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Abstract

We consider a good code for a discrete memoryless source with a specified distortion
level to be one whose rate is close to the corresponding rate-distortion function and
which, with large probability, reproduces the source within the allowed distortion level.
We show that any good code must contain an exponentially large set of codewords, of
effectively the same rate, which are all typical with respect to the output distribution
induced by the rate-distortion achieving channel. Furthermore, the output distribu-
tion induced by a good code is asymptotically singular with respect to the i.i.d. output
distribution induced by the rate-distortion achieving channel. However, the normal-
ized (Kullback-Leibler) divergence between these output distributions converges to the
conditional entropy of the output under the rate-distortion achieving channel.

1 Introduction

A good code for a discrete memoryless source (DMS) with a specified distortion level
is one whose rate is close to the corresponding rate-distortion function and which,
with large probability, reproduces the source within the allowed distortion level. The
Covering Lemma of Rate-Distortion Theory (cf.,e.g., [1], Lemma 4.1, p. 150) asserts the
existence of a good code, all of whose codewords are typical with respect to the optimal

distribution on the reproduction alphabet, namely that induced by the rate-distortion
achieving channel. We show that any good code must contain an exponentially large set
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of codewords which are all typical (in the sense as above), and is of effectively the same
rate. Next, this source code gives rise to a deterministic channel between the spaces
of all the input and output sequences, which in turn induces an output distribution
on the latter. Since the output distribution corresponding to this code restricts its
mass to the set of codewords, it differs significantly from the i.i.d. (independent and
identically distributed) measure induced by the optimal output distribution. It is
shown that these two measures are asymptotically singular except in trivial cases.
Furthermore, under an additional assumption of the “minimality” of a good code, the
normalized (Kullback-Leibler) divergence between these output distributions converges
to the conditional entropy of the output under the rate-distortion achieving channel.
As is to be expected, this behavior of a good source code is in contrast with that of a
good channel code for which, as shown by Han-Verdú [2], the normalized divergence
between the corresponding output distribution and the optimal output distribution
(induced by the capacity achieving input distribution) vanishes asymptotically.

2 Preliminaries and Main Results

We have adopted the terminology of Csiszár-Körner [1]. In particular, all logarithms
and exponentials are taken with respect to the base 2.

Let {Xt}
∞
t=1 be a discrete memoryless source (DMS) with finite alphabet X , i.e., an

independent and identically distributed (i.i.d.) process, with common probability mass
function (pmf) P , where P (x) > 0, x ∈ X . Let Y be a finite reproduction alphabet.
Let d : X × Y → IR+ be a nonnegative-valued mapping with minx∈X , y∈Y d(x, y) = 0
and dmax = maxx∈X , y∈Y d(x, y) < ∞. This mapping induces a distortion measure on
X n × Yn according to

d(x,y) =
1

n

n
∑

t=1

d(xt, yt), x ∈ X n, y ∈ Yn.

A n-length block code consists of two mappings: An encoder fn : X n → {1, . . . ,Mn}
and a decoder φn : {1, . . . ,Mn} → Yn. The rate of this code is Rn = 1

n
log Mn.

For ∆ > 0, the rate distortion function, R(P,∆), characterizing the minimum
achievable rate for a distortion ∆, is well known and given by

R(P,∆) = min
W :d(P,W )≤∆

I(P,W ) (1)

where W ranges over all stochastic matrices W : X → Y, and

d(P,W ) =
∑

x∈X

∑

y∈Y

P (x)W (y|x)d(x, y). (2)
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Here, I(P,W ) denotes the mutual information between the random variables (X,Y )
on X × Y with pmf PXY (x, y) = P (x)W (y|x), x ∈ X , y ∈ Y.

It will be assumed throughout that the minimizing W in (1), denoted W ∗, is unique.

