next section we discuss this problem and develop an ap-

proximation for this posterior density. Employing this approximation, we propose a

solution for the optimal control problem.

4. Estimation Problem. Let (tk−1, tk] be the interval between the (k − 1)th

and kth occurrences of the space-time process, and let rk be the location of kth

occurring point. For a function bt (r, ξt) that is continuous in r and left-continuous

in t and ξt, the stochastic differential equation

dξt =

∫

A

bt (r, ξt)N (dt× dr)

is defined such that dξt = 0 during (tk−1, tk] and ξt encounters a jump of btk
(rk, ξtk

)

at t = tk.
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For the model of Section 2, Rhodes and Snyder [8] derived a stochastic partial

differential equation describing the time-evolution of the posterior density pxt
(x|Bt).

This equation is expressed by

dpxt
(x|Bt) = L{pxt

(x|Bt)} dt+ pxt
(x|Bt)

∫

A

(
λt (r, x) λ̂−1

t (r) − 1
)
N (dt×dr)

− pxt
(x|Bt)

∫

A

(
λt (r, x) − λ̂t (r)

)
drdt(5)

where λ̂t (r) = E [λt (r, xt) |Bt] and L{·} is the forward Kolmogorov operator associ-

ated with (3) and defined as

L{·} = −
n∑

i=1

∂ [(Atx+ Btut) (·)]i /∂x
i +

1

2

n∑

i=1

n∑

j=1

∂2
[
DtD

T
t (·)

]
ij
/∂xi∂xj .

Also, for special case A = R
2, it was shown in [8] that the solution of (5) is Gaussian

with conditional mean x̂t and conditional covariance Σt which satisfy the stochastic

differential equations

dx̂t = Atx̂tdt+Btutdt+

∫

R2

Mt (r − Ctx̂t)N (dt× dr)(6)

dΣt = AtΣtdt+ ΣtA
T
t dt+DtD

T
t dt−MtCtΣtdNt(7)

with initial states x̂0 = x̄0 and Σ0 = Σ̄0. In these equations, we have Mt = Γt (Σt)

where Γt (·) is defined as

Γt (Σ) = ΣCT
t

(
CtΣC

T
t +Rt

)−1
.

The aperture of a practical receiver has finite area so that the ideal condition

A = R
2 is not feasible. In practice, where A 6= R

2, the filtering problem associated

with (5) is infinite-dimensional. However, when A is large enough compared with

the size of the optical beam, a finite-dimensional approximation is reasonable. The

fact that pxt
(x|Bt) is Gaussian for A = R

2 motivates us to consider a Gaussian

approximation for pxt
(x|Bt) when A 6= R

2. In the reminder of this section, we

develop a method to determine the mean and covariance matrix of such a Gaussian

approximation. The cumulant generating function associated with pxt
(x|Bt) plays a

central role in this development.

The conditional cumulant generating function of xt given Bt is defined as

ψt (s) = ln E
[
exp

(
jωTxt

)
|Bt

] ∣∣
jω=s

,

and can be expanded in terms of conditional cumulants κ
i1i2···ij

t [9] as

(8) ψt (s) =

∞∑

j=1

∑

I n
j

1

j!
κ

i1i2···ij

t si1si2 · · ·sij
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where I n
j = {1, 2, . . . , n}j and s = (s1, s2, . . . , sn). Note that x̂t and Σt are rep-

resented in terms of the first and second order cumulants as x̂t =
(
κ1

t , κ
2
t , . . . , κ

n
t

)

and Σt = [κij
t ]. The time-evolution of ψt (·) is described by a partial differential

integral equation derived from (5) and is stated next.

Theorem 4.1. Let ψt (·) be the conditional cumulant generating function of xt

given Bt where xt is the solution of (3) and Bt is defined in Section 2. Then, the

time-evolution of ψt (·) is described by

dψt(s) = sT

(
At

∂ψt(s)

∂s
+Btut

)
dt+

1

2
sTDtD

T
t s dt

+

∫

A

(
lnβt (r, s) − lnβt (r, 0)

)
N(dt× dr) −

∫

A

(
βt (r, s) − βt (r, 0)

)
drdt(9)

where βt (·, ·) is defined as

(10) βt (r, s) = exp {−ψt(jω)}E
[
exp

(
jωTxt

)
λt(r, xt)|Bt

] ∣∣
jω=s

.

