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Because the last expression is independent of k or 7", its negative
logarithm is a lower bound-on I(jm), that is
I(pm) 2 —E.«log E,e_"/‘l'Hz(f*’fT*)
= —F,»log Ee~™/4C0mW
—log (27" (1 4+ ¢~t™)™)
=mlog2 — mlog(1+e ')
=mlog2 — mlog (1 + e—%cm)

> mlog2 —mlog (1 + e_%Bgmkzs‘l).

Choosing m = An'/?*t1) (4 > 0) to maximize the rate in the
above lower bound, we get the following theorem.
Theorem:

min max

. " ) > 1/(254+1)
nin _max Efnlog(f*/qn) > I(pm) > Ag,sm

where
Ay, = A(log2 — log (1 + e~ Bo/(14% Dy,
= A(log2 —log (1 -+ e—“gcg/(‘m%ﬂ))) > 0.
Taking k£ = 0, v = 1 therefore s = 1 in the theorem, we obtain the
- optimal rate lower bound in [13], as shown in the corollary below.
Corollary: :

min max
an FELIP(1,C)

Eynlog(f"/g:) 2 O(n'/?).

Remarks:

1) In general, we can consider the LIP(s, C) classes on
[0, 11% (d > 1). Minimax lower bounds on redundancy of rates
O(n?/?++9) can be obtained. These rates are believed to be
optimal in the sense that universal codes can be constructed
to achieve these rates. In the case of LIP(1, C) the rate n'/?
has been shown to be optimal in [13].

2) The proof for the minimax lower bound %logn in the para-
metric case follows from the asymptotic expansion of I(p) in
{11 or [8] for smooth priors. Superficially, this approach has
a continuous flavor since p needs to have nice smoothness
properties on the whole parameter space, whereas the proof
in the nonparametric case as we just saw has a discrete
flavor because of the hypercube subclass over which I(u.,)
is estimated. Heuristically, however, the continuous prior can
be made discrete. Under regularity conditions, we believe that
I(p) should give the same lower bound élogn even for a
discrete uniform prior ¢ on a grid subset of the parametric
space, as long as the grid size is of the order or smaller than
n~'/2 Note that the nearest neighbors on the hypercube for the
optimal choice m = n'/(2*+1) 3150 have Hellinger distances of
order n~/?, the rate at which n i.i.d. data points can possibly
distinguish two probability densities. In other words, what
seems essential to both.the parametric and the nonparametric
case is to find a subclass of densities whose closest elements
aré n~'/? apart from each other in terms of Hellinger distance.
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Abstract—Given a discrete memoryless source (DMS) with probability
mass function P, we seek first an asymptotically optimal description of the
source with distortion not exceeding A1, followed by an asymptotically
optimal refined description with distortion not exceeding Ay < Ay. The
rate-distortion function for successive refinement by partitioning, denoted
R(P, Ay, A), is the overall optimal rate of these descriptions obtained
via a two-step coding process. We determine the error exponents for
this two-step coding process, namely, the negative normalized asymptotic
log likelihoods of the event that the distortion in either step exceeds
its prespecified acceptable value, and of the conditional event that the
distortion in the second step exceeds the prespecified value given the rate
and distortion of the code for the first step. We show that even when the
rate-distortion functions for one- and two-step coding coincide, the error
exponent in the former case may exceed those in the latter.
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I. INTRODUCTION

The problem of successive refinement of information by partition-
ing, also referred to variously as “hierarchical lossy data compres-
sion” and “sequential aproximations,” has received much attention
over the years (Koshélev [9], [10], Equitz-Cover [4], Yamamoto [19],
Rimoldi [15]). Related problems include those of “multiple descrip-
tions™ (cf. [1], [3], [14], [17], [18], [20]) and that of determining
the achievable rate region for cascade communication systems [19].
Given a discrete memoryless source (DMS) with probability mass
function (pmf) P, and a suitable distortion measure, suppose that we
first seek to describe the source with distortion not exceeding A;. The
(asymptotically) minimum rate of coding is, of course, given by the
rate distortion function R(P,A;). Subsequently, if a better (finer)
description is required, say with distortion As < Aj, additional
information at rate A R can be provided, so that the overall augmented
rate is R(P, A1) + AR. Clearly, R(P,A1) + AR > R(P,Ay). It
is of interest to determine the rate-distortion function R(P, A1, As)
for this two-step coding process, and find conditions under which it
coincides with R(P, As).