We shall hereafter be interested only in a “good” code, i.e., a code which with large
probability reproduces sequences from X n with distortion no greater than a specified
∆ > 0 and has a rate arbitrarily close to R(P,∆). Precisely, a good code is defined as a
sequence of n-length block codes (fn, φn) with the following two properties: For every
ǫ > 0, α > 0, and n sufficiently large (depending on ǫ, α),

Pn (x ∈ X n : d(x, φn(fn(x))) ≤ ∆) ≥ 1 − ǫ (3)

where

Pn(x) =
n
∏

t=1

P (xt), x ∈ X n, (4)

and
R(P,∆) < Rn ≤ R(P,∆) + α. (5)

We shall use Cn = {yi ∈ Yn : yi = φn(i), 1, . . . ,Mn} to denote the codewords of the
n-length code (fn, φn). These codewords induce a partition {Ai}

Mn

i=1 of X n, where

Ai = {x ∈ X n : φn(fn(x)) = yi}, i = 1, . . . ,Mn. (6)

Of particular interest is the family of (disjoint) subsets {Bi}
Mn

i=1 of X n defined by

Bi = {x ∈ Ai : d(x,yi) ≤ ∆}, i = 1, . . . ,Mn. (7)

By virtue of property (3) of a good code, and the fact that {Ai}
Mn

i=1 is a partition of
X n, note that for every ǫ > 0,

Pn

(

Mn
⋃

i=1

Bi

)

≥ 1 − ǫ (8)

for all n sufficiently large (depending on ǫ).
We recall from [1] that the type of x ∈ X n is a pmf Qx on X where Qx(x) is the

relative frequency of the symbol x in x. For any type Q on X , let T
(n)
Q denote the set

of all sequences x ∈ X n with Qx = Q. (A similar notation will be used for types on
Y.) For any pmf Q on X , pmf S on Y, and ∆ > 0, define

R̃(Q,S,∆) = min
W :d(Q,W )≤∆, Q·W=S

I(Q,W ) (9)

where W ranges over stochastic matrices W : X → Y and Q · W denotes a pmf on Y
defined by

Q · W (y) =
∑

x∈X

Q(x)W (y|x), y ∈ Y. (10)
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Note that R̃(Q,S,∆) is well-defined since I(Q,W ) is a convex function of W and
{W : d(Q,W ) ≤ ∆, Q · W = S} is a convex compact set.

We present below a technical result needed to prove our main result in the subse-
quent Proposition 1. A refined version of this result can be found in the earlier work
of Zhang-Yang-Wei [3, Lemma 3]. Let | · | denote cardinality of sets and H(·) denote
entropy.
Lemma: Let Q be any type on X . Then, for i = 1, . . . ,Mn, it holds that

∣

∣

∣Bi

⋂

T
(n)
Q

∣

∣

∣ ≤ (n + 1)|X ||Y| exp
[

n
(

H(Q) − R̃(Q,Qyi
,∆)

)]

. (11)

Proof: For each conditional type V on X given yi ∈ Yn, let T
(n)
V (yi) denote the V -shell

of yi (cf., e.g., [1]). Then for i = 1, . . . ,Mn,

Bi

⋂

T
(n)
Q =

⋃

V : d(Qyi
,V )≤∆, Qyi

·V =Q

(

Bi

⋂

T
(n)
V (yi)

)

where d(Qyi
, V ) =

∑

x∈X , y∈Y Qyi
(y)V (x|y)d(x, y) and Qyi

· V denotes a pmf on X
given by

Qyi
· V (x) =

∑

y∈Y

Qyi
(y)V (x|y), x ∈ X . (12)

Consequently, using standard bounds on types (cf., e.g., [1]) we obtain

∣

∣

∣Bi

⋂

T
(n)
Q

∣

∣

∣

=
∑

V : d(Qyi
,V )≤∆, Qyi

·V =Q

∣

∣

∣Bi

⋂

T
(n)
V (yi)

∣

∣

∣

≤
∑

V : d(Qyi
,V )≤∆, Qyi

·V =Q

∣

∣

∣T
(n)
V (yi)

∣

∣

∣

≤ (n + 1)|X ||Y| max
V : d(Qyi

,V )≤∆, Qyi
·V =Q

∣

∣

∣T
(n)
V (yi)

∣

∣

∣

≤ (n + 1)|X ||Y| max
V : d(Qyi

,V )≤∆, Qyi
·V =Q

exp [nH(V |Qyi
)]

= (n + 1)|X ||Y| max
V : d(Qyi

,V )≤∆, Qyi
·V =Q

exp [n (H(Qyi
· V ) − I(Qyi

, V ))]

= (n + 1)|X ||Y| max
W : d(Q,W )≤∆, Q·W=Qyi

exp [n (H(Q) − I(Q,W ))]

from which the assertion of the Lemma follows.
At this juncture it is useful to recall two distance measures for pmf’s on X (or Y).