Moreover, if the Fourier transform of λt (r, ·),

Λt (r, jω) =

∫

Rn

λt (r, x) exp
(
−jωTx

)
dx

exists, βt (·, ·) can be expressed as

(11) βt (r, s) =
1

(2π)n

∫

Rn

Λt (r, jν) exp
{
ψt(jν + s) − ψt(s)

}
dν.

Proof. See Appendix A.1.

The time-evolution of the cumulants is described by a (generally infinite) set

of nonlinear stochastic differential equations driven by the space-time point process

N (T × S). This set of equations can be derived from (9) by matching the coefficients

of corresponding si1si2 · · ·sij
on the two sides of (9). We can usually suppose that the

first few cumulants approximate pxt
(x|Bt) with an acceptable precision. This means

that the infinite set of equations can be approximated by a finite-dimensional one.

Regarding this approach, two issues should be addressed. First, we need to com-

pute βt (·, ·) in terms of the cumulants via equations (10) or (11) and expansion (8),

which is not straightforward for an arbitrary number of cumulants. Second, when

we truncate (8) to a limited number of terms, the corresponding approximation for

pxt
(x|Bt) might not be a valid probability density function, i.e., it might be negative

for some x. When we limit the expansion (8) to the first and second order terms

(Gaussian approximation), these difficulties are avoided. In this case, βt (·, ·) can be

easily calculated and the truncated expansion leads to a valid probability density.

In Appendix A.2, we have used the method above to approximate pxt
(x|Bt) with

a Gaussian probability density. It is shown there that the mean x̃t and covariance
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matrix Σ̃t of this Gaussian approximation are solution to the stochastic differential

equations

dx̃t = Atx̃tdt+Btutdt+

∫

A

M̃t (r − Ctx̃t)N (dt× dr) − µtht

(
x̃t, Σ̃t

)
dt(12)

dΣ̃t = AtΣ̃tdt+ Σ̃tA
T
t dt+DtD

T
t dt− M̃tCtΣ̃tdNt + µtHt

(
x̃t, Σ̃t

)
dt(13)

with initial state x̃0 = x̄0 and Σ̃0 = Σ̄0. Here, M̃t = Γt

(
Σ̃t

)
, and ht (·, ·) : R

n×R
n×n →

R
n and Ht (·, ·) : R

n × R
n×n → R

n×n are defined as

ht (x,Σ) =

∫

A

Γt (Σ) (r − Ctx)Φ2

(
r;Ctx,CtΣC

T
t + Rt

)
dr(14)

Ht (x,Σ) =

∫

A

Γt (Σ)
(
CtΣC

T
t +Rt − (r − Ctx) (r − Ctx)

T
)

ΓT
t (Σ)

· Φ2

(
r;Ctx,CtΣC

T
t +Rt

)
dr.(15)

Note that x̃t and Σ̃t are approximations of x̂t and Σt, not their exact values.

Remark 4.1. Equations (14) and (15) imply that as A → R
2, h (·, ·) → 0 and

H (·, ·) → 0, then as a consequence, the approximate estimator (12), (13) tends to

exact estimator (6), (7). In this sense, we can say that (12), (13) is an asymptotically

optimal estimator.

5. Control Problem. We exploit the results of the previous section in solving

the control problem as Theorem 5.1 below. Before stating this result, we fix some

notation. Let Σ = [σij ] denote a symmetric n×nmatrix and f (Σ) be a scalar function

of Σ. Assume that the partial derivatives of f (Σ) with respect to the elements of Σ

exist. We denote by ∂f (Σ) /∂Σ a n×n symmetric matrix F (Σ) = [Fij (Σ)] such that

Fii = ∂f/∂σii and Fij = (1/2)∂f/∂σij for i 6=j. Let gt (x,Σ) be a scalar function of

x ∈ R
n and n×n symmetric matrix Σ. Assume that the partial derivatives of gt (x,Σ)

with respect to x and Σ exist. Define the linear operator Lt {·} as

Lt {gt (x,Σ)} =

∫

A

(
gt

(
x+ Γt (Σ) (r − Ctx) ,Σ − Γt (Σ)CtΣ

)
− gt (x,Σ)

)

· Φ2

(
r;Ctx,CtΣC

T
t +Rt

)
dr

− (∂gt (x,Σ) /∂x)
T
ht (x,Σ) + tr {(∂gt (x,Σ) /∂Σ)Ht (x,Σ)} .(16)

