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Secrecy Generation for Multiaccess Channel Models
Imre Csiszár and Prakash Narayan

Abstract—Shannon theoretic secret key generation by several
parties is considered for models in which a secure noisy channel
with multiple input and output terminals and a public noiseless
channel of unlimited capacity are available for accomplishing this
goal. The secret key is generated for a set of terminals of the noisy
channel, with the remaining terminals (if any) cooperating in this
task through their public communication. Single-letter lower and
upper bounds for secrecy capacities are obtained when secrecy is
required from an eavesdropper that observes only the public com-
munication and perhaps also a set of terminals disjoint from .
These bounds coincide in special cases, but not in general. We also
consider models in which different sets of terminals share multiple
keys, one for the terminals in each set with secrecy required from
the eavesdropper as well as from the terminals not in this set. Par-
tial results include showing links among the associated secrecy ca-
pacity region for multiple keys, the transmission capacity region
of the multiple access channel defined by the secure noisy channel,
and achievable rates for a single secret key for all the terminals.

Index Terms—Multiaccess channel, multiple keys, private key,
private key capacity region, secrecy capacity, secret key, source
emulation.

I. INTRODUCTION

S EPARATE terminals with the means to transact over a se-
cure noisy channel as well as a public noiseless channel

can devise a secret key more effectively than by using the se-
cure channel alone. A secret key, in the Shannon theoretic sense,
is common randomness of near uniform distribution regarding
which an eavesdropper, that observes the public communication
and perhaps also possesses additional observations available or
unavailable to the terminals engaged in secrecy generation, can
glean only a negligible amount of information.
The first Shannon theoretic model for generating a secret

key over a noisy channel was Wyner’s wiretap channel [24],
generalized by Csiszár and Körner [7]. This model did not
allow for public communication, and secret key generation was
tantamount to secure transmission over the noisy channel, when
the eavesdropper had access to wiretapped side information.
The fact that secrecy generation could be enhanced by public
communication was illustrated by Bennett et al. [3]. Models
for secrecy generation, which entailed two terminals communi-
cating over a public noiseless channel, were examined in detail
by Maurer [17] and Ahlswede and Csiszár [1]. These models
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involve either a discrete memoryless multiple source (DMMS)
with two components accessible to one terminal each, or a
discrete memoryless channel (DMC) with one input terminal
and one output terminal. In both types of models, an additional
“wiretapped” terminal may or may not be present. The sizable
literature on such models includes Maurer [18], Bennett, Bras-
sard, Crépeau, and Maurer [4], Csiszár [6], Maurer and Wolf
[19], [20], Csiszár and Narayan [9], [10], Renner and Wolf
[21], Gohari and Anantharam [12], [13] and a comprehensive
treatment in Csiszár and Körner [8]. A single-letter charac-
terization of the secrecy capacity—the largest rate at which a
secret key can be generated—is known in special cases, e.g.,
when a wiretapped terminal is absent or when the wiretapped
terminal reveals itself to the parties generating secrecy.
In our previous work, we had studied secrecy generation for

a multiterminal source model where each participating terminal
had access to one component of a DMMS [9], [10], and for
a multiterminal channel model which involved an underlying
DMC with a single input and multiple outputs [10]; in both
models, unrestricted and noiseless public communication be-
tween the terminals was permitted, to which the eavesdropper
had full access. In this paper, which constitutes a continuation
of our work in [10] and [11], we examine channel models for
secrecy generation which involve an underlying DMC with
multiple inputs and outputs. Terminals govern the
inputs and terminals observe the corresponding
outputs. Following each transmission of symbols by the input
terminals over the DMC, communication over a public noise-
less channel of unlimited capacity is allowed between all the
terminals, which may be interactive and which is observed
by all the terminals.1 The goal is to generate secret common
randomness shared by a given set of terminals
at the largest rate possible. Thus, the resulting key must be ac-
cessible to every terminal in . It need not be accessible to the
terminals not in , but nor is it required to be concealed from
them, with the possible exception of a set of terminals which
are “wiretapped” by the eavesdropper (where ). A
DMC input terminal may or may not belong to the set or .
We restrict ourselves to models where all the terminals coop-