The Kullback-Leibler divergence between the pmf’s P and Q on X is defined as:

D(P‖Q) =
∑

x∈X

P (x) log
P (x)

Q(x)
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where the usual convention applies that 0 log 0 = 0, 0 log
(

0
0

)

= 0 and t log
(

t
0

)

=

+∞, t > 0. The variational distance between P and Q is defined as

‖P − Q‖ =
∑

x∈X

|P (x) − Q(x)|.

Proposition 1 below states that of the roughly exp[nR(P,∆)] codewords of a good
code, an exponentially large subset, of effectively the same rate, has codewords whose
types asymptotically approach P ·W ∗ in variational distance. Clearly, not all codewords
of a good code need possess this property.

Let CT
n denote the subset of codewords which are P · W ∗-typical. Precisely, given

γ > 0, define CT
n = CT

n (γ) by

CT
n = {y ∈ Cn : ‖Qy − P · W ∗‖ ≤ γ} . (13)

Proposition 1: For every γ > 0

lim
n→∞

1

n
log

∣

∣

∣ CT
n (γ)

∣

∣

∣ = R(P,∆). (14)

Proof: For any δ > 0 and ζ > 0, it holds for all n sufficiently large (depending on δ, ζ)
that

Pn
(

T
(n)
[P ]

)

≥ 1 − ζ (15)

where
T

(n)
[P ] =

⋃

Q:‖P−Q‖≤δ

T
(n)
Q (16)

with Q denoting types on X . A suitable choice of δ and ζ will be made later.
In conjunction with (8), and using standard bounds for types, we get for all n

sufficiently large (depending on ǫ, δ, ζ) that

1 − ǫ − ζ ≤ Pn

(

T
(n)
[P ]

⋂

(

Mn
⋃

i=1

Bi

))

=
Mn
∑

i=1

Pn
(

T
(n)
[P ]

⋂

Bi

)

=
Mn
∑

i=1

∑

Q:‖P−Q‖≤δ

Pn
(

T
(n)
Q

⋂

Bi

)

=
Mn
∑

i=1

∑

Q:‖P−Q‖≤δ

∣

∣

∣T
(n)
Q

⋂

Bi

∣

∣

∣× exp [−n (H(Q) + D(Q‖P ))]

≤
Mn
∑

i=1

∑

Q:‖P−Q‖≤δ

(n + 1)|X ||Y| exp
[

n
(

H(Q) − R̃(Q,Qyi
,∆)

)]
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× exp [−n (H(Q))] , by (11)

=
Mn
∑

i=1

∑

Q:‖P−Q‖≤δ

(n + 1)|X ||Y| exp
[

−n
(

R̃(Q,Qyi
,∆)

)]

≤
Mn
∑

i=1

(n + 1)|X |(|Y|+1) exp

[

−n

(

min
Q:‖P−Q‖≤δ

R̃(Q,Qyi
,∆)

)]

. (17)

Given any η > 0, observe by the continuity of R̃(Q,Qyi
,∆) in Q that δ > 0 can be

chosen to satisfy

min
Q:‖P−Q‖≤δ(η)

R̃(Q,Qyi
,∆) ≥ R̃(P,Qyi

,∆) − η. (18)

Continuing the bounding in (17), we obtain

1 − ǫ − ζ ≤ (n + 1)|X |(|Y|+1)
Mn
∑

i=1

exp
[

−n
(

R̃(P,Qyi
,∆) − η

)]

. (19)

Consider first the sum in (19) over those indices i for which yi ∈ CT
n . Note that

