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We consider the problem of estimating the rate of a doubly stochastic,
time—space Poisson process when the observations are restricted to a region
D <R and assuming that the rate process has a Gaussian form. In the case
D =R?, we extend a known result to compute the minimum-mean-square-error
(MMSE) estimate explicitly. When D #R? we consider the use of linear
estimates. We give closed-form expressions for the mean and the covariance of
the rate process in terms of the mean and the covariance of an underlying state
process. This enables us to write down a well-defined integral equation which
determines the linear MMSE estimate of the rate.

1. Introduction

WE consIDER a doubly stochastic, time-space Poisson process n° with intensity
nction A(t, r) =f(t, r — H(t)x,), where >0 and reR> Here, f is a known
daterministic function; x, € R” is the solution of an Ito stochastic differential
equation, and H(f) is a known deterministic R**"-valued function. The process
n® under consideration counts events which occur in all of R2; however, suppose
that only those events which occur within a region D c R? can be observed. We
wish to compute minimum-mean-square-error (MMSE) estimates of A(, r),
given our limited observations. In general, this is a difficult problem, and little is
known. (See the Remarks in [7] and the references listed there.) When

D=R? and f(t, r)=exp[-3r"R(t)7'r],

for some deterministic positive-definite matrix R(¢), we extend a result of Rhodes
& Snyder [4] to compute the MMSE estimate of A(t, r) explicitly. We also
consider linear estimates of A(¢, r) for the same choice of f when D # R2 These
filtering problems are frequently encountered in optical communication systems
[5, 6], particularly in the context of hypothesis-testing; this issue is discussed in
Section 5.

2. Probabilistic setting

Let B denote the Borel subsets of R>. Next, if I is any interval of R, let B(J)
denote the Borel subsets of 1. We define B(/) ® B to be the smallest o-algebra
containing all sets of the form E XA, such that E e B(I) and A€ B> Let
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(Q, %, p) be a probability space on which we let
n®=(n(B) : B € B(0, ©) ® B?),

be a time-space point process. Sometimes, n° is called a random point field or a
random measure. Here, this means that with each B € B(0, ©) ® 82, we associate
a nonnegative, integer-valued random variable, n(B) = n(w, B); in addition, for
each w € 2, the function n(w, *) is assumed to be an integer-valued measure on
B(0, ) @ B2 We let % represent the times and locations at which points have
occurred up to and including time t. More precisely, let %, denote the trivial
o-algebra, and for ¢ >0, set

% =o{n(B) : B € B(0, {] ® B?}.

Now, let D be a Borel subset of R%>. We take %, to be the trivial o-algebra and,
for t >0, we set

9, =ao{n(BN[(0,~)x D]): Be B, B}

Note that % represents the history of the point process restricted to the region D,
up to time £. We shall refer to %, as our ‘observations up to time ¢’. On the same
probability space (£2, #, p), let & be an n-dimensional Gaussian random vector
with known mean m and known positive-definite covariance S. Let (v, : t =0) be
a standard Wiener process independent of §. We let the n-dimensional process
(x. : t =0) be the solution to the Ito stochastic differential equation ’

dv, = F(t)x,dt + V() dv,  xo=E (;\)

Here F and V are known matrices with appropriate dimensions. We also assume
that F and V are piecewise continuous so that a unique solution of (2.1) exists
(see Davis [2], pp. 108-111). Let

%2 o{x, : 0<s5 <o)},

For 1> 0, let Z, denote the smallest o-algebra containing % U &,. We write this

symbolically as
XE2FVvE (>0).