erate, including those that are wiretapped (if ), in gen-
erating a secret key for the terminals in , with secrecy being
required from the eavesdropper that has access to only the public
communication and the information available to the wiretapped
terminals in . Also, we assume the eavesdropper to be passive,
i.e., unable to tamper with the communication of the legitimate
terminals.
We do not address models with wiretap side information in

which the underlying DMC also has an additional output ter-
minal that is wiretapped by the eavesdropper and does not co-

1For ease of distinction between the use of the DMC and the use of the public
channel, hereafter the former will be termed “transmission,” while the latter will
be referred to as “communication.”
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operate in secrecy generation (cf., e.g., [1], [9], [10], [12], [13],
[17], [19], and [21]).
The problem of secrecy generation for a general multiter-

minal channel model studied in this paper appears more dif-
ficult than its special case for a channel with a single input.
Single-letter characterizations of secrecy capacities for the latter
have been given in [10]. For the general channel model, short
of providing single-letter characterizations of secrecy capaci-
ties, our main contributions are the following. One possible op-
erational strategy in a channel model as above is source em-
ulation which entails the channel input terminals (in the case
when none is wiretapped) transmitting independent sequences
of random variables (rvs) over the DMC with the output termi-
nals observing the corresponding output sequences. In addition
to this “simple” source emulation, we introduce also “general”
source emulation that allows certain correlations among the rvs
assigned to different input terminals even when none is wire-
tapped. The emulated source model leads to our achievability
results which furnish lower bounds for the secrecy capacities
in Theorem 4, using simple protocols. While our definition of
general source emulation admits correlations between the input
terminals, in the protocols that achieve our lower bounds, the
input terminals operate independently of each other with each
terminal transmitting independent sequences that need not be
independent and identically distributed (i.i.d.). Our converse re-
sults provide upper bounds for the secrecy capacities using fa-
miliar techniques from Shannon theory, but are difficult and rely
on two entropy inequalities from our previous work [10] which
may be of independent interest. Our lower and upper bounds
coincide only in special cases. While it is conceivable that our
lower bounds could be always tight, the upper bounds are not
so; evidence of the latter is shown by an improved upper bound
for a class of channels.
We also consider multiterminal channel models in which dif-

ferent subsets of terminals share multiple keys, one for termi-
nals in each set with secrecy required from the eavesdropper
as well as from the terminals not in . The main objective is
to draw attention to the challenging problems in this realm that
remain unresolved. Here, simple results are presented showing
links among the associated secrecy capacity region for multiple
keys, the transmission capacity region of the multiple access
channel (MAC) defined by the DMC, and achievable rates for a
single secret key shared by a subset of the terminals.
Our problem formulations are described in Section II.

Section III treats secrecy generation for DMCs with a single
output based on elementary considerations. Our general
single-letter lower and upper bounds for secrecy capacities are
presented in Sections IV and V, respectively. We illustrate our
results and their limitations by four examples of secrecy gener-
ation in simple multiterminal channel models in Section VI. A
closing discussion is contained in Section VII.

II. PRELIMINARIES

All rvs are assumed to take values in finite sets, even if not
stated explicitly. An rv will be denoted by an uppercase letter
and its range by the corresponding script capital unless stated
otherwise. The cardinality of a finite set is denoted by .

