
1488 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 5 ,  SEPTEMBER 1996 

e Optimal Error Ex 
arkov Order Esti 

Lorenzo Finesso, Chuang-Chun Liu, and Prakash Narayan, Senior Member, ZEEE 

Abstruct- We consider the problem of estimating the order 
of a stationary ergodic Markov chain. Our focus is on estimators 
which satisfy a generalized Neyman-Pearson criterion of optimal- 
ity. Specifically, the optimal estimator minimizes the probability 
of underestimation among all estimators with probability of 
overestimation not exceeding a given value. Our main result 
identifies the best exponent of asymptotically exponential decay 
of the probability of underestimation. We further construct a 
consistent estimator, based on Kullback-Leibler divergences, 
which achieves the best exponent. We also present a consistent 
estimator involving a recursively computable statistic based on 
appropriate mixture distributions; this estimator also achieves 
the best exponent for underestimation probability. 

Index Terms-Markov order, error exponent, hypothesis test- 
ing, order estimation. 

I .  INTRODUCTION 
WIDE variety of approaches [ 1]-[6], have been devel- 
oped over the years to estimate the order of dependence 

of a finite Markov chain. In the early literature, this problem 
was treated as one of multiple hypothesis testing; Billingsley 
[l] provides a systematic presentation of this approach and 
related results. Another approach involves an extension to 
finite-state systems [5], [6] of penalized likelihood estimators, 
introduced by Akaike and Rissanen for estimating the order 
of ARMA and state-space models. Recently, Kieffer [3] has 
proposed a strongly consistent order estimator, based on 
Rissanen’s Minimum Description Length (MDL) Principle [ 5 ] ,  
[7], for a class of processes including Markov, hidden Markov, 
and finite-state cases. 

Yet another approach, leading to recent contributions [4], 
[SI, [9], employs information-theoretic notions and techniques 
to address the problem of optimal estimators in the sense 
of a generalized Neyman-Pearson criterion. An information- 
theoretic approach had been proposed in the earlier work of 
Chatfield [ 2 ] ,  who had considered an estimator of the order 
based on empirical entropies Hk, with k being the order of 
dependence under test. The method suggested in [2] is based 
on the differences Hk - Hk+1, but is purely heuristic; in 
particular, the thresholds with which these differences are 
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to be compared remain unspecified. The independent work 
of Merhav-Gutman-Ziv [4] is also based, in its simplest 
form, on a comparison of the differences Nk - Hk, with 
a prespecified threshold, where ko is a known upper bound 
on the order. The analysis in [4] shows the optimality of the 
resulting estimator in a given class. However, this estimator 
may, under adverse specifications, be inconsistent with the 
probability of Underestimation of the order approaching unity. 
Such a tendency to underestimate is undesirable in several 
applications, e.g., universal data compression based on models 
for the data. If the estimate exceeds the “true” model order, 
models of higher orders will be permitted in describing the 
observed data, and these will include the true data-generating 
mechanism. Then, even though the redundancy of the resulting 
code for the data may not be optimal (as a consequence of 
order overestimation), its normalized value with respect to the 
number of observations tends to zero with probability one. 
On the other hand, order underestimation would lead to a 
restriction to lower order models in describing the data. Since 
the true distribution is now precluded from consideration, 
the average normalized redundancy does not vanish with 
increasing data size. It is, therefore, often desirable to seek 
consistent order estimators, which additionally afford minimal 
probability of underestimation. 

Our results are in the spirit of Merhav-Gutman-Ziv [4] and 
provide, under more general conditions, a complete charac- 
terization of the consistency properties and error exponent 
of a class of estimators. By considering a wider class of 
estimators than in [4], we identify consistent estimators, based 
on Kullback-Leibler divergences, for which the probability 
of underestimation is additionally guaranteed to decay expo- 
nentially with the optimal exponent. These consistency and 
optimality properties are shown to be shared by estimators 
based on mixture distributions (cf., e.g., [lo], [ll]). The latter 
estimators offer a computational advantage in that the statistic 
involved can be updated recursively. Furthermore, they exhibit 
interesting connections with the MDL estimator [5],  [7]. 