Finally, we use ‖ · ‖2
Pt

to denote (·)
T
Pt (·).
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Theorem 5.1. Let x ∈ R
n and Σ be a n × n symmetric matrix. Suppose that

gt (x,Σ) is the backward solution of the partial differential equation

−
∂

∂t
gt (x,Σ) =

(
∂

∂x
gt (x,Σ)

)T

Atx−
1

4

(
∂

∂x
gt (x,Σ)

)T

BtP
−1
t BT

t

(
∂

∂x
gt (x,Σ)

)
(17)

+ tr

{(
∂

∂Σ
gt (x,Σ)

)(
AtΣ + ΣAT

t +DtD
T
t

)
+QtΣ

}

+ xTQtx+ µtLt {gt (x,Σ)}

with boundary condition gT (x,Σ) = xTSx. Then the cost functional (4) can be ex-

pressed as

(18)

J = g0
(
x̃0, Σ̃0

)
+ E

[∫ T

0

δtdt

]
+ E

[∫ T

0

∥∥∥∥ut +
1

2
P−1

t BT
t

(
∂

∂x̃t

gt

(
x̃t, Σ̃t

))∥∥∥∥
2

Pt

dt

]
,

where

δt =

Z
Rn

�
x

T
Qtx +

Z
A

�
gt

�
x̃t + M̃t (r − Ctx̃t) , Σ̃t − M̃tCtΣ̃t

�
− gt

�
x̃t, Σ̃t

��
λt (r, x) dr

�
·
�
pxt (x|Bt) − p̃xt (x|Bt)

�
dx

(19)

is the error term resulting from replacing the posterior density pxt
(x|Bt) by its

Gaussian approximation p̃xt
(x|Bt).

Proof. See Appendix A.3.

The first term in the right side of (18) clearly does not depend on ut and so is

not involved in the minimization. While the hard-to-compute error term δt in (18)

depends on ut, it is supposed to be small. Therefore, in minimizing (18), we ignore δt

and only minimize the third term. We note that the minimum of the third term is 0

and is achieved when ut is given by

(20) u∗t = −
1

2
P−1

t BT
t

(
∂

∂x̃t

gt

(
x̃t, Σ̃t

))
.

Then the cost associated with u∗t will be

J∗ = g0
(
x̄0, Σ̄0

)
+

∫ T

0

E
[
δt|ut=u∗

t

]
dt.

When A = R
2, the solution to (17) can be simplified. This is stated as the follow-

ing theorem which confirms that the optimal control in (20) is consistent with that

obtained for A = R
2 by Rhodes and Snyder [8]. This shows that the approximation

tends to the exact solution as A tends to R
2.
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Theorem 5.2. When A = R
2, the backward solution of the partial differential

equation (17) with boundary condition gT (x,Σ) = xTSx can be expressed as

(21) gt (x,Σ) = xTKtx+ ft (Σ)

where Kt is the solution to the Riccati equation

(22) K̇t = −KtAt −AT
t Kt +KtBTP

−1
t BT

t Kt −Qt

with KT = S, and ft (Σ) is the backward solution to the partial differential equation

−
∂

∂t
ft (Σ) = tr

{(
∂

∂Σ
ft (Σ)

)(
AtΣ + ΣAT

t +DtD
T
t

)
+QtΣ

}

+ µt

(
ft (Σ − Γt (Σ)CtΣ) − ft (Σ)

)
+ µttr {Γt (Σ)CtΣKt}(23)

with boundary condition fT (Σ) = 0.

Proof. See Appendix A.4.

We see from (20) and (21) that when A = R
2, the optimal control is given by

(24) u∗t = −P−1
t BT

t Ktx̂t

with associated optimal cost

(25) J∗ = x̄T
0 K0x̄0 + f0

(
Σ̄0

)
.

While the optimal control (24) has been obtained by Rhodes and Snyder [8], the value

of the corresponding optimal cost (25) is newly obtained here.

6. Conclusion. Optimal control and estimation problems associated with a dif-

fusion process modulating the rate of a doubly stochastic space-time Poisson process

are discussed. It is assumed that the observation of the space-time process over a

subset of R
2 is used for the purpose of estimation and control. Our prime motivation

for examining this optimal control problem is its application to active pointing in free-

space optical communication. The main contributions of the paper are a suboptimal

estimator for state of the diffusion process and a suboptimal control associated with a

quadratic cost functional. Further, it is shown that when the observation is available

over all of R
2, our results tend toward the results of Rhodes and Snyder [8] for the

latter case.