R̃(P,Qyi
,∆) ≥ R(P,∆) and therefore

∑

i:yi∈CT
n

exp
[

−n
(

R̃(P,Qyi
,∆) − η

)]

≤ | CT
n | exp [−n (R(P,∆) − η)] . (20)

Next, the sum in (19) over those indices i for which yi 6∈ CT
n can be bounded above as

follows:
∑

i:yi 6∈CT
n

exp
[

−n
(

R̃(P,Qyi
,∆) − η

)]

≤ exp [n (R(P,∆) + α)] exp

[

−n min
i:yi 6∈CT

n

(

R̃(P,Qyi
,∆) − η

)

]

, by (5)

= exp

[

−n

(

min
i:yi 6∈CT

n

R̃(P,Qyi
,∆) − R(P,∆) − α − η

)]

(21)

Next, observe that R̃(P,Qyi
,∆) ≥ R(P,∆) with equality iff Qyi

= P · W ∗. Together
with the condition ‖Qyi

−P ·W ∗‖ > γ and the assumed uniqueness of W ∗, there exists
θ = θ(γ) > 0 such that

min
i:yi 6∈CT

n

R̃(P,Qyi
,∆) − R(P,∆) > θ. (22)

Therefore, given γ > 0, we can pick α = α(γ), η(γ) such that α+η < θ
3 . Then the right

side in (21) is bounded above by exp
[

−n2θ
3

]

for all n sufficiently large (depending on
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γ). Using this in (19), we obtain

1 − ǫ − ζ ≤ (n + 1)|X |(|Y|+1)
∣

∣

∣CT
n

∣

∣

∣ exp [−n (R(P,∆) − η)] + exp

[

−n
θ

3

]

which can be rearranged as

R(P,∆) − ξ ≤
1

n
log

∣

∣

∣ CT
n

∣

∣

∣ (23)

for all n sufficiently large (depending on γ), where

ξ = |X |(|Y| + 1)
log(n + 1)

n
+ η +

1

n
log

(

1 − ǫ − ζ − exp

(

−n
θ

3

))

.

Observe that ξ can be made arbitrarily small, for all n sufficiently large (depending on

ξ, γ, ζ) by choosing η to be, say, the smaller of ξ
2 and θ(γ)

4 . Combining this with (5)
yields the assertion of the Proposition.

The sequence of n-length block codes (fn, φn) constituting a good code induces a
(deterministic) channel {W̃ (n) : X n → Yn}∞n=1, given by

W̃ (n)(y|x) = 1(y = φn(fn(x))), x ∈ X n, y ∈ Yn, (24)

where 1(·) denotes the indicator function. As a consequence of Proposition 1, we shall
characterize how “distant” the sequence of pmf’s Pn · W̃ (n) on Yn, induced by a good
code, can be from the sequence of pmf’s (P ·W ∗)n on Yn, induced by the rate distortion
achieving stochastic matrix W ∗. We note that the pmf’s under consideration are given
by

Pn · W̃ (n)(y) =
∑

x∈Xn

Pn(x)W̃ (n)(y|x)

=

{

Pn(Ai) if y = yi for some i ∈ {1, . . . ,Mn}
0 otherwise

(25)

and

(P · W ∗)n(y) =
n
∏

t=1

P · W ∗(yt). (26)

Clearly, if W ∗ is {0, 1}-valued, then a good code can be chosen accordingly, i.e., W̃ (n) =
(W ∗)n for all n. On the other hand, if W ∗ is not {0, 1}-valued, then the sequence of
pmf’s Pn · W̃ (n) and (P · W ∗)n on Yn asymptotically become mutually singular. To
see this, note that

Pn · W̃ (n)(Cn) = 1.