In Section 11, relevant results are compiled on the cardinal- 
ities and probabilities of Markov types. The order estimator is 
proposed in Section 111, where its overestimation and under- 
estimation probabilities are overbounded in Theorem 1, which 
also addresses the issue of consistency. The optimality of 
the estimator, with respect to a generalized Neyman-Pearson 
criterion, is proved in Theorem 2. Section 111 concludes by 
establishing a connection with the results of [4]. In Section IV, 
we present the mixture-based estimator, prove its optimality 
and consistency in Theorem 3, and conclude with remarks on 
its relationship with the MDL estimator [ 5 ] ,  [7]. 
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11. PRELIMINARIES 

Let the finite set X = {l, ... , r }  and a constant ko > 1 
be given. For each[ k E (1, ..., ko},  the set {p(a ls ) ,  a E 
X, s E X k }  defines a transition probability matrix (t.p.m.) of 
memory k. Let 91, be the set of all strictly positive t.p.m.'s 
of memory k.  For each p E 91,, we define a Markov measure 
P of memory k on the set X" of infinite sequences from X 
as follows. We assume throughout that any observed sequence 
2% := (51, 2 2 ,  ... , z,) E X" is preceded by ko JixetZ initial 
samples ( z - l~~+l ,  . . . , T O ) ,  and 

n 

t=l 

where x::: := ( x t - k ,  . . , xt-l). 
Let M I ,  be the set of all Markov measures of memory k 

thus generated. Note that this construction yields an increasing 
sequence Mk of slets of measures. 

Define the order of P E Mko as the smallest constant 
k E (1, . . .  , k o }  such that, for n > k 

~(z,lz~-l> = ~(z , l zz~ i )  for all zn E X" 

It is convenient to define a mutually disjoint sequence of 
sets Pk as follows: 

Pi :=:Mi 
Pk :=zM~,\Mk-l, I <  5 5 ko. 

The set of Markov measures of order 5 coincides with Pk. 
We denote by 01, the subset of Q k  which is in one-to-one 
correspondence with the elements of Pk. Observe that 01, is 
open in 9 k .  This is seen as follows: @I, is the interior, in the 
Euclidean topology, of the unit simplex in RTk xT  and, hence, 
is open. The subset of Q k  corresponding to 9 k f  (with k' < k )  
is closed in QI,. Since 

k - I  

@I, = Qk\ U 91 
1=1 

the observation is immediate. 

process { X t ,  
unknown measure 

In the order estiimation problem, we observe a stochastic 
t _> 1) with values in X and generated by an 

P E U P k  
k=l  

whose order we seek to estimate. 
A key tool involves the notion of Markov types which 

is described below. Given a sequence Z" E X", n > 1, 
we define its koth Markov type (cf. [12]) as the empirical 
distribution on XkO x X given by 

Q := {qsa ,  s E X k O ,  a E X} 

with 
n 

I 
qsa :=: - l(z:I;o = s, xt = a )  

t=l 

where 1(.) denotes the indicator function. (Note that Q = 
&("). For notational convenience, we shall, however, suppress 
this dependence on n, except where explicitly needed.) Let 

4s := qsa 
a E X  

be the marginal distribution on X k o  corresponding to qsa. 
Finally, denote by &(") the set of all koth Markov types with 
denominator n. 

We define the (conditional) entropy of Q to be 

with the convention that qsa/qs  = 0 if qs = 0. All logarithms 
and exponentials are with respect to the base 2. For 

k0 

P E  U 0 k  
k = l  

we define the conditional (Kullback-Leibler) divergence of Q 
and p as 

Note that if p E 01, for some k 5 ko, p (a ls )  will depend only 
on the latest k components of s E X k u .  

Let IQ be the set of sequences zn E X" of (common) koth 
Markov type Q, i.e., 

7Q := {z": q,, = qsa, s E X k O ,  a E X}. 
Let 17~1 denote the cardinality of 7~. Further, let 

P(7Q)  := C P ( z " ) .  
IQ 

The following bounds are obtained from [13]. 

n-TkO (n + 1)- 

Moreover, for p E up=, 0 k ,  and the corresponding P 

(n + 1)-@'+' exp [-nD(QIIp)] I P ( 7 i )  

where P is defined by (1). 

Lemma 1 (Gutman [13]): For every koth Markov type Q 
( T 2 k 0 + l )  

exP [nH(Q)l 5 17~1 
5 rk0 exp [nH(Q)] .  

I rkO ~ X P  [-no(Q I l ~ ) l  

We remark that our choice of the notion of Markov type 
as defined above enables us to readily exploit the bounds in 
[13]. An alternative notion of Markov type, namely circular 
type (cf., [12]), exists and will indeed be briefly used in the 
proofs of Lemma 2 and Theorem 2 below. 