Appendix A. Proof of the Theorems.

A.1. Proof of Theorem 4.1. The Fourier transform of (5) is given by [8]

dφt (jω) = E

[
exp

(
jωTxt

)(
jωT (Atxt +Btut) −

1

2
ωTDtD

T
t ω

)∣∣∣Bt

]
dt

+

∫

A

E
[
exp

(
jωTxt

) (
λt (r, xt) λ̂

−1
t (r) − 1

) ∣∣Bt

]
N (dt×dr)

−

∫

A

E
[
exp

(
jωTxt

) (
λt (r, xt) − λ̂t (r)

)∣∣Bt

]
drdt.(26)
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Let t1 < t2 < t3 < · · · be the occurrence times of the space-time process N (T × S).

During the interval (tk, tk+1), k = 0, 1, 2, . . ., the first integral in the right side of (26)

is zero, thus we can write (26) as

d exp {ψt (jω)} = E

[
exp

(
jωTxt

)(
jωT (Atxt +Btut) −

1

2
ωTDtD

T
t ω

)∣∣∣Bt

]
dt

−

∫

A

E
[
exp

(
jωTxt

) (
λt (r, xt) − λ̂t (r)

)∣∣Bt

]
drdt.(27)

Continuing, we write

exp {ψt(jω)} dψt(jω) = exp {ψt(jω)}

[
jωT

(
At

∂ψt(jω)

∂jω
+Btut

)
−

1

2
ωTDtD

T
t ω

]
dt

−

∫

A

E
[
exp

(
jωTxt

) (
λt (r, xt) − λ̂t(r)

)∣∣Bt

]
drdt,(28)

using the identity

E
[
xt exp

(
jωTxt

)
|Bt

]
=

∂

∂jω
E
[
exp

(
jωTxt

)
|Bt

]

=
∂ψt(jω)

∂jω
exp {ψt(jω)} .

Multiplying both sides of (28) by exp {−ψt(jω)} and substituting βt (r, jω) from (10)

into the resulting equation, we obtain

dψt (jω) = jωT

(
At

∂ψt(jω)

∂jω
+Btut

)
dt−

1

2
ωTDtD

T
t ω dt(29)

−

∫

A

(
βt (r, jω) − βt (r, 0)

)
drdt.

The discontinuity at t = tk is treated as follows. Let rk be the spatial component

of the event occurring at tk. Then, from (26) we find

φt
+

k
(jω) − φt

−

k
(jω) = E

[
exp
(
jωTxt

−

k

)(
λt

−

k

(
rk, xt

−

k

)
λ̂−1

t
−

k

(rk) − 1
)∣∣∣Bt

−

k

]
,

which can be simplified as

φt
+

k
(jω) = E

[
exp
(
jωTxt

−

k

)
λt

−

k

(
rk, xt

−

k

)∣∣Bt
−

k

]
λ̂−1

t
−

k

(rk) .

Multiplying both sides of this equation by exp
{
−ψt

−

k
(jω)

}
and taking logarithms, we

obtain

ψt
+

k
(jω) − ψt

−

k
(jω) = ln

(
exp
{
−ψt

−

k
(jω)

}
E
[
exp
(
jωTxt

−

k

)
λt

−

k

(
rk, xt

−

k

)∣∣Bt
−

k

])

− ln λ̂t
−

k
(rk)

= lnβt
−

k
(rk, jω) − lnβt

−

k
(rk, 0) .

Combining this with (29) and replacing jω by s, we obtain (9).
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From definition of βt (r, jω) (10), we have

(30) βt (r, jω) = exp {−ψt (jω)}

∫

Rn

pxt
(x|Bt) exp

(
jωTx

)
λt (r, x) dx.

Note that pxt
(x|Bt) is the Fourier transform of exp {ψt (jω)}, and so we can write

pxt
(x|Bt) =

1

(2π)n

∫

Rn

exp {ψt (jν)} exp
(
−jνTx

)
dν.

Upon substituting this into (30) and interchanging the order of integration2, we obtain

βt (r, jω) =
1

(2π)n

∫

Rn

exp
{
ψt(jν) − ψt(jω)

} ∫

Rn

λt (r, x) exp
{
−j (ν − ω)

T
x
}
dxdν.

Replacing the second integral above by Λt (r, jν − jω) and changing the variable of

integration ν with ν + ω, we get

βt (r, jω) =
1

(2π)n

∫

Rn

Λt (r, jν) exp
{
ψt(jν + jω) − ψt(jω)

}
dν.