The condition under which these two rate-distortion functions

* coincide was determined independently by Koshélev [9] and Equitz-

Cover [4], and subsequently given a geometrical interpretation by -

Rimoldi [15]. This condition requires that the source random variable
(rv) and the two reproduction rv’s satisfy a Markov property. Rimoldi
[15] also provided a complete characterization of the achievable rate
region for two-step coding. .

In this correspondence, we determine the error exponents for
the two-step coding process. It is then shown that even under the
Markov condition, when the two rate-distortion functions coincide,
the performance of the two-step coding process—as measured by its
error exponents—may be inferior to that of one-step coding.

II. PRELIMINARIES
Let X be a finite set. Let { X }{2; be a X'-valued discrete memo-
ryless source (DMS), i.e., an independent and identically distributed
(i.i.d.) process, with (common) probability mass function (pmf) P.
Let V1 be a finite reproduction alphabet. Let di: X x Y1 — R be a
nonnegative-valued mapping with minzex yey, di(z,y) = 0. This
mapping induces a distortion measure on X" x Y according to

RS n :
dl(fl?,’y)zgzdl(ﬁ't,yt), zeX gy .-
t=1

An n-length block code consists of two mappings: An encoder
1("): X" — My ={1,---, M}
and a decoder
8 My — V.

The rate of this code is R1 = %log M. All logarithms and
exponentials are with respect to the base 2.

For R; > 0,A; > 0, we say that the pair (R;, A1) is achievable
if for every € > 0,6 > 0 and n sufficiently large, there exists an
n-length block code ( fl(m, ¢(1")) of rate not exceeding Ry + 6 such
that

pr{d (X", 0 (AW (x")) A} 21—

The corresponding rate-distortion function, R(P; A1), characteriz-
ing the minimum achievable rate for a distortion Ay, is well known

and given by

R(P,Ay) = nf I(X AYY)

Px=P, E;l(X,Yl)gAl
where E denotes expectation.

Let V> be a (refining) finite reproduction alphabet. A refined.
description of the source {X:}{2; can be provided by means of a
n-length refining block code (f{™, ¢§n)),kspeciﬁed by an encoder

XY = My = {1, Ma)
and a decoder
$5M: My x Mo — V5.
The rate of the refining code (7™, ¢{™) is defined as
1
R2 = E IOngMQ.

Let do: X X Yo — R* be a nonnegative-valued mapping with
mingex,yey, d2(z,y) = 0, which induces a distortion measure on
X™ x Y3 according to

. 1o n n
dZ(xﬁ‘.’l)=ﬁZd2($t,yt)} iCEX 7y€y2-
t=1

Definition 1 (Rimoldi [15]): For the DMS {X,}{2; with pmf P
and distortion measures di,ds, the quadruple (Ri, Ra,Aq,As),
Ry > 0,R; > 0,A; > 0,A2 > 0, is achievable if for every
e > 0,6 > 0, and n sufficiently large, there exist

« an n-length code (5™, ¢{™) such that
%mng <Ri+6
and
Pr{d: (X", 6 (AP (X)) S A} 21—
« an n-length refining code (£, ¢{™) such that
%10gM1M2 < 122 +5

and
Pr{d: (X", 407 (57 (X™)) < A, |
do (X", 65 (A (X™), 57(X™)) € Ae} > 1 — e

|

A characterization of the set of achievable quadruples {R:, R,
A1, As) has been provided independently by Koshélev [10] and
Rimoldi [15] and also follows as a combination of the results of
El Gamal and Cover [3] and Yamamoto [19].

Theorem 1 ([3], [10], [15], [19]): Consider a DMS {X;}2,
with pmf P and distortion measures d1,dz. The quadruple (R, Rz,
Ay, Az) is achievable iff there exists a pmf Pxv,v, on X X Yy X V2
with marginal P on X satisfying the following inequalities:

X AY1) < Ry,
Edl(X’X/l) < Ala

I(X AV ¥%) < Ry
Edy(X,Ys) < Ay

where (X,Y:,Y3) is a X x Y1 x Ya-valued rv with pmf Pxy, v, 0.