Next, for 1 5 I;' 5 k L. ko,  we define the (conditional) 
divergence between p' E @ k ,  and p E @ k  as follows. Let p', 
be the embedding of p' in @ k ,  i.e., for a E X, sf E X k ,  
pk(a ls l )  = p ' ( a l ~ ; - ~ , + ~ ) .  Note that p i  E QI,\OI, and will 
have some identical rows. Then 
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with 7r; being the (unique) invariant measure associated with 
p',. For p' E gk, ,  where G ~ I  denotes the Euclidean closure of 
O ~ I ,  the uniqueness of the invariant measure of p', is generally 
lost; in this case we define, with a slight abuse of notation, 

D(P'IIP) := mj;n D(P'llP). 
r e  

rl e e e  

It is seen in a standard manner that D(.Ilp) is continuous on 
Ok, and lower semicontinuous (1.s.c.) on Gp. 

111. THE ORDER ESTIMATOR AND ITS OF'TIMALITY 

In this section, we present an estimator which satisfies a 
generalized Neymm-Pearson criterion of optimality. Namely, 
the estimator minimizes the probability of underestimation 
among all estimators whosc probability of overestimation lies 
below a prespecified level. 

t 2 1) generated by an 
unknown measure P € p k ,  1 I k 5 ko. Based on a sample 
xn E X", we wish to construct an estimator, namely a decision 
rule, in, of the order of P. This is equivalent to solving the 
following multiple composite hypothesis testing problem: 

We observe the process {Xt, 

Hk: P E Pk, k zz 1, . . .  , ko. 

For a given a E (0, l), consider the class of estimators 
k,:X" 4 (1, . . . ,  I C o }  for which, for P E Pk, 1 I: k 5 ko 

P(k , (Xn)  > k )  < a!, n 2 N(a!, p ) .  (3) 

We seek in this class an estimator f ,  such that for each 
P ~ ' P k , l i k I k o  

-1 1 
n n  n n  

lim - logP(f,(Xn) < k )  5 lim - logP(kn(Xn) < k ) .  

(4) 

We remark that there are basic differences between this 
approach and that in [4]. These are best discerned in the 
light of the optimality properties of the estimator in which 
is described next. 

E X", n > 1, let Q denote the koth 
Markov type of the sample. 

De$nition: Given 

f , (zn) = IC iff both (5a) and (5b) hold. 
k-1 

~ ( Q I I P ' )  > E , ,  YP' E U @ z  ( 5 4  

D ( Q l ( p )  I t , ,  for some p E 01, (5b) 

i,(x") = 50 if either condition above is not satisfied; where 

1=1 

E, := (TkO+l  + 6) ( lognln)  

and 6 > 0 is any positive constant. 0 
The decision rule above is motivated as follows. Observe 

that if the sample is generated by a Markov measure of 
order k corresponding to a t.p.m. p E @ k ,  its koth Markov 
type Q (as also its kth Markov type, defined analogously) 
is eventually trapped in a "divergence neighborhood" of p .  
This basic fact is reflected in rule (5b), where the choice of a 
shrinking neighborhood is essential for enabling the eventual 

exclusion of Q from shrinking neighborhoods of lower order 
measures, thereby rendering underestimation unlikely. On the 
other hand, the choice of a neighborhood of constant size in 
(5) would, in some cases, lead to underestimation as discussed 
at the end of this section. Rule (5a) controls the likelihood 
of overestimation. Overestimation would require the eventual 
exclusion of Q from the neighborhood of p ,  which is contrary 
to our earlier observation. Indeed, a neighborhood whose size 
is either constant or shrinking slowly at an appropriate rate 
in (5), will result in a diminishing overestimation probability. 

As will be seen below, it turns out that in can be expressed 
in an alternative form which is a slight modification of the 
estimator proposed in [4]. 

The estimator f, of (5) is a solution to the multiple 
composite hypothesis testing problem stated above as shown 
in Theorems 1 and 2 below. 

Theorem 1: Fix S > 0. Then for each P E Pk, 1 5 k 5 IC0 

a) p(f,(xn) > IC) I ~ ' o n - - ( l + ~ ) ,  

b) For each q > 0, and for n 2 N ( v ,  p )  
n >. ~(6). 

where 

D(Gk,IIp) := m& D(p'IIp). 
p'EO&l 

Corollary: The estimator f ,  is strongly consistent for every 
s > 0. 0 

The proof of Theorem 1 requires the following technical 
lemma which generalizes a result of Anantharam [14]. Let 
Br, c e(") be the set of all koth Markov types satisfying 
(5b), i.e., 

B;, := { Q  E e("); D(&IIp')  5 E, for some p' E Gk,}. 