Finally we obtain (11) upon replacing jω with s.

A.2. Derivation of (12), (13). We first state a technical lemma from [10]

which will be used later in deriving (12) and (13). For sake of completeness, we

repeat below the proof from [10].

Lemma A.1. Let zk, z̄k ∈ R
k, zl ∈ R

l, and Θk and Θl be respectively k×k and

l×l positive definite matrices. Assume that G is any l×k matrix. Then we have

(31)

∫

Rk

Φk (zk; z̄k,Θk)Φl (zl;Gzk,Θl) dzk = Φl

(
zl;Gz̄k,Θl +GΘkG

T
)
.

Proof. Denoting the Fourier transform of the left side of (31) by Fl (ωl), we can

write

Fl (ωl) =

∫

Rk

Φk (zk; z̄k,Θk) exp
(
jωT

l Gzk − 1
2 ω

T
l Θlωl

)
dzk

= exp
(
jωT

l Gz̄k − 1
2 ω

T
l GΘkG

Tωl

)
exp

(
− 1

2 ω
T
l Θlωl

)

= exp
(
jωT

l Gz̄k − 1
2 ω

T
l

(
Θl +GΘkG

T
)
ωl

)

Taking inverse Fourier transform of the expression above, we get the right side of (31).

The probability density function associated with the truncated expansion ψ̃t(s) =

sT x̃t + 1
2 s

T Σ̃ts is Gaussian with mean x̃t and covariance matrix Σ̃t. With this ap-

proximate probability density function and with λt (r, xt) = µtΦ2 (r;Ctxt, Rt), the

approximation of βt (·, ·) is given by

β̃t (r, s) = exp
{
−ψ̃t (s)

}∫

Rn

Φn

(
x; x̃t, Σ̃t

)
exp

(
sTx

)
µtΦ2 (r;Ctx,Rt) dx.

2This interchange is permissible since for any fixed t, the integrand is continuous in x and ν.
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A simple calculation yields that

exp
{
−ψ̃t (s)

}
Φn

(
x; x̃t, Σ̃t

)
exp

(
sTx

)
= Φn

(
x; x̃t + Σ̃ts, Σ̃t

)
.

Then, using Lemma A.1, we get

β̃t (r, s) = µtΦ2

(
r;Ctx̃t + CtΣ̃ts, CtΣ̃tC

T
t +Rt

)
,

which leads to

ln β̃t (r, s) − ln β̃t (r, 0) = sT Σ̃tC
T
t

(
CtΣ̃tC

T
t +Rt

)−1

(r − Ctx̃t)

−
1

2
sT Σ̃tC

T
t

(
CtΣ̃tC

T
t +Rt

)−1

CtΣ̃ts(32)

and

β̃t (r, s) − β̃t (r, 0) = µtΦ2

(
r;Ctx̃t, CtΣ̃tC

T
t +Rt

)

·

{
sT Σ̃tC

T
t

(
CtΣ̃tC

T
t +Rt

)−1

(r − Ctx̃t)

+
1

2

[
sT Σ̃tC

T
t

(
CtΣ̃tC

T
t +Rt

)−1

(r − Ctx̃t)

]2

−
1

2
sT Σ̃tC

T
t

(
CtΣ̃tC

T
t +Rt

)−1

CtΣ̃ts+O
(
‖s‖3

)}
.(33)

We combine (32), (33), and (9), and match the coefficients of sT (·) and sT (·)s from

both sides to obtain (12), (13).

A.3. Proof of Theorem 5.1. Our proof consists of the following four steps.

Step I: Using properties of conditional expectation, it is easy to show that

E
[
xT

t Qtxt

]
= E

[
x̂T

t Qtx̂t + tr {QtΣt}
]
.

Then the cost functional (4) can be expressed as

(34) J = E

[∫ T

0

(
x̃T

t Qtx̃t + tr
{
QtΣ̃t

}
+ uT

t Ptut + δ1t

)
dt+ xT

TSxT

]

where δ1t is defined as

δ1t = tr
{
Qt

(
x̂tx̂

T
t − x̃tx̃

T
t + Σt − Σ̃t

)}
.