Logarithms are with respect to the base 2. For integers ,
we denote .
We consider multiterminal channel models of the fol-

lowing kind. Terminals , with finite alphabets
, are connected to terminals , with

finite alphabets , respectively, by a DMC
. Terminals

govern the inputs of the DMC over which they transmit se-
curely sequences of length , while terminals
observe the corresponding output sequences of length . In
between consecutive symbol transmissions over the DMC (with
instantaneous receptions), the terminals in
are allowed to communicate over a public noiseless channel of
unlimited capacity. In any transmission or communication by
a terminal, randomization is permitted. The public communi-
cation is observed by all the terminals in as well as by an
eavesdropper.
We shall assume that each terminal generates at the

outset a rv to be used for randomization; the rvs
are mutually independent. Every input terminal
transmits symbols over the DMC at
time instants , and every output terminal

observes the corresponding output symbols
. In addition, communication among the

terminals in over the public channel occurs—possibly
interactively and in several rounds—during the time intervals

, for , and immediately following
, which hereafter will be referred to simply as intervals

. The public communication of all the terminals
in interval is depicted collectively as , and we denote

.
In general, terminal determines its input
of the DMC as a function of for , and of

for . Also, the communication
of terminal in interval is allowed to depend on ,
the symbols earlier generated or observed by
terminal , and on all earlier communication .
While this general framework admits complex transmission
and communication protocols, in our achievability proofs we
shall use only simple noninteractive communication protocols
with input terminals not sending any public messages
at all, and each output terminal sending at
most one public message and that upon com-
pletion of the transmissions over the DMC; in this case,

.
For rvs , we shall use the shorthand notation

for sets , and, as a special case,
for . Also, we shall

write for ,
where ; in particular,

for .
The following concepts introduced in [9] will be used. Given
, a rv is -recoverable from if

for some function of . For rvs and , to be interpreted
as representing a secret key and the eavesdropper’s knowledge,
respectively, the information theoretic security index is
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Smallness of this security index is tantamount jointly to a nearly
uniform distribution for (i.e., is small) and to
the near independence of and (i.e., the mutual information

is close to 0).

Definition 1: Given any set of size , a rv
constitutes an -secret key ( -SK) for the set of termi-
nals , achievable with uses of the DMC , randomization

and public communication , if is -recoverable from
for each and, in addition, it satisfies the se-

crecy condition

(1)

An -SK as earlier is called an -private key ( -PK)
for the set of terminals , private from the set of terminals
with , if it satisfies the stronger secrecy condition

(2)

By definition, an -SK is recoverable at the terminals in
, and is nearly uniformly distributed and effectively concealed
from an eavesdropper with access to the public communication
; it need not be concealed from the terminals in .
On the other hand, an -PK for is effectively concealed
from an eavesdropper with access—in addition to the public
communication —also to a set of “wiretapped” or
“compromised” terminals. This -PK need not be concealed
from the terminals in . Note that the compromised ter-
minals can cooperate in the secrecy generation through their
public communication. Indeed, it can be assumed without loss
of generality (w.l.o.g.) that the terminals in reveal publicly
all the information in their possession (which, anyway, is acces-
sible to the eavesdropper). This assumption will be made usu-
ally without explicit mention.

Definition 2: A number is an achievable SK rate for a set
of terminals if there exist -secret keys
achievable for with uses of the DMC , suitable random-
ization , and public communication , such that

The largest achievable SK rate for is the SK capacity .
Achievable PK rates and PK capacity are defined
similarly.

Remark: Our converse proofs stand under the requirement of
“weak” secrecy, i.e., while decays to 0 [1], [17].
The achievability results hold with both and decaying to
0 exponentially rapidly thereby affording “strong” secrecy [6],
[8], [18].
In general, any number of DMC input and output terminals

may be wiretapped (barring two terminals to avoid the trivial).
However, it is obvious that the wiretapped input terminals (if
any) can be coalesced, as can the wiretapped output terminals.
The next lemma shows that attention can be restricted even to
such models in which no input terminal, and at most one output

terminal, is wiretapped. Nevertheless, we shall find it conve-
nient throughout to adhere to the original model above and take
recourse only occasionally to the following reduction lemma.

Lemma 1: For any DMC
and with , there exists a DMC

with equal to the
number of input terminals of not in , or if
, such that only terminal of is compromised, there is a

bijection between the uncompromised terminals of and ,
and for each disjoint from the PK capacity
of is equal to the corresponding PK capacity of
where .