Lemma 2: Fix 1 5 76' < IC 5 ko and p E @ k .  Then 

b) D(ok:I lp)  > 0. 

a) It is convenient to work with circular types 
Proof of Lemma 2: 

Q := s E X ' O ,  a E X} 

0 

where the circular type of zn is obtained as the koth type of 

ZnZ.ko  .- .- (21, ' " ,  Zn, 21, . . . ,  Z k 0 )  

with the counting procedure commencing at the first symbol. 
Denote the set of all koth circular types with denominator n 
by G(n). Let 

For a given sequence xn, the corresponding types Q and Q 
satisfy IQ - QI = O(n- l )  from which it follows in a standard 
manner that 



FINESSO et al.: THE OPTIMAL ERROR EXPONENT FOR MARKOV ORDER ESTIMATION 1491 

Thus it suffices to prove that 

lim Fin ~ ( Q l l p )  = ~ ( G k I l l p ) .  
q, 

Let us denote by M the set of measures on X k o  x X. We 
introduce the decreasing sequence of sets 

D, := {fi E M ;  D(filIp') 5 en for some p' E i&} 

(the divergence being computed with respect to the initial 
probabilities p ( s )  ::= Cal)"(s, U)). Then, for all n we hlave 

a(,) n M ( B k f )  c BZr c Dn c Dn 

where M(Gk') denotes the subset of M corresponding to the 
t.p.m.'s in G k , .  Then 

It is, therefore, enough to prove that 

The left inequality is seen as follows. Let (?, $) achieve 
D(Gk, lip). Clearly, there exists 

(p E ~ M ( G ~ , )  

whose variational distance from (e ,  $) is O(-n-l). Hence 

so that given any U > 0, we have 

D ( G 4  IIP) 2 D(Q'"'1IP) - 

for all n large. To establish the right inequality first observe 
that a standard compactness argument shows that 

lim m_in D(Pl lp) = D(P* I lp) 
Dn 

for some @* E n,T%. Therefore, there exists a p', E c"kt such 
that D(fi*llp',) = 0. By the remarks at the end of Section I1 
it follows that 

D@*I lP) L D(P: I IP) := m p  D(P: I lP) 2 W k ,  I lP) 
d=7T'pL 

b) The 1.s.c. of D(.IIp) on Gkf yields the existence of 
(e', e'), 6' E &, and .ir' = ? ' P I ,  such that the correspond- 
ing embedding (?;, e:) achieves D ( o k )  I ( p ) .  Now, assume 
D(Op I lp) = 0. A standard calculation shows that 

?d(s)?j;(uIs) = i i~ ( s )p (u l s ) ,  U E X, s E xk 
from which it folbows that ?Lp = e;. Since the t.p.m. p is 
strictly positive, so must be it;, which by the equality above, 
implies that 5; = p .  This is clearly impossible by the remarks 

0 at the end of Section 11. Hence D(Gk1 I Ip) > 0. 

Proof of Theorem 1: The proof of a) is standard and is 
relegated to the Appendix. We provide the proof of b). Fix 
IC' < k and P E Pk. Then 

5 rko exp [-nD(QIIp)], by Lemma 1 
a;, 

by Lemma 2. Finally 

P(i,(X,) < k )  = P(i,(X,)  = k') 

for n 2 W ( q ,  p ) .  from which the desired result follows. 0 
The proof of the Corollary is straightforward. The rates of 

decay of the overestimation and underestimation probabilities 
are the critical quantities. Strong consistency follows by an 
application of the Borel-Cantelli lemma. 

The exponent in the underestimation probability in Theorem 
1 is optimal as is shown in 

Theorem 2: Let 0 < a < 1 be given. Let k ,  be an estimator 
such that for all P E Pk, 1 5 k 5 ko 

p ( k n ( X n )  > k )  < a,  72 2 N ( a ,  p ) .  (6) 

Then for every t > 0, for all P E Pk, 1 < IC 5 ICo, and for 
n 2 N2(a,  e, P) 

Remarks: 
i) We emphasize that the conclusion of Theorem 2 holds 

only if the hypothesis is met for all P E l J k < k o  Pk; the 
hypothesis is not required to be uniform in PT However, 
Theorem 2 does not imply that if (6) holds only for a 
particular P,  then (7) is valid for the same P. 

ii) Theorems 1 and 2 constitute, in effect, an extension 
of Stein's Lemma (cf. e.g., [15]) to the Markov order 
estimation problem. 