Step II: For t > 0 and for any positive ǫ, ∆Nt,Nt+ǫ −Nt is a conditionally Poisson

random variable with stochastic rate

λ̄ǫ
t =

∫ t+ǫ

t

∫

A

λτ (r, xτ ) drdτ.
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Thus, using the law of total probability, we can write

Pr
{
∆Nt = 1

∣∣Bt

}
= E

[
Pr
{
∆Nt = 1|λ̄ǫ

t

} ∣∣Bt

]

= E
[
λ̄ǫ

t exp
(
−λ̄ǫ

t

) ∣∣Bt

]

= ǫqt +O
(
ǫ2
)

(35)

where qt is defined as

(36) qt =

∫

A

E [λt (r, xt) |Bt] dr.

In a similar manner, we can show that

Pr
{
∆Nt = 0

∣∣Bt

}
= 1 − ǫqt +O

(
ǫ2
)

Pr
{
∆Nt > 2

∣∣Bt

}
= O

(
ǫ2
)
.

(37)

Let the random vector R ∈ R
2 denote the location of a single event occurring dur-

ing [t, t+ ǫ). We show that

(38) p
R

(r|∆Nt = 1,Bt) =
E [λt (r, xt) |Bt]

qt
IA (r) +O (ǫ)

where IA (r) = 1 if r ∈ A and IA (r) = 0 otherwise. For this purpose, let D (r) ⊂ A

denote a square with side length ∆r and centered at r ∈ A. Defining T = [t, t + ǫ)

and using Bayes’ rule, we can write

p
R

(r|∆Nt = 1,Bt) = lim
∆r→0

∆r−2 Pr {R ∈ D (r) |∆Nt = 1,Bt}

= lim
∆r→0

∆r−2 Pr {N (T ×D (r)) = 1|∆Nt = 1,Bt}

= lim
∆r→0

1

∆r2
·
Pr {N (T ×D (r)) = 1, N (T ×A) = 1|Bt}

Pr {∆Nt = 1|Bt}
.(39)

Note that the event of N (T ×D (r)) = 1 and N (T ×A) = 1 is equivalent to

the event of N (T ×D (r)) = 1 and N (T × (A−D (r))) = 0. Therefore, defining

Xt = {xτ | τ ∈ T } and using the law of total probability and properties of a space-time

Poisson process, we get

Pr {N (T ×D (r)) = 1, N (T ×A) = 1|Bt}

= E
[
Pr {N (T ×D (r)) = 1, N (T × (A−D (r))) = 0 |Xt,Bt}

∣∣Bt

]

= E
[
Pr {N (T ×D (r)) = 1|Xt}Pr {N (T × (A−D (r))) = 0 |Xt}

∣∣Bt

]

= E

[∫

T ×D(r)

λτ (s, xτ ) dτds
(
1 −O

(
ǫ∆r2

)) ∣∣∣Bt

]

= ǫ∆r2E [λt (r, xt) |Bt] +O
(
ǫ∆r3

)
+O

(
ǫ2∆r2

)
.(40)
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Substituting (35) and (40) into (39), we obtain (38).

Let p̃xt
(x|Bt) be the Gaussian approximation of pxt

(x|Bt). Then using

Lemma A.1, we can write

E [λt (r, xt) |Bt] =

∫

Rn

p̃xt
(x|Bt) λt (r, x) dx

+

∫

Rn

(
pxt

(x|Bt) − p̃xt
(x|Bt)

)
λt (r, x) dx

= µtΦ2

(
r;Ctx̃t, CtΣ̃tC

T
t +Rt

)

+

∫

Rn

(
pxt

(x|Bt) − p̃xt
(x|Bt)

)
λt (r, x) dx.(41)

Step III: Let gt (x,Σ) be a scalar function of x ∈ R
n and n× n symmetric matrix Σ.

Assume that the partial derivatives of gt (x,Σ) with respect to t, x and Σ exist. Using

the law of total probability we can write

E
[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt

]
=

∞∑

k=0

E
[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt,∆Nt = k
]
Pr {∆Nt = k|Bt} .

Substituting Pr {∆Nt = k|Bt} from (35) and (37) into the previous expression, and

using the law of total probability again, we find

E
[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt

]
= E

[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt,∆Nt = 0
]
(1 − ǫqt)

+ E
[
E
[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt,∆Nt = 1, R = r
] ∣∣Bt,∆Nt = 1

]
ǫqt +O

(
ǫ2
)
.