Also,
(P · W ∗)n(Cn) = (P · W ∗)n(CT

n ) + (P · W ∗)n(Cn \ CT
n ).
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The first term, by (13), is bounded above by a quantity that is of the order of

|Cn| exp[−nH(P · W ∗)] ≈ exp[−nH(W ∗|P )],

which decays to zero iff H(W ∗|P ) > 0. The second term is the (P · W ∗)n-probability
of codewords which are not P · W ∗-typical and, hence, can be made arbitrarily small
by choosing n sufficiently large. Consequently,

lim
n→∞

‖Pn · W̃ (n) − (P · W ∗)n‖ = 2 (27)

and
lim

n→∞
D(Pn · W̃ (n)‖(P · W ∗)n) = ∞. (28)

In the next section, we investigate the behavior of the normalized version of the diver-
gence in (28).

At this juncture it is interesting to recall the following result of Han-Verdú ([2],
Theorem 5) for the channel coding problem: The normalized divergence between the
output distribution induced by a good channel code (i.e., a code with rate close to
channel capacity and arbitrarily small probability of error) and the optimal output
distribution (induced by the capacity achieving input distribution) vanishes asymptot-
ically. Not surprisingly, a similar result does not hold for a good source code, as will
be seen in Proposition 2 below.

3 A Minimal Good Code

The assertion of Proposition 1 can be rephrased as follows: Given ξ > 0, γ > 0, and
for all n sufficiently large (depending on ξ, γ), the set CT

n , as defined in (13), satisfies
∣

∣

∣ CT
n

∣

∣

∣ ≥ exp [n (R(P,∆) − ξ)] , (29)

i.e., CT
n is an exponentially large subset of Cn, of effectively the same rate, whose

codewords are P ·W ∗-typical. This does not, however, exclude the possibility of Cn\C
T
n

being exponentially large with the same rate. But we know, from the Covering Lemma
(cf.,e.g., [1], Lemma 4.1, p. 150) that there exists a good code, all of whose codewords
are P · W ∗-typical. This motivates us to define a minimal good code as a good code
with the following additional property: There exists a fixed ω > 0 such that

∣

∣

∣Cn \ CT
n (γ)

∣

∣

∣ ≤ exp [n (R(P,∆) − ω)] (30)

for all n sufficiently large (depending on ω, γ). Consequently, given any κ > 0, a
minimal good code satisfies

Pn





⋃

i : yi∈Cn\CT
n

Ai



 ≤ κ (31)
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for all n sufficiently large (depending on κ, ω). The proof of this fact is relegated to
the Appendix. In the following proposition, we show for a minimal good code that the
normalized (Kullback-Leibler) divergence has a finite limit.
Proposition 2: For any minimal good code, it holds that

lim
n→∞

inf
1

n
D(Pn · W̃ (n)‖(P · W ∗)n) ≥ H(W ∗|P ). (32)

Furthermore, if W ∗ is such that for every y ∈ Y, there is an x ∈ X with W ∗(y|x) > 0,
then

lim
n→∞

1

n
D(Pn · W̃ (n)‖(P · W ∗)n) = H(W ∗|P ). (33)

Proof: First observe that the normalized divergence may be written as

1

n
D(Pn · W̃ (n)‖(P · W ∗)n)

= −
1

n
H(Pn · W̃ (n))

+
1

n

∑

i:yi∈CT
n

Pn(Ai) log
1

(P · W ∗)n(yi)

+
1

n

∑

i:yi∈Cn\CT
n

Pn(Ai) log
1

(P · W ∗)n(yi)
. (34)

Since Pn ·W̃ (n) assigns full mass to a set of Mn codewords and since, by (5), 1
n

log Mn ≤
R(P,∆) + α, it follows that

H(Pn · W̃ (n)) ≤ n(R(P,∆) + α).

Also, the third term on the right hand side of (34) is nonnegative, so that

1

n
D(Pn · W̃ (n)‖(P · W ∗)n)

≥ −R(P,∆) − α +
1

n

∑

i:yi∈CT
n

Pn(Ai) log
1

exp [−n (H(P · W ∗) − λ(γ))]

= −R(P,∆) − α + (H(P · W ∗) − λ(γ))
∑

i:yi∈CT
n

Pn(Ai)