Proof Loosely speaking, the proof consists of two steps. 
The first step involves a Claim that any estimator k ,  which 
meets the hypothesis (6) on the probability of overestimation 
must possess the following property: For a fixed k ,  and for 
every IC' < IC, and for every t.p.m. p' of order k', there must 
exist at least one Markov type Qp, which is "close" to p', 
and is such that sequences zn of type Q p t  occupy a sizable 
fraction of the decision region { z": k ,  (2") = k'}.  The second 
step then uses the assertion of the Claim to bound below the 
underestimation probability in terms of the probabilities of 
these fractions of the decision regions. Formally, assume for 
the time being the following 
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Claim: Fix IC and S > 0. Then: For each p' E okf1 k' < 

a type Q p f  = Q$' with D(Q$'lln-') I en and 
k ,  there exist: 

D(Q$)llp') 5 E, where 7r' achieves D(p'1Ip) and 

E, = (TkO+l + 6) (1% nln) ;  

q(a,  k l )  > 0; 
N ( a ,  I C ' )  > 0; 

such that for all n 2 N ( n ,  I C ' )  

1 7 ~ ~ )  n [kn < ki I 2 v(n, k1)17Q(7) P I (8) 

where 

[k ,  < k ]  := U{.": k,(.,) = I } .  
l<k  

Then for each p' E Gk/, k' < k 

P(k,(X") < k )  = P([kn < k ] )  
2 P ( [ k  < 4 n 7&9 

where Q$' is the type in the Claim. Since every sequence 
in 7 ("1 has the same P probability, it follows from (8) and 

Lemma 1 that for n 2 N ( a ,  k')  
Q P ,  

Note that N ( a ,  k ' )  does not depend on p'. Since the previous 
bound holds for all p' E 81~1 and IC' < I C ,  we obtain that 

r 1 

for all 

n 2 max[N(n, k ' ) ] .  
k ' < k  

To obtain the desired exponent, it suffices to establish in 
(9) that 

for all n 2 N ~ ( u ,  E ,  p ) .  To this end, first note that there exists 
p ,  E ok, such that 

D(P* I I D )  D ( o u  I I P ) .  (1 1) 

Next, the Claim provides the existence of a type Q g )  with 
D ( Q g ) ) ) p , )  5 E, .  Furthermore, since 

observe that by showing for all n sufficiently large (depending 
only on p ,  t) that 

In order to show (13), note that there exists a circular type 
Qc' (cf. proof of Lemma 2 )  with 

for all n sufficiently large (depending only on p ,  E). Further- 
more, D(Qg'IIp*) + 0 which implies that Qg) + ~ , p , ,  
where n-, is the p,-invariant measure which achieves D(p,  I Ip). 
Consequently 

for all n large (again depending only on p ,  E ) ,  which, together 
with (14), establishes (13). 

It only remains to establish the Claim. The proof is by 
contradiction. Assume the negation of the Claim, i.e., there 
exist k' < k and p' E 0 ~ 1  such that 

for all Q(") with D(Q(n)IIpl) 5 E ,  

for all v > 0 
for all N > 0 

there is an n 2 N satisfying 

1 7 ~ ~ ~ )  n [k ,  < I C I  I < rl17Q(n) 1 .  (1.51 

The previous assumptions yield that infinitely often in n (Lo. 
(n)) 

7Q(") n [kn < I C ]  
&("I D(&(")  1 Ip')<en 

where superscript c denotes complement. Next 

exp [ - n ( T k o + l  + 6 )  """1 
n 

where (10) follows from (1 1)-( 13). 
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for all n large (not depending on 6).  Substitution in (16) yields 
i.0. (n.) 

P'([Ic,  2 I C ] )  2 1 - 71 - n-& 

whereby 

which contradicts the hypothesis of the theorem that P'([k ,  > 
0 

Remarks: i) For a given a E (0, 1), the class of estimators 
defined by (3) includes consistent as well as incpnsistent 
estimators. Theorem la) ensures that the estimator k,, of (5) 
belongs to this class. (By the Corollary of Theorem 1, the es- 
timator &, of ( 5 )  is additionally strongly consistent.) Theorem 
2 identifies the best exponent of underestimation probability 
among all estimators in this class. Since the estimator f, of 
(5) possesses, by Theorem lb), an exponent of underestimation 
probability which coincides with the best exponent prescribed 
by Theorem 2, it is optimal in the sense of (4) over the class 
of estimators given by (3). 

ii) Our approach based on the method of Markov types (as 
an extension of "i.i.d. types" (cf. [16])) provides polynomial 
terms (cf. Lemma I above) which, together with the choice of 
the threshold E ,  in (5), enables us to simultaneously control 
the overestimation probability of f ,  in Theorem la), and 
determine the best underestimation error exponent in Theorem 
2.  In particular, the substantiation of the Claim in the proof 
of Theorem 2 relies critically on the exact behavior of the 
polynomial terms (cf. (16) and the subsequent analysis). Large 
deviations theorems for general Markov processes (cf. e.g., 
[ 171) do not provide these crucial polynomial terms. 

The following Proposition 1 and its corollary show that the 
overestimation probability of an order estimator cannot decay 
exponentially for E' E Pk without rendering it inconsistent for 
some P E PZ, i > IC. 