Inserting (36) and (38) above and rearranging terms, we obtain

E
[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt

]
= E

[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt,∆Nt = 0
]

+ ǫ

∫

A

(
E
[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt,∆Nt = 1, R = r
]

− E
[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt,∆Nt = 0
])

· E [λt (r, xt) |Bt] dr +O
(
ǫ2
)
.(42)

Conditioned on Bt and ∆Nt = 0, (12) and (13) can be solved during [t, t + ǫ) to

obtain

x̃t+ǫ = x̃t + ǫAtx̃t + ǫBtut − ǫµtht

(
x̃t, Σ̃t

)
+O

(
ǫ2
)

Σ̃t+ǫ = Σ̃t + ǫAtΣ̃t + ǫΣ̃tA
T
t + ǫDtD

T
t + ǫµtHt

(
x̃t, Σ̃t

)
+O

(
ǫ2
)
.

(43)

Also, conditioned on Bt, ∆Nt = 1, and R = r, we can write

x̃t+ǫ = x̃t + M̃t (r − Ctx̃t) +O (ǫ)

Σ̃t+ǫ = Σ̃t − M̃tCtΣ̃t +O (ǫ) .
(44)
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Inserting (43) and (44) into (42), and linearizing with respect to ǫ, we obtain

E
[
gt

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt

]
= gt

(
x̃t, Σ̃t

)

+ ǫ
∂

∂t
gt

(
x̃t, Σ̃t

)
+ ǫ

(
∂

∂x̃t

gt

(
x̃t, Σ̃t

))T (
Atx̃t +Btut − µtht

(
x̃t, Σ̃t

))

+ ǫ tr

{(
∂

∂Σ̃t

gt

(
x̃t, Σ̃t

))(
AtΣ̃t + Σ̃tA

T
t +DtD

T
t + µtHt

(
x̃t, Σ̃t

)
M̃T

t

)}

+ ǫ

∫

A

[
gt

(
x̃t + M̃t (r − Ctx̃t) , Σ̃t − M̃tCtΣ̃t

)
− gt

(
x̃t, Σ̃t

)]

· E [λt (r, xt) |Bt] dr +O
(
ǫ2
)
.

We substitute E [λt (r, xt) |Bt] from (41) into the expression above and use the linear

operator Lt {·} defined by (16) to obtain the simplified form

E
[
gt

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt

]
= gt

(
x̃t, Σ̃t

)
+ ǫ

∂

∂t
gt

(
x̃t, Σ̃t

)
(45)

+ ǫ

(
∂

∂x̃t

gt

(
x̃t, Σ̃t

))T

(Atx̃t +Btut)

+ ǫ tr

{(
∂

∂Σ̃t

gt

(
x̃t, Σ̃t

))(
AtΣ̃t + Σ̃tA

T
t +DtD

T
t

)}

+ ǫµtLt

{
gt

(
x̃t, Σ̃t

)}
+ ǫδ2t +O

(
ǫ2
)

where the error term δ2t is defined as

δ2t =

∫

Rn

∫

A

[
gt

(
x̃t + M̃t (r − Ctx̃t) , Σ̃t − M̃tCtΣ̃t

)
− gt

(
x̃t, Σ̃t

)]

·
(
pxt

(x|Bt) − p̃xt
(x|Bt)

)
λt (r, x) drdx.

Define the nonlinear operator Kt {·} by

Kt {gt (x,Σ)} =
∂

∂t
gt (x,Σ) +

(
∂

∂x
gt (x,Σ)

)T

Atx

−
1

4

(
∂

∂x
gt (x,Σ)

)T

BtP
−1
t BT

t

(
∂

∂x
gt (x,Σ)

)

+ tr

{(
∂

∂Σ
gt (x,Σ)

)(
AtΣ + ΣAT

t +DtD
T
t

)
+QtΣ

}

+ xTQtx+ µtLt {gt (x,Σ)} .

Then, (45) can be rewritten as

E
[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)∣∣Bt

]
= gt

(
x̃t, Σ̃t

)
+ ǫ

∥∥∥∥ut +
1

2
P−1

t BT
t

(
∂

∂x̃t

gt

(
x̃t, Σ̃t

))∥∥∥∥
2

Pt

+ ǫδ2t

− ǫ
(
x̃T

t Qtx̃t + tr
{
QtΣ̃t

}
+ uT

t Ptut

)
+ ǫKt

{
gt

(
x̃t, Σ̃t

)}
+O

(
ǫ2
)
.
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Now, let gt (·, ·) be the backward solution of the partial differential equation (17) with

boundary condition gT (x,Σ) = xTSx. This implies that Kt

{
gt

(
x̃t, Σ̃t

)}
= 0. Under

this condition, we take expectation from the equation above to get

E
[
gt+ǫ

(
x̃t+ǫ, Σ̃t+ǫ

)]
= E

[
gt

(
x̃t, Σ̃t

)]