Suppose that the coding in the first step were done at rate Ry, >
R(P,A;). If the DMS is now to be described in a second step at
distortion Ay < Ay, let R(P, R1, A1, Az) be the minimum rate Rz
of the refining code such that (R, Ra, A1, Ay) is achievable. This
minimal rate R(P, Ry, Ay, As) is characterized by the following
Corollary to Theorem 1. ‘
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Corollary 1: For Ay > 0, Ay > 0, and Rl > R(P,Ay), we
have

R(P, Rl,AhAz) = Pinf

I(X A1 Ys). 6)]
Bdy(X,Y1)<A4
Bdy(X,Y3)<Ap
I(XAY)SRy
]
Suppose next that the coding in the first step at distortion A;
were done optimally, i.e., Ry ~ R(P, A1). If the DMS is now to be

described in a second step at distortion Ay < Aj, what is the smallest -

“possible amount of additional information required for this purpose?
The following definition is a special case of Definition 1 for the
situation wherein the first step is optimal.
Definition 2: For the DMS {X,}{2, with pmf P, the rate Ry is
(A1, Ag)-refinement-achievable if for every € > 0,6 > 0 and n
sufficiently large, there exist

* an n-length code (fln), zb(l”)) such that.
1
p logM; < R(P,A)+ 6

and
di (X", oM (F (XM < AL > 1 -
Pridi (X", 87" (AY(X™) <Aip 21—
+ an n-length refining code (£, #$™) such that
%mngM2 <Rs+6

and

Pr{di(X",6{" (/7(X™))) < Ay,

(X", 65 (F (XM, £V (X)) S Ag} 21—

a

Let R(P,A;,As) denote the infimum of the set of (A1, Ag)
refinement-achievable rates. 1t constitutes the rate-distortion function
for the refining code and is given by the following Corollary to
Theorem 1. )

Corollary 2: For A1 > 0,Az > 0, we have

R(P?AlvAQ) = R(P7 R(P’Al)aAlsAQ)

= inf I(X AV Ya2). 2)
Px=P
Bdy(X,Y1)<A
Edy(X,Y)<A9
I(XAY))=R(P,A1)
O

Remarks:

1) For di = d2, A1 = Az, and )i = Y2, we have that
R(P,A1,A2) = R(P, Al), the minimum achievable rate for
one-step coding.

2) For two-step coding with Ay < Ay, and R(P,Az) > Ry >
R(P, A1), clearly

R(P,As) < R(P,R1,A1,A2) < R(P, A1, Az).

Koshélev [9] has provided a sufficient condition for the in-
equalities above to hold as equalities. Cover and Equitz [4]
have independently shown this condition to be both necessary
and sufficient (see Theorem 2 below).

3) It follows from the observation of Equitz and Cover [4, p. 271]
in the context of Gray’s work [7] on conditional rate-distortion
function that if {Y1,,}¢2, is an ii.d. process, then

R(P, Al,Ag) = R(P,Al) + Rx|y1(A2)

where the conditional rate-distortion function R X|y1‘ (A2) [7]

is given by
Rxy,(A2)
= inf
Pyixv;: 9. Prylxy (v2l2.01)Pxyy (2.y1)da(e,y2)< A0
91,2
I(XAY,|Y).

However, Rx |y, (A2) is defined only when {Y7:}:2, is an
i.i.d. process, which, of course, does not hold in general.

Theorem 2 (Cover and Equitz [4]): For the DMS {X:}{2;, with
pmf P, given distortion measures di = d2 = d, reproduction
alphabet Y1 = Y2 = Y, and for R(P,A2) > Ri > R(P, A1),
we have

R(P,A1,A2) = R(P, Ry, A1, A2) = R(P,A»)

iff there exists a pmf Pxy,y, on X' X Y x ) with
Px =P,

R(P,A1)=1(X AYY),

R(P,A2) =I(X A Ya),

~where (X,Y1,Y2) is a & x YV x Y-valued rv with pmf Pxy,v,.

Furthermore, Pxy;y, must satisfy a Markov condition, namely

= Px(2)Pyyx(y2 | )Py v, (91 | 32), ,
r€EX, y1,y2€Y (3

PXY1Y2(17y1)y2)

ie., (X,Y2,Y7) form a Markov chain. (]

III.  THE ERROR EXPONENTS

In this section, we shall characterize the error exponents for
successive refinement by partitioning. Corollaries 2 and 1 imply
that for A2 < ‘A; and for numbers Ry, Ro with By < Rs and
Ry > R(P,A1), R: > R(P,R1, A1, Ay), there exists a sequence
of n-length block codes ( ("),é(")) (£, ¢$™), such that

lim *log || = s @

lim ;mgnfl")nnfé“)u =B, ®)

‘and

lim Pr (41 (X", 61 (f1(X™)) > Avor
8 (X", 6a(F1(X7). (X)) > o) =

where || ™| (resp., [|£5™]]) denotes the cardinality of the domain
of fl(") (resp., fz(")). Our objective is to characterize the rate of
convergence to zero of the previous probability.