Remark: By the Lemma, any channel model with at most one
uncompromised input terminal can be reduced to a model with
just one input terminal; for the latter, a single-letter solution for
PK capacity is available ([10, Th. 4.1]).

Proof: We can assume w.l.o.g. that . Indeed,
by the passage preceding the Lemma, it can be assumed that
either or , and in the former case, for-
mally a compromised output terminal, can be added at which
the output is a constant. Then, we shall prove the Lemma with

.
The compromised input terminal will be eliminated by

merging it with an uncompromised one (if any, i.e., if ),
while keeping track of it by letting the -output of contain
an identical copy of the compromised input of .
Formally, assuming , in case (when

), let , , and if
. In case (when ), the

only modification needed is to set .
The input -tuples of are identified in an obvious manner

with input -tuples of , and output
-tuples of are regarded as being obtained by appending a

symbol to the output -tuples
of . The definition of is

In other words, the DMC behaves as but additionally
transmits noiselessly the input of terminal of to the terminal
of . Thus, the single wiretapped terminal of will

possess the same information as the wiretapped terminals of .
It follows that each protocol for and gives rise to a protocol
for and with identical secrecy performance, and
also reciprocally so.

We shall also consider models in which different subsets of
the terminals in share multiple keys, one for the terminals
in each subset with privacy from the remaining terminals in
that are not members of that subset.

Definition 3: Given different subsets of ,
, the rvs constitute -PKs for the terminals in

, respectively, if for each , is an -PK
for the terminals in , private from the terminals in . The
numbers represent an achievable PK rate-tuple for
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the terminals in if there exist -PKs achiev-
able for with uses of the DMC , suitable ran-
domization , and public communication , such that

for . The set of all achievable PK rate-tuples is
the PK capacity region . For the case ,

of Definition 2.

Remark: The PK capacity region is a closed convex set. The
former is clear from the definition, while the latter is a conse-
quence of a standard time-sharing argument.

III. MODELS WITH SINGLE OUTPUT

In this section, we consider DMCs with a sole output for
which simple results are presented that do not require any so-
phisticated tools.
Let be a DMC with

input terminals and one output terminal, and let be any set
of terminals of size which contains the output ter-
minal . Denote by the (average error) capacity region of
the MAC , and by its projection on the -di-
mensional subspace of spanned by the coordinate axes

. Furthermore, consider the PK capacity re-
gion for the pairs of terminals

.

Proposition 2: For and as
earlier, it holds that
i) ;
ii) any such that the -dimensional vector

belongs to , is a lower bound
for the PK capacity .

Corollary: It holds that

Furthermore, any such that can be
achieved as an SK rate for or PK rate for with privacy
from , with no public communication by the input terminals
and with only the output terminal sending a public message.

Proof:
i) By definition, each arises from

some by deleting the components
with ; it can be supposed w.l.o.g. that all these deleted
components are equal to 0. It is easy to see that an achiev-
able rate tuple for transmission over a MAC
, in which some components are 0, can be achieved by

codes whose message sets corresponding to the zero rates are
singletons (rather than merely of subexponential size). It fol-
lows that for each , there exist en-
coders , with ,
with arbitrarily close to , and deterministic sequences

, with the following property: if
the MAC inputs are

where the rvs , uniformly distributed on , are mutually
independent, then the rvs are recoverable from the MAC
output with probability approaching 1 as . This
proves that is an achievable PK rate tuple
for the pairs , achievable without any
public communication.
ii) Suppose that ,

and consider PKs for the pairs ,

represented by rvs distributed on
with close to , and satisfying the secrecy condition (2)
with in the role of . Then, arbitrarily fixing

, the rv becomes a PK for the terminals in

, private from , if terminal broadcasts the
sums .
The Corollary is immediate.