+ ǫE

[∥∥∥∥ut +
1

2
P−1

t BT
t

(
∂

∂x̃t

gt

(
x̃t, Σ̃t

))∥∥∥∥
2

Pt

]
+ ǫE

[
δ2t
]

− ǫE
[
x̃T

t Qtx̃t + tr
{
QtΣ̃t

}
+ uT

t Ptut

]
+O

(
ǫ2
)
.(46)

Step IV: We partition the interval [0, T ) into K subintervals [tk, tk+1), k = 0, 1, . . .,

K − 1, where t0 = 0, tK = T , and tk+1 − tk , ǫk > 0. Recalling that xT
TSxT =

gtK

(
x̃tK

, Σ̃tK

)
, we approximate the cost functional (34) by the finite sum

J≃JK =

K−1∑

k=0

ǫkE
[
x̃T

tk
Qtk

x̃tk
+ tr

{
Qtk

Σ̃tk

}
+ uT

tk
Ptk

utk
+ δ1tk

]
+ E

[
gtK

(
x̃tK

, Σ̃tK

)]
.

This finite sum can be rearranged as

JK =

K−2∑

k=0

ǫkE
[
x̃T

tk
Qtk

x̃tk
+ tr

{
Qtk

Σ̃tk

}
+ uT

tk
Ptk

utk
+ δ1tk

]
+ E

[
δ1tK−1

]

+ ǫK−1E
[
x̃T

tK−1
QtK−1

x̃tK−1
+ tr

{
QtK−1

Σ̃tK−1

}
+ uT

tK−1
PtK−1

utK−1

]

+ E
[
gtK

(
x̃tK

, Σ̃tK

)]
.

In the right side above, we replace E
[
gtK

(
x̃tK

, Σ̃tK

)]
by the right side of (46). With

minor manipulations, and upon defining δt = δ1t + δ2t according to (19), we find that

JK =
K−2∑

k=0

ǫkE
[
x̃T

tk
Qtk

x̃tk
+ tr

{
Qtk

Σ̃tk

}
+ uT

tk
Ptk

utk
+ δ1tk

]

+ E
[
gtK−1

(
x̃tK−1

, Σ̃tK−1

)]

+ ǫK−1E

[ ∥∥∥∥utK−1
+

1

2
P−1

tK−1
BT

tK−1

(
∂

∂x̃tK−1

gtK−1

(
x̃tK−1

, Σ̃tK−1

))∥∥∥∥
2

PtK−1

]

+ ǫK−1E
[
δtK−1

]
+O

(
ǫ2K−1

)
.

Repeating this procedure for k = K − 2,K − 3, . . . , 1, 0, we obtain

JK = E
[
gt0

(
x̃t0 , Σ̃t0

)]
+

K−1∑

k=0

ǫk E [ δtk
]

+

K−1∑

k=0

ǫk E

[ ∥∥∥∥utk
+

1

2
P−1

tk
BT

tk

(
∂

∂x̃tk

gtk

(
x̃tk

, Σ̃tk

))∥∥∥∥
2

Ptk

]
+

K−1∑

k=0

O
(
ǫ2k
)
.

Finally, we take the limit of JK as K → ∞ and max ǫk → 0 to obtain (18).
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A.4. Proof of Theorem 5.2. For A = R
2 and gt (x,Σ) given by (21), we can

show that

Lt {gt (x,Σ)} = ft

(
Σ − Γt (Σ)CtΣ

)
− ft (Σ) + tr {Γt (Σ)CtΣKt}

which is clearly not dependent on x. Therefore, (17) can be decomposed into two

independent equations: the partial differential equation (23) with boundary condi-

tion fT (Σ) = 0 and the following equation

−
∂
(
xTKtx

)

∂t

=

(
∂
(
xTKtx

)

∂x

)T

Atx−
1

4

(
∂
(
xTKtx

)

∂x

)T

BtP
−1
t BT

t

(
∂
(
xTKtx

)

∂x

)
+ xTQtx

with boundary condition xTKTx = xTSx. This equation holds for any arbitrary x if

and only if Kt satisfies (22) with terminal condition KT = S.
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