Definition 3: For given distortion measures di,ds, positive
numbers A; > As > 0, n-length block code (f1,¢1), and n-
length refining block code (f2,2), we define the error function
e(P, (f1,61), (f2, ¢2),A1,A2) as the probability that the source
sequence X" in X" of the DMS with (common) pmf P is not
reproduced within distortion A; in the first step of coding, or within
distortion A, by the refining code. Thus the error function for
two-step coding is defined as

e(P, (f17¢1)7(f2a¢'2)7A1»A2)‘

= Pr(dl(X",qSl(fl(X"))) > Ay or
d2(X7, 02 (f1(X7), (X)) > A2). (6)

|
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Definition 4: The conditional error function e(P,(fi,¢1). (fe,
#2), A2 | Ri,A1) is the probability that the source sequence X
in X™ is not reproduced within distortion A, by the refining code,
given that (f1, ¢1), L.e., the code for the first step, has rate that does
not exceed Ry and distortion that does not exceed A;. Thus

6(P, (f17¢1)7(f27¢2),A2 | RI;AI)
2 Pr(da (X", ¢2(f1(X™), £2(X™))) > As). 0

O

We show below for suitable two-step n-length block codes

with rates converging to Ry and Rs, that e(P,(f™, (™),

(£, 48, Ay, Az) converges to zero exponentially rapidly with
rate given by the error exponent

F(P,Ri,Ra, A1, Ag) & inf

Q:  R(Q,A1)>Ry
or R(Q,R1,A1,A2)>Rz

D@IP) ®

provided R, > R(P,A;) and Rz, > R(P,Ri,A;,Az). This
provides an extension of the result of Marton [11] (cf. also Csiszar and
Korner [2]) on the error exponent for one-step coding. Our approach
is along the lines of Csiszdr and Korner [2, sec. 2.4].

It follows from [6] that upon setting di = d2, A1 = Az, V1 = Ve
and ¢2(m1,m2) = ¢1(m1), my € My, ma € My that

e(P, (f1,61), (f2,92), A1, A2) = e(P, (f1,61), A1)

where the term on the right side above corresponds to the error
function for one-step coding which converges to zero exponentially
rapidly with rate given by the error exponent

F(P,R;,A) & D(Q| P) 9)

inf
Q: R(Q,A1)>FRy
provided By > R(P, A1) (cf. Marton [11], Csiszdr and Komer [2]).
We further show that for suitable two-step n-length block codes
with rates converging to Ry and Ry, that e(P, (f1, 1), (f2, ¢2), Az |
Ri,Ay), ie., the conditional error function converges to zero expo-
nentially rapidly with rate given by the error exponent

Fo(P, Roy A | R1,.A1) 2 inf D(Q|| P).

Q: R(Q,R1,A1,82)>Re
Theorem 3 (Two-Step Coding Error Exponent): Let {X:}{2, bea
DMS with pmf P. For every R1 < Rz < log|X| and distortion
measures d; on X x Yy and dy on X' X Vs, there exists a sequence
of n-length block codes for two-step coding such that

o1 i
. lim —log | £{"'[| = Bx
and
lim — mw@w#m~m (10)

» for every pmf P on X, Ay > Ay > 0, and 61 > 0,62 > 0.
b3 > 0

l i3 n
Sloge (P, (f17,81"), A1) < =F(P, B, A1) + 61
1 n k3 n n
loge(P, (117, 8("), (£.45"7), Ar, As)
< ~F(P,Ry, Ry, A1, A3) + 62
and

1 n n n n
Sloge (P, (17, 6(7), (£7,657), Aa | Bu, )

< —F.(P,Ry,As | Ry, A1) + 63

whenever n > N(| X |,dy,d2;61,62,83).