Proposition I :  Let ko = 2. Let 0 < ,O < 1 be given. Let 
IC, be an estimator such that 

I C ' ] )  < a for all n sufficiently large. 

(17) 
-1 
lim - logP(IC,(X") = 2 )  < -X(P) 
n n  

for some P E PI, where X(P) > 0. Then there exists p E P2 
such that 

- 

P(k:,(Xn) = I) > 0 i.0. (n). (18) 

Corollary: Let k,  be an estimator such that, for a given k ,  
for all P E Pk 

-1 
lim - IIogP(k,(Xn) > k )  5 -A(P) 
n n  

where x (P)  > 0 for all P E Pk. Then there exists f' E Pz, 
IC < < IC0 such that 

Iim P(kn(xn) < I C )  = 1. 
n 

Proof: It is easily seen from our construction of 7'1, 7 3  
(or equivalently 01, &), that for P E PI (corresponding to 
p E O,), there exists B E P2 (corresponding to p E 0 2 )  such 

Consider the simple binary hypothesis testing problem of 
deciding between P and P with the decision rule which 
coincides with k,, i.e., the decision for a given sample xn 
is P (resp., p )  iff IC,(%,) = 1 (resp., 2). Now suppose the 
negation of (18), i.e., that there exists ,O' E (0, 1) such that 

that D(PlIP) < X P ) .  

- 

P(h(x") = 1) < P', n L N(P', 8. 

lim - logP(k,(X") = 2 )  2 - D(plIp) > -A(P) 
Then 

1 
n n  

where the first inequality is a consequence of Stein's lemma 
(cf. [15, p. 81, Exercise 3.4.181, with a simple modification 
to take into account the different orders of P and p )  for the 
problem of testing P versus p with the decision rule above. 
This contradicts (17), completing the proof of the Proposition. 

The corollary follows in a straightforward manner. 0 
Remark: It is evident from the proof of the Proposition 

that (18) is, indeed, valid for every P E F'2 (corresponding to 
j3 E 0 2 )  which satisfies D(plIp) < A(P). The subset of 0 2  

with this property has positive Lebesgue measure in Q 2 .  

We conclude this section with a comparison of I C ,  with the 
order estimator of Merhav-Gutman-Ziv [4]. To this end, the 
rules (5) specifying f ,  can be equivalently expressed in the 
form 

Next, observe that 

= H ( Q k )  - H ( Q )  (19) 

where Q k  is the kth Markov type of xn defined in analogy 
with the koth Markov type Q. We thus have the alternative 
expression 

f ,  = min (1 5 k 5 I C ~ ;  (20) 

Merhav-Gutman-Ziv [4] seek an estimator which mini- 
mizes P(kL(Xn) < k )  for all P E Pk, 1 < IC < ko, over 
the class of estimators IC; which satisfy for each P E %$, 1 5 

H ( Q k )  - H ( Q )  I 6 , ) .  

L IC0 

(21) 
-1 
a n  

lim -log ( P ( k k ( X " )  > k )  < -A 

where X > 0 is a given number. They propose as a solution 
the estimator IC: [4, p. 1015, eq. (S)] which, in our notation, 
is expressed as 

k i  = min(1 5 k 5 ko; H ( Q k )  - H ( Q )  5 A}. (22)  

The only apparent difference between in and IC: is in the 
choice of the thresholds; the constant threshold X in (22) is 
replaced by a decaying threshold t, in (20). However, this 
difference in thresholds leads to significant differences in the 
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behavior of the two estimators. In [4, p. 1016, Theorem 11, 
the authors assert that k: is optimal in that 

-1 1 lim - logP(k:(Xn) < k )  5 lim - logP(kL(X") < k )  
n n  " 7 2 .  

(23) 

for all P E ?k ,  1 5 k 5 ko, in the class of estimators kk 
satisfying (21). However, a scrutiny of the proof reveals that 
they have instead established this optimality for the much more 
restricted class of estimators kh for which 

1 
max sup -logP(kk(X") > k )  < -A. (24) 

n l i k s k o  pepI ,  n 

Next, since k: satisfies (21), note that the Corollary to 
Proposition 1 above renders it inconsistent, as observed in 
[4, p. 1017, Remark l(b)]. The authoIa further atite in [4, p. 
1017, Remark l(a)] that there exists P E P k  (depending on A), 
1 5 k 5 ko, for which P(kz(X") < k )  decays exponentially; 
the exponent is not explicitly given. Note that the previous 
remark does not contradict our Proposition 1. 