In Section VI, we shall give an example where the trivial inner
bound for the PK capacity region and
the lower bounds for the SK capacity , both above, are
tight. It remains open whether they are tight in general. Here, we
present a weaker result than the tightness of the lower bounds
for in the Corollary of Theorem 2, and which is straight-
forward.

Proposition 3: For any2 , the SK capacity is
positive iff there exists

such that for each .
Proof: Sufficiency is obvious by the Corollary of Proposi-

tion 2. For necessity, note that if no as above
exists, then—using the convexity of — for some ,
we must have that for every .
The latter means that does not depend
on , and this would imply that the SK capacity is 0 even if
the terminals in were allowed to communicate securely
among themselves. For a formal proof, note that upon regarding
the terminals in as a consolidated party , any use of
the DMC amounts to a randomization performed by party
(since the choice of channel input at terminal does not in-

fluence the output). However, it is well known that two parties
(here and ), with no resources other than the ability of
randomization and of public communication, cannot generate
an SK; see, for example, [17].

Remark: Proposition 3 does not extend to DMCs with
two or more outputs even if there is only one input. Indeed,
for a DMC with a single input and outputs, the
SK capacity can be positive even if each component channel

(where equals the sum
of over all with )
has capacity 0; see ([10, Example 1]). See also Example 4 in
Section VI.

2The result holds also when .
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We conclude this section by commenting on the possible re-
lationship between SK capacity and the feedback capacity re-
gion of a MAC, which may properly contain [5]. Specif-
ically, focusing for simplicity on the case , the Corol-
lary of Proposition 2 suggests a comparison of the SK capacity

with

In the secrecy setting, full feedback is ruled out as the feedback
communication is public. Still, if a coding scheme with partial
feedback could be found by which the gain in transmission rates
exceeds the information leakage due to feedback, it would lead
to an SK rate larger than that in the Corollary of Proposition 2,
even if it were less than . The existence of such a scheme
is unknown; the Cover-Leung scheme [5] does not appear to
admit a modification with this property. While no evidence is
available that might be an achievable SK rate, nor do we
know, in general, even whether . In Section V, the
latter bound will be shown to hold for a class of MACs with
two input terminals, for which a single-letter characterization
of the feedback capacity region is available.

IV. GENERAL LOWER BOUNDS FOR SK AND PK CAPACITIES

Our techniques developed in [10] will be used to derive
bounds for SK and PK capacities for the general DMC model
introduced in Section II. Our results are partial; unlike in [10],
the lower bounds in this section and the upper bounds in the
next section agree only in special cases.
One way to generate an SK or a PK for a multiterminal

channel model is by simple source emulation. If the input
terminals in use i.i.d. repetitions of a -tuple of rvs

, such that the assigned to the nonwiretapped
terminals are conditionally independent given

, the DMC will generate i.i.d. repetitions of an
-tuple of rvs , whose joint probability mass

function (pmf) is given by

(3)

with each output terminal observing i.i.d.
repetitions of . Clearly, achievable SK rates for the source
model defined by will be achievable for
the channel model, as well.
A general form of source emulation entails the use of an aux-

iliary source. Let us consider the PK generation problem with
a given set of wiretapped terminals; SK generation
obtains as the special case . Let be a (finite) auxiliary al-
phabet, and consider rvs such that
has an arbitrary joint pmf, and the , , are
conditionally independent given . Moreover, let

, represent the outputs of the DMC
corresponding to input , satisfying the Markov condition

(4)

so that the pmf of is

(5)

where .
An associated source model is defined by assigning rvs
and , with a joint pmf as above, to

terminals , letting the set of wiretapped terminals be

. Clearly, this source model can be emulated by our
given multiterminal channel model. First, the rvs
with an arbitrarily specified joint pmf are generated by one
of the input terminals and revealed as required by the source
model (since ). Then, the terminals

can generate the rvs conditionally indepen-
dently given , and use them as their channel inputs
while the rvs , are used as channel inputs by
the corresponding terminals. These inputs, in turn, give rise to
the channel outputs .
The single-letter formulas available for the SK and PK ca-

pacities of a source model [9], [10] afford lower bounds for the
corresponding capacities of the multiterminal channel model, as
the suprema of SK or PK capacities of source models obtainable
by simple or general source emulation as above. These lower
bounds will be stated formally in Theorem 4.
As in [10], given any set of size , we denote

by the family of all nonempty sets that do not
contain , and by the set of all -dimensional vec-
tors , with , that satisfy