Further, for every sequence of codes satlsfymg (10) and every
distribution P on X, the following hold:

Iinniiorif% loge (P, (£, #{™), A1)
> —F(P,Ri,Ay)
linrr_l»ioréfiloge(l’,( 7,68, (£57),657), A1, Ag)
> —F(P,R1, Rz, A1, )
and
timinf ~loge (P, (7, 60), (18, 607), o | Ri,&1)
> —F.(P,Ro,As | Bi,Ay). O

Remark: Note that the two-step code:in the statement of the
forward part of Theorem 3 does not rely on a knowledge of the pmf
P of the DMS. Hence, this code is universal in that it is applicable
to any X-valued DMS. '

As is to be expected, the error exponent for two-step coding cannot
exceed that for one-step coding. This is obvious from (8) by observing
fordy = ds = dand Y1 = Yo =), that
F(P, Ry, R2, A1, Ay) ,

=min {F(P, Ri,A1), Fo(P, Ro, Ao | Ry, A1)}, (11)

Even with the Markov condition in effect so that the rate-distortion
functions for one- and two-step coding coincide, i.e.
R(P,Ri,A1,A3) = R(P,Az), Ay <Ay
note that if »
F(P,R1,A,) < F.(P,R2,A2 | Ry, Ay) (12)
then
F(P,R1,Ra, A1,2) < F(P, Ry, A2). - (13)

This is illustrated in the following example.

Example: Let {X:}2, be a DMS with pmf P, where P(z) >
0, z€ X. LetYi =Y =), and dr = do = d where d denotes
Hamming distortion measure. Thus

z.9)= =3 e # w0)

It was shown in [4] that this setup admits the Markov condition so that

reX", ye Y.

R(P, Ry, A1, A2) = R(P,As).
Next, note that
R(P,Ry,Ay,As) = R(P,As)
= H(P) - Aglog (JX] - 1)
— hy(Az), Ay > Ay

where H(P) is the entropy of P. It then follows from (9) and (8)
that the exponents for one- and two-step coding are

F(P, Ry, Az) = o H(Qg?mz M)D(QHP) (14)
F(P,Ri, Rz, A1, Ay) = 0 H(@yeman( BB & ),C<R2,A2>}D(Q”P)
(15)
where
c(R,A) & Alog(|X] — 1)+ hs(A) + R.
Let |

Q. 2{Q: H(Q) > a}, a>0.
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Now, the necessary and sufficient condition for (12) and (13) to hold
can be expressed as Qc(r,,A;) D Qu(Ry,a,)s OF, equivalently

c(R1, A1) < c(Ra, A2)
which is the same as
R(P,A1) < Ri < Ry — [R(P, Ag) — R(P, Al)]

The condition above says that, with the Markov condition in effect,
the error exponent (15) for two-step coding is worse than that for
one-step coding iff

Ry —~ R(P, Ag) > Ry —,R(P,Al). (16)
Note that this condition is given by (14) and (15) as D(Q2 || P) <
D(Q || P), where
) =

Q: H(Q)> (R“A

D(Qil D@|P), i=12

This means that in the case of the Hamming distortion measures
(divergence) distances in the space of pmf’s on A" correspond to
distances (differences) between the actual rates and the corresponding
values of the rate-distortion functions.

Clearly, if Ry, Ro are chosen to violate inequality ('16), e.g., with
Ry large enough, the two-step coding process will no longer suffer
from the disadvantage of a smaller error exponent.

The proof of Theorem 3 relies on the following Covering Lemrna
for two-step coding, which is a straightforward extension of the
corresponding lemma for one-step coding [2, Lemma 2.4.1].

Let P = P be a type on X (cf. e.g., [2]), ie., a pmf with
rational probabilities with (common) denominator n. Let 75 denote
the set of sequences in X" of (common) type P.

Lemma 1: For distortion measures d; on X x Yi and d2 on
X x Vs, type P = P™ on X and numbers A; > Az > 0,
Ry > R(P,Ay), 61 > 62 > 0, there exist

e aset B C Y, such that

1
;]0g|81] <Ri+6& )]

and B; covers 7p

U M@) =7
v,1€8;
where
M) ={z € T di(z,y) <AL}, 9, €V

o sets Ba(y,) C Vo, y, € B, such that

< R(P,Ri,A1,Az) + 62 (18)

1
~log| > [Ba()l

01651
and Ba(y,) covers Ni(y,), ie.

NQ(%) 3 Nl(!h)v

v2E82(y1)

Y € Blv

where
No(y,) = {z € TF: da(z,y,) < A2}, y, €5

provided that n > N(d:,da, 61, 62).

Proof of Theorem 3: We commence with the existence part of the
proof. It is convenient to define the following quantities: For a pmf
Q@ on X and Ry > Ry > 0, let

A(Q,Ry) & Edi(X,Y1)

inf
Px=Q,I(XAY1)<R;
and

A(Q,R1, A1, Ry) 2 Pian
Ve

I(XAY1)<Ry
I(XAY1Y2)S Ry
Edj(X,Y1)<Ay

Edy(X,Y).