We shall assume that n°® is an (%, : t = 0)-doubly-stochastic time—space Poisson
process, with &-measurable intensity (see Bremaud [1], pp. 21-23 and 233-238)

At r)=f(t,r—H(t)x,),

where t € (0, ), r e R?, and x, is defined by (2.1). Assume that H : (0, ©)— R**"
and f : (0, ©) X R?*— (0, ) are deterministic and known. We further assume that

the function
k02 [ fryar
RZ

is finite for all ¢+ <. This means that, for each ¢t =0, the process
n' 2 (n(B) : B € B(t, ©) @ B?)

is a Poisson random field under the measure p(* | %,), with rate A(s, r), where
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s € (t,) and r € R% This implies the following. First, for B € B(0, ©) ® B2, let
A(B) 2 f As, r) drds;
B

then if B € B(t, ©) @ B* and n is an arbitrary nonnegative integer,

A(B)"

—e
n!

p(n(B)=n|%]=

—A(B)
and hence, for 0 e R,
E(e®"® | Z,) = exp [(e'’ — 1)A(B)].

The second implication is that if B, and B, are disjoint sets in B(z, <) ® B>, then
the random variables n(B;) and n(B,) are independent under the measure

p(* | Z)-
Notation. We let ny=0 and, for t>0, n, 2 n((0, 1] x D).

3. Nonlinear-filtering results
THEOREM 1 If D =R?, and if
f(t, 1) =exp [~ 3 R(1) 7], (3.1)
for some deterministic positive-definite matrix R(t), then

A, ) 2ERG 1) | G =E[f (1 r— H()x,) | 4]

\ = YR o (-dlr~ HORIQlr ~ HOO21),

N

;‘v(_zere
£, 4 E(xl I (gt)’ 21 & E[(xl —i‘r)(xt _fl)T | (gr] >0 (p-a.s.),

Q.2 HOSH(®) +R(),
and

dt, = F(¢)%, dt + [ 3._H(=)' QN r— H(t—)%_]n(dt x dr), fo=m, (3.2)

d, =F()S,dt + SF(t) de + V(O)V() dt — £,_H(t—) Q7 H(t—)E,_n(dt X R?),
2‘-‘0 = S (3.3)
Proof. First, since D=R? we have §=%. It is proved in [4] that the
conditional density of x, given % is Gaussian, with conditional mean £ and
conditional covariance 2, (which is positive-definite almost surely because of the

assumption that § is positive-definite) satisfying (3.2) and (3.3) above. Let p,(x)
denote the conditional distribution of x, given %. Then

A r)=[ fer-HOR) o)

1

_ —Yr—H@OeTR)~ [r—H()x) o~ (x—5,) 57 (x—3,)
= = e e dx. 3.4
Q2r)"*Vdet 3, Jor (3-4)
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At this point one could combine the exponentials above and, after tedious
matrix-algebraic calculations, derive the asserted formula for A(, r). However,
this is not necessary. Let

i(t, 8) 2 [ A e dr (8 eRY). (3.5)

Substituting equation (3.4) into equation (3.5) and applying Fubini’s theorem, we
see that

Iz, 8) = (s, O)w.(H(D'0),

where
V() 2EE | 9)= [ M dpx) (meR?)
and
f(, )2 fR S r)el®"dr. (3.6)
Since x, is conditionally Gaussian,
w.(n) =exp (in"% — in"Sm).
From equations (3.1) and (3.6), \
f(¢, ) =2nVdet R(t) exp [-10"R(1)0]. N\

Hence,
I(t, 8) =2nVdet R(¢) exp [jOTH (1), - 107Q,0].
Taking inverse Fourier transforms, we see by inspection that

e =YD o (- O8O~ HOR)). O

When D # R? or equation (3.1) does not hold, p,(x) is, in general, not known.
This has led us to consider linear estimates of A(t, r). We discuss this in the next
section.

4. Linear-filtering results

We call A.(t, r) a linear estimate of A(t, r) given ¥, if A, can be written in the
form

A, = L’ th(t, r; 7, p)[n(dt X dp) — A(z, p)dp dr] + ho(t, r), (4.1)

where h and h, are deterministic, and i(t, r) A EA(Z, r). We wish to choose A and
hy to minimize
ElA(t, r) — ALt )

This leads us to the following theorem.