(6)

Also, if a set is given, and are defined
analogously, restricting to subsets of and replacing (6) by

(7)

In the parlance of combinatorics, the vectors in (resp.
) are fractional partitions of (resp. ) into mem-

bers of (resp. ) (cf. e.g., [15]).
The following quantities will play an important role:

(8)
and

(9)

for rvs (the latter with values in some finite set ),
and vectors in (resp. ). We assume throughout,
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without further explicit mention, that the Markov condition (4)
holds and that the pmf of is compatible with the given
DMC , i.e.,

(10)

We denote by and the special cases
for of (8) and (9), respectively.
The quantities above are related to and

defined in ([10, eqs. (6) and (7)]) for a DMC
with a single input and outputs, with denoting the input
pmf. In order to apply the results of [10], we consider in the
following an auxiliary channel model with underlying DMC

(the input alphabet being any finite
set), which is defined by a DMC as

(11)

Note that the sets and corresponding to the
original model (including when are the same as

and corresponding to the auxiliary model with
, where the fictitious terminal 0 depicts the input to the DMC
(as also ).
The rvs and can be regarded, respectively, as the

input and output of the DMC ; in other words, they represent
a source model that can be emulated by the auxiliary channel
model iff their joint pmf is of the form (10) with

(12)

This source model can be emulated by the original channel
model iff the rvs are conditionally inde-
pendent given . For rvs satisfying (10) and
(12), the quantities in (8) and (9) can be written equivalently in
the notation of ([10, eqs. (6) and (7)]) as

(13)

(14)

with the right sides meant for the underlying DMC . Hence,
by [10, Th. 4.1], the minimum of with respect
to is the PK capacity of the source model defined by

, with privacy from terminal 0; furthermore, maximiza-
tion over yields the PK capacity of the auxiliary channel
model with underlying DMC . A similar statement holds for

, with privacy from the terminals in .
Furthermore, by [10, Th. 4.2], for the auxiliary channel model,
these PK rates are achievable by protocols such that terminal 0
transmits a deterministic sequence, and public communication
takes place only after transmission over the DMC has been
completed and consists of public messages by the terminals in

with at most one message from each terminal that is a
(deterministic) function of the DMC outputs therein. Note that
as a consequence of their operational meaning, the quantities in
(13) and (14) are nonnegative.

Theorem 4: For any , and conditionally inde-
pendent given

(15)

Similarly, for any and such that ,
are conditionally independent given

(16)

Moreover, the right sides yield the largest SK or PK rates achiev-
able by general source emulation using a particular choice of

. These rates are achievable with a noninteractive
communication protocol in which the input terminals operate in-
dependently of each other, with the terminals in trans-
mitting deterministic sequences over the DMC and those in

transmitting independent sequences that are not neces-
sarily i.i.d.
Comments:
1) The maxima of the right sides of (15) and (16) with respect
to the choice of are achieved since the car-
dinality of the range of can be bounded by standard tech-
niques.

2) The largest SK or PK rates achievable by simple source
emulation are obtained by a similar maximization of

or .
Proof: As discussed previously in Theorem 4, the right-

hand side of (15) is an achievable PK rate, in the auxiliary
channel model with underlying DMC , for the set of terminals

with privacy from the input terminal 0; moreover, it is
achievable by a protocol of the mentioned special kind that, in
particular, has terminal 0 transmitting a deterministic sequence