Consider the sets

ure Uy 1
Q: R(Q,A1)>Ry
and ‘
ui™ 2 u U 5.
Q: R(Q,R1,A1,A2)>Ry
Obviously

P (UMY < (n+ 1) exp{~nF(P, R1, A1)}
<exp{-n[F(P,Ri, Ar) - 61]}
for all n large (cf. [2, Lemma 1.2.6]), and
P ™) < (n+1)" exp {—nF.(P, Ra, Az | By, A1)}
< exp{—n[F:(P, R2, Az | R1,Ar) — 62]}

for all n large. Next, by Lemma 1, there exist sequences e(") and

g") with lim, 5(1 ™ = 0 and lim, eg ") = 0, such that for every
type @ of sequences in X", there exist sets Bg1 C Vi and
Bg,2(y,) C V3,9, € B, satlsfymg

1
logIBQ | < R+

1 3 (n)
;log [Bae2(y)l | < Rz +e
v1€8g,1

and for every = € ’Té‘

di(z,B0,1) 2 min di(z,9,) < AQ,Ry)
y1€8Q,1

and

do(z, Bg,2(31))

A .
= min
¥2€Bg 2(vy

)dZ(wa y2) S A(Q7 R17A17R2)3 Y € BQ\I
for = such that dy (z,y,) < A;. Next, we set
= UBQ,I
Q

By(y;) £ Ba,, 2(91),

where Qy, is the type of y,. Then, the Type Counting Lemma [2,
Lemma 1.2.2] yields that

S B,

1 n
Elog|51|SR1+775)

1 .
Elog( > |52(’.lh)|> < Ry + 7§

y1€8;
where lim, 7{™ = lim, n{™ = 0. Furthermore, R(Q,A;) < Ry
implies in a standard manner that

A(Q,R1) < Ay (19)
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and R(Q, R] N Al, Az) S R2 implies

A(Q,R1,AL,Ry) < Ao (20)

which is seen as follows.
Let P;;ylyz achieve R(Q,’RJ,Al,AQ) = I(X A Y1}/2) < Rs,
where the rv (X, Y1, Y>) is distributed according to P¥y,y, . Then

"Edi (X,Y1) < A, Bda(X,Y2) < Mg, (X AYy) < Ry
Hence, A(Q, Rl,AJ_,R2) S Ed(X,Yz) S Az, since

I(XAY1) <R, I(XAYhY2) < Ry
Edi (X, Y1) < Ay <A@, Ry).

As a consequencé of (19) and (20), we have

d1(£¢,61) < Ap, .IE.Xn\Z/{fn)
do(m,Ba(y,)) < Az, gy € B,z € XM\,

These inequalities establish the direct (existence) part of the proof.
Turning to the converse part, consider any pmf @ on X’ with the
property that

R(Q, R1,A1,A3) > Ro + 62: @n

The remainder of the proof relies on the following Claim which
constitutes a strong converse to Theorem 1.

Claim 1: For any sequence of codes (fl(n)7¢gn))7 (fz(n)véﬁgn))
with

Dlog |7 < Ry + 61

1

n

log |27 |11 £87]] < Bz + 62

for all n large, (21) implies

RO

e(@, (£, 0, (£, 65), An | Ry, A1) >

whenever n > N(d1,ds, 61, 682).

The proof of the Claim is obtained by mimicking the proof of [2,
Theorem 2.2.3], and is, therefore, omitted.

Then, by [2. Corollary 1.1.2] it holds for all n large enough that

(P, (£, 6, (£, 057), Ao | Ba, Ay)
> exp{—n{D(Q || P) + 61]}.

Note that the case R(Q,A1) > Ry + 61 ‘alone was shown (2,
Theorem 2.4.5]) to imply that

e(P, (£, 6(7), A1) > exp {—n[D(Q | P) + 6]}

Since 61,62 were arbitrary as was () subject to (21), the desired
converse follows.
It is obvious that, since

max{e(P, (£, ¢{), A1), e(P, (£, ("),
(£57,65), 80 | Ri, A1)}
<e(P (£, 87), (#7657, A | Bi,A)
<e(P, (A7, 607), A1) + e (P, (£, 4(7),
(57, 650), A2 | By, A,

the overall error exponent will be the greater of the two. Hence, (8)
follows. . ) O

IV. DiscUSSION

We have determined the error exponent for the problem of succes-
sive refinement by partitioning for a DMS. As expected, it is generally
smaller than the error exponent for one-step coding. It is interesting
to note that even when the Markov condition (3) holds so that the
rate-distortion functions coincide for one-step and two-step coding,
it may hold that the error exponents for the latter are strictly smaller
than that for the former.