(4.2)
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TuEOREM 2 Let A,(t, r) be given by (4.1). Under the conditions outlined in
Section 2, the quantity in (4.2) will be minimized if ho(t, r)=A(t,r), and if h
satisfies

Wit )= ' [ 1m0 100, 55 9) a8 do 4 bt i pIACE ), (49

where

y(t, r; T, p) 2 cov [A(t, r), Az, p)].
If f(¢, r) is given by (3.1), then

Mo = v‘/—jg—g% exp {—4r ~ HOFOTQ()™'[r ~ HOFOD),  (4.4)
where
E()2Ex, Z()2covx, QOE2HOZWOHOT+R().
Furthermore,
- - det R(t) detR
i )+ 2 D p) = S )
r H(@) 0 [x®ON\"
X exp {_%([p] - [ 0 H(r)][f(r)])
N af[r] _[H@® 0 (1)
N\ x Q@ 1) ([p] [ 0 H(r)][i(r)])}’ (4.5)
’ Q{gere
a A (1) HOZ(, D)H(1)'
2, 1) =cov(x, x;), o, 1)= [H(r)Z(r, DH(@)T 0() ]
Proof. The fact that we should set hy(t, r) = A(t, r) and that k should satisfy (4.3)
is proved in Grandell [3]. Proceeding further, we make the following observa-
tions. Recall that
dx, = F(t)x,dt + V(t) dv,, xo=§& (4.6)
. Let &(¢,, t,) be the transition matrix corresponding to F(t). Then
¥(t) = &(¢, O)m, 4.7
, and '

min(z, t)
2, v)= P(t, 0)SP(, 0)' +[ (1, )V (s)V(s) P(, 5) ds.
0
Note that (1) = Z(t, 1).
To compute A(t, r) = EA(t, r), observe that x, is Gaussian with mean x(¢) and
covariance X(¢). By using the same procedure as in the proof of Theorem 1,
equation (4.4) is immediate.
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The computation of (4.5) is similar, but requires some judicious preliminary
algebra. First, observe that y(¢, r; T, p) + A(f, r)A(T, p) is just another way of
writing E[A(t, r)A(t, p)]- Next, rewrite A(t, r)A(T, p) as

w10 holliDE” a6 w2

which is equal to
w110 b lED TS reo] G110 acolZD}

. . x]. . .
Because (x, : ¢t =0) is a Gaussian process, [ '] is a Gaussian random vector with
xT

x(1) 20 2@ 7)
meat [i(t) St (1)
deduce (4.4), equation (4.5) also follows. O

] and covariance [ ] By the same reasoning used to

5. Discussion
\

The filtering problems considered above often arise in the design and implemen-
tation of receivers for optical communication systems. Typically, a binar
message source is used by a transmitter to select the modulation of the intensity
of a laser beam in accordance with whether a ‘0’ or a ‘1’ is to be sent. The laser
beam travels to a receiver and strikes its photodetector. We assume that the laser
beam has an intensity profile of the form

vii)ft, ry (i=0,1).

Here, v(¢) is a known, deterministic function, where i = 0 or 1 has been selected
by the transmitter.

We model the surface of the receiver’s photodetector as R?. If the receiver, for
example, is subject to vibrations, the centre of the spot of laser light may wander
randomly over the photodetector surface ([6]). We assume, as in [6], that the
centre of the spot of laser light is given by H(f)x,e R>. The output of
photoelectrons from the photodetector is modelled by the process n° with
stochastic intensity now given by

A, 1) =v,()f (1, r — H(t)x,). (.1

Of course, an actual photodetector does not have an infinite photosensitive
surface. We account for this fact by assuming that only those photoelectrons
which occur in a region D < R? are observed. For example, in this setting, D
might be a square or a circle centred at the origin. After observing photoelectrons
occurring in D during some time interval [0, T], a decision as to whethera O or a
1 was sent has to be made, based on one of the estimates A,(t, r) or X,-,L(t, r). As