. The latter circumstance can be realized in
the model with DMC with the input terminals simply trans-
mitting mutually independent rvs , with
pmfs , noting that it is at this point that
the conditional independence hypothesis is used.
It follows, referring again to the preceding discussion, that the

right-hand side of (15) is an achievable SK rate for the channel
model with DMC , by means of communication protocols
admitting public communication only upon completion of the
DMC transmissions and with each terminal sending
at most one public message that is a function of alone. To
complete the proof of Theorem 4 in respect of (15), it remains
to show that the DMC input terminals need not send
public messages, to which end it may be necessary to change the
pmfs of the input rvs . This can be shown exactly as the anal-
ogous assertion of [10, Th. 2] was proved. Consider a “good”
protocol in which the terminals send public messages

. Proceeding as in the cited proof (replacing
there with ), it follows that the protocol will remain
“good” if the joint pmf of all -length channel inputs is changed
to its conditional joint pmf under the condition that the values
of are equal to suitable constants. This condi-
tioning does not affect the independence of the inputs (although
their components no longer need be indepen-
dent), and it reduces the public messages of the input
terminals to be constants.
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The assertion concerning (16) is proved in the same manner;
this time, we define an auxiliary channel model with the role of
assigned to . It is obvious from the definition

(9) of that its value remains unchanged if
is replaced by .

Next, restricting attention to a MAC with a single output
whose capacity region is , by the Corollary of Theorem 2, the
condition is sufficient for to be an achievable
SK rate for . While it remains unclear whether this con-
dition is necessary, the next Proposition shows that larger SK
rates cannot be achieved by means of general source emulation.

Proposition 5: For a MAC
, a necessary and sufficient condition for the achievability

of SK rate with by general source emulation is
.

Comment: A similar argument shows that is achievable as
an SK rate by simple source emulation iff belongs
to a polyhedron

where are i.i.d. rvs and .
Since the capacity region equals the convex closure of the
union of all such polyhedra, where the union itself may be non-
convex, this shows that for some MACs, general source emula-
tion can yield larger SK rates than simple source emulation; see
Example 3 in Section VI as follows.

Proof: Consider general source emulation involving an
auxiliary rv and input rvs that are condition-
ally independent given , and let be the corresponding
output rv. By Theorem 4, the SK rate achievable by this source
emulation is .
Since are conditionally independent given
, and , the expression for

in (8) simplifies. Specifically

(17)

for

(18)

and for

(19)

Substituting (17)–(19) into (8), and using for
each , we obtain

(20)

For any fixed , assign defined
by if or for some , and

otherwise. With this , (20) gives

It follows that satisfies

(21)

for every , proving the necessity part of the
assertion.
For sufficiency, note that means that for some
and conditionally independent given with

, the inequalities (21) are satisfied.
For these rvs, (20) and (21) give

Since
and , this proves that

.

V. GENERAL UPPER BOUNDS FOR SK AND PK CAPACITIES

In order to state our upper bounds for and ,
we extend the notation in (8) and (9) above with a slight abuse
of it. Specifically, for rvs , and for or

, we denote

(22)

(23)

and denote by and the special
cases for constant of (22) and (23), respectively. As earlier,
we assume that the rvs satisfy the Markov condition

and . Akin
to and in (13) and (14), both

and , too, are nonnegative,
as shown in Appendix B.

Theorem 6: The SK capacity for a set of terminals
and the PK capacity for with privacy from
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a set of terminals are bounded above, respectively, as
follows:

(24)

and for any

(25)

Furthermore, in the single output case , provided that
the output is not compromised, i.e.,

(26)

Corollary: When all the DMC inputs except perhaps one are
compromised

(27)

Comments:
1) If , then the last term in (25) vanishes. If

, then the difference of the first two terms is
0.

2) The Corollary is a consequence also of the Remark fol-
lowing Lemma 1.

3) The hypothesis of the Corollary is fulfilled when the DMC
has only one input terminal. In this case, the Corollary re-
duces to [10, Th. 4.1].