For a DMS with Hamming distance distortion measure, a simple
necessary and sufficient condition for the error exponents to differ
in the presence of Markov condition, can be expressed in terms of
the coding rates Ri, R2 and the one-step rate-distortion function.
An extension of this result to arbitrary distortion measures rémains
unresolved.

Finally, it can be shown that the error function for two-step
coding (cf. (6)) goes to one exponentially fast, whenever Ry <
R(P, A1, Az). To this end, we conclude from Rimoldi ([15, Theorem
1, converse part]) that if By < (P, Ri, A1, Ay), then for every
sequence of n-length block codes satisfying (4) and (5), we have

time (P, (£, M), (7, 657), Ar, A2) = L.
Indeed, in analogy with one-step coding (cf. Csiszar and Korner [2,

sec. 2.4]), this convergence occurs exponentially fast. To see this,
define )

(™ (P, R1. Ra, A1, Ag) '
2 mine(P, (£, 6(7), (£7,657), A1, Az)

where the minimum is taken over all codes satisfying (4) with
R: > R(P,A;) and

1 n n
~log[IA7N1£71 < Be

where 0 < Ry < R(P,A1,Ay). Then, it holds that

lim {—% log [1 - €(n)(P, Rl, R27A1,A2>:\}
= G(Ry, R2, A1, A2)
where

G(R1.Ra, A1, An) = i%f (D(Q || P)+|R(Q, Ri A1, Ag)— Ro| ")

with |z|T denoting max{z,0}. The proof is identical to that for.
one-step coding (cf. eg., Csiszdr and Korer [2, problem 2.4.6, pp.
158-159]) and relies on the strong converse (Rimoldi, [15, Theorem
1, converse part]). - '

APPENDIX
PROOF OF LEMMA 1

Let P = P™ be a fixed but arbitrary type of sequences in X™.
Let U(B) and U(Ba2(y,)), respectively, denote the subsets of 7Tg
not covered by B:1 and Bz (y,), i.e. .

usy =13\ U Nl(y1)=7}fﬂ( N Mi)*
. ¥1€5; . \v1€51
and
UB () =M) \ | Me(w)

y2E€B82(y1)

:NI(?h)ﬂ (

ﬂ Ne(y,)® ), 9y € Bi.

yo€B2(y;)
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Consider a X' X Y1 X Ye-valued RV (X, Y1,Y2) with Px = P and Claim 2: For any §' > 0, we have
Bdi(X,Y1) = A1 —m|* |A(z)| < exp [n(H (Y1) — R(P, A1) +6')]
Bdy(X,Ya) < |As — T @D foralln > No(dy,n, ).

Then, the remainder of the proof of the Lemma is straightforward.

where 71 > 0,72 >0 will be specified later.
The second term on the right side of (23) is

Let 7(y,; (resp., T Walval @) denote the set of Yi-typical se-

quences ¥, € Vi (resp., Y2 | Yi-typical sequences y, € V3 with ' ni
respect t0 y, € V') [2, Definitions 1.2.8, 1.2.9, pp. 33-34]. Let Pr{z € U(W;")}=Pr IGNI(Zi)n ﬂN2(Wij)c

Fr denote the set of all (not necessarily distinct) collections of m J=1
elements of 7}, ;. Similarly, for 7 = 1,---,m, let Gn,(y,) denote = Z Pr{Zi=2z}
the set of all (not necessarily distinct) collections of n; elements of €T,
T¥, vy (¥1): ( )
Let Z™ = (Zi,"-+,Zm) be an RV uniformly distributed on Pl z
NN F ENL(Z; Na(W;

Fm. Next, for i = 1,---,m, given that Z; = z;, let W' = i )ﬂ ]Q 2(Wei)*
(Wit,-- -, Win,), be an RV distributed (conditionally) uniformly on
Gn,;(zi). In other words, Z;’s are ii.d. with = Z Pr {IE ﬂ Na(Wi,)° i—Z}-

Pr{Z: = ) 1(z: € Try,) 1 n [Yﬂl € A(z) i=1

i = 2if = ™ ’ t=L1,,m

. ‘ 175 ’ Further
and the W,’s are conditionally i.id., with . {x . h Na(Wis)? | 2, = Z}
Pr{W;; = w;; | Z; =z} J=1

1(w;; € TV 7 ) e ¢
_ L(wi; f (2 )), j=1,ym, =1, m. =] Priz € No(Wi))°| Zi = 2}
1751 (20)] =
We must show the existence of sets By C Vi and Ba(y,) C =Tla-p Wil Zi =
Y3,y, € Bi, such that . 1:[ r{z € No(Wij)| z})
uBHJ| U u®Bm) ]|=0 ]:[ (1 =P {W,; € T%,/x) ()| Z: = 2})

Y1 €B;
where the previous inequality follows as in [2, p. 151]. We continue
the bounding according to

PF{:DE hNQ(Wi]')C Z.
=1

< [T @ =Pe{Wi € T3y x vy (= 2) | Zi = 2})
j=t . .