Thus it appears that a restriction to the class of estimators 
specified in [4] by (21) (or, accurately, (24)) leads to an 
estimator k;, which is optimal in the sense of (23); how- 
ever, in general, k;l will underestimate with probability one. 
By widening our search over the larger class of estimators 
specified by (3), it is possible to find a consistent estimator 
in, as a slight modification of k:, which additionally has an 
optimally decaying probability of underestimation. 

Iv. MIXTURES FOR OPTIMAL ORDER ESTIMATION 
In this section, we present an alternative optimal estimator 

based on mixture distributions. This approach is appealing in 
that the statistic involved can be updated recursively. Fur- 
thermore, it affords a connection with the Minimum Descrip- 
tion Length (MDL) [5], [7] and other penalized maximum- 
likelihood techniques. 

We introduce the notion of a mixture distribution for Pk, 
1 5 k 5 ko, as follows. Let v k  be the density on m k  (the set of 
all rk x T t.p.m.'s) obtained as the product of rk  independent 
Dirichlet priors applied to the rows of each t.p.m. Namely, for 
p = {p (a lS ) ,  S E X'", a E X} E ' k  

where r denotes the gamma function. The corresponding 
mixture distribution iLI, on A'", n 2 1, is defined by 

M k ( x n )  := .6, P ( x " ) U k ( p )  d p  

where P is as defined in Section 11. Observe that Mk(xn) > 0 
for all xn E X". 

As stated above, the mixture distribution Mk can be updated 
recursively. Namely, as shown in [lo], [ l l ] ,  [18], the mixtures 
Mk, 1 5 k 5 ko, can be expressed as 

n 

t=l 

where 

and 4L-l)  is obtained from the kth Markov type of zt-l. 
The close relationship between the mixture Mk and the 

penalized likelihood for q k  is indicated by the following 
lemma. Let 

? k ( x n )  := sup P(x")  (26) 
P E T k  

be the maximum likelihood of zn E X". 
Lemma 3 ([lo]. [ I l l ,  [18/): For 1 5 k 5 ko, the mixture 

M k  satisfies for each IC" E x" 

for all n 2 N ( k ) ,  where the constant Ck depends only 
on k .  0 

The left inequality in the lemma is trivial. The right in- 
equality, whose proof is omitted, follows in a straightforward 
manner from results in [lo], [ l l ] ,  [18], which were used to 
develop bounds on the pointwise redundancy of a universal 
code for noiseless data compression. Observe that the right- 
hand side in Lemma 3 corresponds to the description length to 
be minimized in Rissanen's MDL principle (cf. [7]); namely, 
consisting of the negative maximum loglikelihood penalized 
by { [ ~ ' ( r  - 1)]/2}logn. This motivates the selection of 
the following estimator based on the mixture distributions 
h f k ;  1 5 k 5 ko: 

logn . 1 1 T y r - 1 )  
kF(zn):=min arg min +- 

l<k<ko kogm 2 

Theorem 3 below shows that the previous estimator is 
similar in behavior to the divergence based estimator of 
(5) with the exception that its overestimation probability may 
decay at a slower than polynomial rate in n. However, k: 
retains the optimality properties of in in the sense of satisfying 
(3) and (4), and achieving the optimal exponent of decay 
for the probability of underestimation. This is shown by the 
following 

Theorem 3: For each P E P k ,  1 5 k 5 ko 
a) P(lim,kF(X") > k )  = 0. 
b) For each 7 > 0, and n 2 N(7 ,  p )  

Corollary: The estimator is strongly consistent. 
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Proof of Theorem 3: 
a) Fix k' > k and P E p k .  Then 

where the second equality follows from (19). In analogy with 
the set Bt, used in the proof of Theorem lb), we define 

Then (30)-(32) yield, for n 2 iV'(7, p ) ,  that 
M k / ( X n )  ( M k ( X n )  

(& - T ~ ) ( T  - 1) 
2 

5 P log--- 

bv Lemma 3 
5 exp [ - n ( D ( G  I lP) - d ]  

> (Tk' - T"(T - 1) (28) where the previous inequality follows similarly as in the proof 
of Theorem lb). Finally 

P k t  ( X " )  
log ~ 

logn P ( X n )  

From [19] it is known that for k' > k P(k,"(X")<k)= P(k,"(X")=k') 

) = 1  

whence for n 2 "'(17, p ) ,  from which the desired result follows. ~. - ,  

The-Corollary follows by a standard application of the 

Remarks: 
i) As suggested by Lemma 3, k$' is closely linked with the 

(29) Borel-Cantelli lemma. U 

Hence, from (28) (29)7 it for each > that penalized maximum likelihood (or MDL [7]) estimator S F D L  

P l i m k F ( X " )  = k ' )  = 0 
( n  

P ( K k ; ( X n )  > k )  = 0. 

whence 

b) Fix k' < k and P E P k .  Then 

P(k,"(X") = k ' )  

log j i S , (Xn)  < (2Tk  - T k ' ) ( T  - 1) 
2 

5 P log,- ( Pkf(X")  

( 2 r k  - T k ' ) ( T  - 1) logn 
2 n 

(30) 

for all n 2 N ( k )  by Lemma 3, where 

( 2 r k  - T" ) (T  - 1) log n 
pn  := . > 0. 