≥ −R(P,∆) − α + (H(P · W ∗) − λ(γ)) (1 − κ), by (31)
≥ H(W ∗|P ) − µ (35)

for every µ > 0 and for all n sufficiently large (depending on µ, ω). This establishes
the inequality in (32).
To show the second part of the Proposition, note first that

d(Pn, W̃ (n)) =
Mn
∑

i=1

∑

x∈Bi

Pn(x)d(x,yi) +
∑

x 6∈
(
⋃

Mn

i=1
Bi

)

Pn(x)d(x, φn(fn(x)))
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≤
Mn
∑

i=1

∑

x∈Bi

Pn(x)∆ +
∑

x 6∈
(
⋃

Mn

i=1
Bi

)

Pn(x)dmax

= Pn

(

Mn
⋃

i=1

Bi

)

∆ +

[

1 −

(

Mn
⋃

i=1

Bi

)]

dmax

≤ ∆ + ǫdmax.

Hence

H(Pn · W̃ (n)) = I(Pn, W̃ (n))
≥ min

W (n):d(P n,W (n))≤∆+ǫdmax

I(Pn,W (n))

= nR(P,∆ + ǫdmax)
≥ n (R(P,∆) − β) (36)

for all n sufficiently large (depending on β), where the last inequality uses the continuity
of R(P,∆) in ∆. Therefore, the first term in (34) is bounded above by −R(P,∆) + β.
The second term can easily be seen to be bounded above by H(P ·W ∗)+λ(γ) similarly
as above. Finally, since

(P · W ∗)n(y) ≥

(

min
y∈Y

P · W ∗(y)

)n

> 0

the third term on the right hand side of (34) is bounded above by

κ log

(

1

miny∈Y P · W ∗(y)

)

and hence for any µ > 0,

1

n
D(Pn · W̃ (n)‖(P · W ∗)n) ≤ H(W ∗|P ) + µ

for all n sufficiently large (depending on µ, ω). Hence,

lim
n→∞

sup
1

n
D(Pn · W̃ (n)‖(P · W ∗)n) ≤ H(W ∗|P ),

completing the proof of the Proposition.
We remark that for a good code which is not minimal in the sense of (30), it is

not difficult to see that the limiting value of the normalized divergence in (34) can be
bounded away from H(W ∗|P ).
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4 Appendix

Proof of inequality (31): Since the pmf Pn ·W̃ (n) on Yn assigns full mass to Cn and
has entropy arbitrarily close to the rate of Cn (see (36)), it follows from the continuity
of the entropy function that Cn contains a subset, CU

n , of large Pn · W̃ (n)-probability
with roughly equiprobable codewords. Precisely, any υ > 0, ν > 0, there exists a subset
CU

n ⊆ Cn given by

CU
n =

{

y ∈ Cn : exp [−n (R(P,∆) + ν)] ≤ Pn · W̃ (n)(y) ≤ exp [−n (R(P,∆) − ν)]
}

(37)
with

Pn · W̃(n)(C
U
n ) > 1 − υ (38)

for all n sufficiently large (depending on υ, ν). Consequently,

∑

i : yi∈Cn\CT
n

Pn(Ai)

=
∑

yi∈Cn\CT
n

Pn · W̃ (n)(yi)

=
∑

yi∈(Cn\CT
n )
⋂

CU
n

Pn · W̃ (n)(yi) +
∑

yi∈(Cn\CT
n )
⋂

(Cn\CU
n )

Pn · W̃ (n)(yi)

≤ | Cn \ CT
n | × exp [−n (R(P,∆) − ν)] + Pn · W̃ (n)(Cn \ CU

n )
≤ exp [n (R(P,∆) − ω)] exp [−n (R(P,∆) − ν)] + υ

= exp [−n (ω − ν)] + υ (39)

which can be made smaller than any κ > 0 for all n sufficiently large (depending on
κ, ω), since ω > 0, by choosing, say, ν = ω

2 and υ = κ
2 .
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[2] T. S. Han and S. Verdú, “Approximation Theory of Output Statistics,” IEEE

Transactions on Information Theory, vol. IT-39, no. 3, pp. 752-772, May 1993.

[3] Z. Zhang, E. Yang and V. W. Wei, “The Redundancy of Source Coding with a
Fidelity Criterion,” preprint, June 1994.

XI