To this end, it suffices to show that

E‘Z/((Z"‘)U (U Z/{(W[”))

Now

Euz™ | J (U u(W?f))‘
for all n > N3(d2,7n2) (cf. [2, p. 151]). Furthermore, the right side
Z Pr {z eEU(Z™) U <U z,{(Wnl))} above is bounded above by
zET” 6; ng
{1 — exp [-n(I(X/\Ya/Yl) + 5)]}

< Y Pr{zeU(Z™)} + Priz e UW )} & (23)
zeZTg z;r:; ; with 65 £ 65 — 61, for all n > Ni(d2,n2, 61,82), which in turn

does not exceed

We consider first the first term on the right side of the inequality

/
above. By choosjng exp [_ exp ﬂ_gg}
exp [n <I(X AYL) + %51)} provided that
< m <exp [n(I(X/\Yl)+%61)] em{n{l(}(ﬂ@%H%é&]}
we get that < n; gexp{n [I(X/\Yz |Y1)+%é§] }
Z Pr{z € U(Z™)} < exp [n log |X]| — exp _7%51_} < -;— (24) ggl)we, we can finally bound the second term on the right side of
zeTg ' as

for all n > Ny1(81,d1,m) (cf. e.g., [2, p. 152]). Next, to bound the -
second term on the right side of (23), for each = € 77, let Z Z Priz € UW ")}

Alx) 2 {z€TFpz e M(2)} = {2 € T}y di(z,2) < Ay}

::GT" i=1

!
< mexp {nlog|X[ —exp-%sz} i |A(=)|.
Assume for the time being, the following | |
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Using the facts

m < exp {n[I(X AYD) + %51”

-]

and Claim 2, the right side above is easily seen to be bounded by

(73] > exp {n[H(Yl

(25)

&5 1
exp {n[?log[X[ + 261] — exp %} <3

for all n > N5(61,85) (because By — R(P, A1) < log|X|). Finally,
we obtain from (24) and (25) that

uiz™ylJ <U U(Wm)

E <1

=1

for all

n > N(di,d2,n1,m2,61,62) = max {Ny,---, Ns}.

It‘ then follows for all n suitably large that there exist sets B; C V7',
Ba(y;) C V3, y; € By, such that

|Bli§m» [82(yz)i§nu izl,"'vm

so that
S B < Y
i=1 i=1

< mexp{n[I(X/\Yg | Y1) + %6&]}

< exp {n [I(X AY1Y2) + %62} }
Equivalently
1 3
—10g|81| S I(X/\Y1)+ Zél
n

L log|Bal < (X AYi¥a) 4 28;. 26)
Assume that 7(X A Y1) < R;. Then by the uniform continuity of
R(P, Ry, A1, Az) (which follows analogously as in [2, Lemma 2.2.2,
pp. 124-125]), the desired inequalities (17), (18) follow for 71,72
sufficiently small (cf. (22)).

It remains to establish the Claim. To this end, observe that z €
A(z) iff

z€Ty,; and di(z,z) = Ep,v[d(X,Y)] < Ay

where (X,Y) is a X x V;-valued r.v. with joint pmf equal to the
joint type PV of (x, z). Further,
HV|P)=HP)-I(XAY)
4 ~
< H(Y1)+ % —minI(X AY)
6/

:H(Y1)+§—R(P,A1) @7

where the inequality follows for all n large (depending on &) from -

[2, Lemma 1.2.7] and the minimur~n is taken over all r.v.’s (X ,17)
such that Px = P, and Ed:1(X,Y) < A;.
Hence, finally

Alz) = U T =) | (T

Vi Ep,v[di(X,¥)]<Ay

so that

()] < (14m)/¥1P1! exp{n{ﬂm X0+ %H

for all n > Na(dy,m1,8'), where the inequaﬁty above is a conse-

quence of (27).
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