2 n 

The remainder of the proof is similar to that of Tlheorem 
lb). To see this, first note that ( l / n )  l o g P k ( P )  = - H ( Q k )  
where Qn. i n  the kth Markov type of ~n defined in a manner 
analogous to the k,jth type in Section 11. Thus 

defined as follows: 

k , M D L ( X " )  

logn . 
+ 2  1 

As is evident from its proof, Theorem 3 and its corollary apply 
to k,MDL as well. 

ii) It is worth noting the effect, on the asymptotic perfor- 
mance of k:, of the additive compensation term { [T ' (T  - 
1)]/2}logn in (27). First a deletion of this term from both 
sides of (27) does not affect the asymptotic probability of un- 
derestimation, i.e., Theorem 3b) still holds. Next, a polynomial 
decay (in n) of overestimation probability can be achieved 
by suitably augmenting the penalty term in (27). Specifically, 
consider the estimator if defined by modifying (27) with an 
increased penalty term of ( (T ' (T  - 1)/2) + f ( k ) )  logn, where 
f satisfies f ( k  + 1) - f ( k )  = S > 0, 1 5 k < ko. Theorem 4 
below shows that the overestimation probability of &? decays 
as n-*; its underestimation probability, of course, is given by 
Theorem 3b). (Clearly, remark ii) applies to k;IDL as well.) 

iii) There exist alternative mixture-based estimators which 
are comparable in performance to i,". For instance, consider 
the estimator proposed in [S, eq. (3.7)] which, given a sample 
xn E X", yields the estimate k iff k is the largest integer in 
{1, ..., ko} such that 

(with the convention Mo(xn) = 1). This estimator asymptot- 
ically performs similarly to &? above. 

We conclude this section by considering the overestimation 
probability for the estimator i," of remark ii) above. 
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Theorem 4: For each P E Pk, 1 5 k < 50, it holds that 

P(~$’(x”) > I C )  5 n-‘, n 2 ~ ( k ) .  

Pro03 Fix P E Pk and k‘ > I C .  Then 

P(i?(X;”)  = IC’)  

X” 

for all n 2 N ( k ) ,  where the second inequality is a conse- 
quence of Lemma 3. 

Since 

for a l l r  > 2, 15 k < ICo 

the assertion of the theorem readily follows. 0 

V. DISCUSSION 

The estimator in of (5) relies in an essential way on 
the Markov order being bounded by a known integer ko. If 
the order is bounded but 760 is unknown, our approach is 
not directly applicable. For this case, Merhav-Gutman-Ziv 
propose an alternative estimator k: [4, p. 1016, eq. (14)] 
defined similarly as but with H ( Q )  in (22) replaced by 
the normalized Lempel-Ziv codeword length. It is shown in 
[4] that k r  shares the asymptotic properties of k;. It can be 
additionally shown that replacing the constant threshold X in 
k r  by the decaying threshold E ,  of in in (5) will render the 
former consistent. 

If the maximum allowable order ko is not fixed but allowed 
to vary with the sample size n, we conjecture that a suitable 
modification of in will still yield the asymptotic performance 
given by Theorem 1, provided ko(n)  grows no faster than 

Next, we tum to the problem of estimating consistently the 
order of a hidden Markov source (HMS). In [8], a strongly 
consistent estimator based on mixture distributions (cf. Remark 
iii) of Section IV) is presented with an exponentially decaying 
underestimation probability, but the corresponding exponent 
is not explicitly determined. The optimal error exponent for 
HMS order is as yet unknown, and the approach of this paper, 
relying on Markov types, does not directly extend to the HMS. 
However, recent work by Ziv-Merhav [9] in developing the 
notion of “generalized types” for finite-state processes, offers 
some hope in this direction. 

0 (log 7%). 

APPENDIX 
PROOF OF THEOREM la) 

Fix k and P E Pk. Let 

Ai := { Q E !$,I; D(Q1Ip’) > E, t’p‘ E 
z=1 

Then 

P(i,(X,) > k )  

Since 

for all n sufficiently large, we can continue the bounding above 
as 

for all n large. By our choice of e,, we finally get 

P(i,(X,) > I C )  5 ?-%--(1+6), 12 2 N ( 6 ) .  U 
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