N

N




\

ESTIMATION OF A DOUBLY STOCHASTIC POISSON PROCESS 279

an example of a decoding scheme, we could use the likelihood-ratio test
H,
Lr=1
Hy
to make the decision, using the minimum probability of error as cost criterion and
assuming equiprobable hypotheses (Snyder (5], section 2.5). The likelihood ratio
Ly is given by ([5], pp. 471-476)

_ Iz M(t, r)) exp (= [ [ 5 Ai(s, r) dr ds)
(I Aot 1)) exp (= J§ §b Aols, r) dr ds)’
where ¢; and r; are respectively the time and the location of the jth photoevent in

the region D, and we adopt the convention that when n; =0, the empty product
factors are omitted, i.e. taken to be unity. Here, of course,

A, r)2E[A(M )] 9] (=0,1).
where E; denotes conditional expectation under hypothesis i. Now, using (5.1),
equation (5.2) simplifies to
_ ﬁ Vl(tj)fl(tj: r)

T j=1 Vo(tj)fo(ti’ r)

L, (5.2)

exp (—LTJD[XI(S, r) — Ao(s, r)] dr ds). (5.3)
where

fi(t: l') & Ei[f(tr r— H(t)x, l (gt] (i =01 1)'

In the general case, D # R?, the estimate /ﬁ(t, r) is not known, and hence L,

&annot be computed. However, when D = R?, observe that

, fD (A,(s, 7) = Aos, )] dr = E1< L M(s, rydr %) - E0< L Aofs, r) dr ‘%)
= u($)[vi(s) = vo(s)}. (.4)
In equation (5.4) we used the fact that for all r,e R?,
u(s) 2 sz(s, rydr= sz(s, r—rpy)dr.
Thus, when D = R?, (5.3) becomes

L= ﬁ vith(, 1)

i1 vo(t))folt;, 1)

where f; can be determined using Theorem 1.
We next consider the following theorem.

exp (- [ (s)[vi(s) ~ ve(s)] ds ). (5.5)

THEOREM 3 The random field
m' £ (n(E X R?) : E € B(t, ©))
is independent of the o-algebra %,.

Proof. To prove that m’ is independent of %,, it is sufficient to show that the
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conditional characteristic function of n(E x R®) is deterministic for E e B(t, ).
Now, from the assumption that n° is an (%, : t = 0)-doubly-stochastic time-space
Poisson process, it follows immediately that, for 6 € R,

E,(¢19"E*RD | %) = exp ((ei" ~1) L fR s, rydr ds)
=exp ((ej"— 1) Lv,-(s) fwf(s, r— H(s)x,) dr ds)

=exp ((eie -1) Lv,(s)u(s) ds).

Hence m' is independent of ;. O

It follows from equation (5.5) and Theorem 3 that, for all =0, the random
variable L, is independent of the o-algebra Z.
If we replace equation (2.1) by

dx, = F(t)x, dt + G(H)u, dt + V(1) dv,; x=§, (5.6)

where (u,:t=0) is predictable with respect to (%, :¢=0) and G(t) is a known
matrix with approximate dimensions, then most of the above results hold with
only minor modifications. The term G(f)u, in (5.6) is interpreted as a con{rol
signal driven by the output of the photodetector. Since H(t)x, represents the
centre of the spot of laser light striking the receiver, one might try to use G(¢)u
to drive x, to the origin. This problem is addressed in [4]. If (2.1) is replaced by ™
(5.6), Theorem 1 still holds except that equation (3.2) must be replaced by ‘

dg, = F()%,dt + G(t)u, dt +f S,_H(t-)"QMr— H(t—)_]n(dt x dr),
RZ
i’o =m.

If u, = u(r) for some deterministic control (u(f) : t=0), then Theorem 2 holds; of
course, (4.6) becomes (5.6) and (4.7) is replaced by

#(t) = &(t, O)ym + f (1, 5)G(s)u(s) ds.

In addition, the results of the preceding paragraphs of Section 5, including
Theorem 3, are unchanged by substituting equation (5.6) for equation (2.1).
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