4) The upper bound in (24) can be weakened to
. This weaker

bound differs from the lower bound in Theorem 4 by
the lack of the conditional independence of
given . It remains open whether (25) can be similarly
weakened.
Proof: The upper bound for PK capacity in (25) is derived

first. The bound in (24) for SK capacity follows as the special
case .
The initial steps in proving (25) are identical to those in the

proof of the analogous converse part in [10, Th. 4.1]. These
steps are presented first in a summarized form below, which then
serve as a point of departure for the rest of the proof.
Suppose that the rv represents an -PK with pri-

vacy from , achievable with randomization and
public communication , where and ;
see Definition 2 and the succeeding remark. As observed in [10,
the remark preceding Definition 3], we can suppose w.l.o.g. that

, where consists of the communi-
cation of all the terminals in . Then, the secrecy condition (2)
is

Using [10, Appendix A, Corollary of Lemma A.2] with
in the role of , and and in the

roles of and , respectively, we get as in [10, inequality
(11)] that for every

(28)

where

A main ingredient of the proof of (25) will be to show that
the expression within above is bounded above by

(29)

for . This implication is a generalization of the fact
proved in [10] that the bracketed expression in (11) therein
was bounded above by (12). Accordingly, the proof of the
claimed implication here is similar to, but more complicated
than, the corresponding proof in [10]. This proof, provided in
Appendix A, required a new idea in establishing (A8).
To simplify (29), a standard technique is used: Let

be an auxiliary rv distributed uniformly on and

independent of , and set . Then,
, etc., and it holds

that and .
Finally, omitting the tildes, we obtain for the new from
(28), (29) (and recalling (9), (23)) that

(30)

for every and .
The claimed upper bound for PK rates in (25) follows thereupon.
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Turning to the special case and , note
that the last term in (25) vanishes. For , since

, we have in (25), by (9) and (23), that

(31)

Now, for , in the summand in the right-hand side of (31),

the expression within equals

(32)

while for , it equals

(33)

By (32), (33), and using
, it follows that the right-hand side of (31) equals

, thereby
leading to (26).
Proof of Corollary: Under the hypothesis of the Corollary,

, and the last term in (25) also vanishes,
trivially when , and upon taking to be the uncompro-
mised input otherwise. Hence, in this case, (25) gives the upper
bound

which coincides with the lower bound in Theorem 4.

The upper bounds in Theorem 6 are not tight, in general, but
only in special cases do refinements in the proof seem to yield
improvements of interest. This is illustrated by the next theorem
where the bound mentioned in Section III is estab-
lished for a class of MACs with two inputs and one output. In
the remainder of this section, , and
is denoted by .

Consider the Willems’ class of two-input, one-output
MACs with the property that input 1 is determined uniquely
by input 2 and the output, i.e., there exists a mapping

such that if
. For this class of MACs, Willems [22]

proved that the capacity region with feedback is equal to
the Cover–Leung region [5]. Thus, for a MAC in class ,

if and only if there exist rvs
whose joint pmf factorizes as

(34)

and

Consequently, the largest with is given by

(35)

with the maximum taken over rvs satisfying (34). Note that the
range of the rv can be assumed to have a specified cardinality,
and so the maximum in (35) is attained.

Theorem 7: For a MAC in class , it holds that .
Proof: A slight refinement of the proof of Theorem 6, spe-

cialized to the case , shows that the expres-

sion within in (28) now is bounded above by

See (A15) in Appendix A. In particular, the terms corresponding
to the sets that contain the output terminal 3 are
equal to 0. As in the proof of Theorem 6, this sum can be
rewritten as

where

with being distributed uniformly on . Then the
Markov relation holds and,
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moreover, and are conditionally independent given .
The latter follows by the dependence balance bound technique
of Hekstra and Willems [14]. Indeed, Lemma C in Appendix C
implies that

Hence, using the trivial bound
, it follows from (28) that the maximum,

subject to (34), of

is an upper bound for .
Finally, for the existence of with specified

, the inequalities

are necessary and sufficient. Subject to these conditions, the
minimum above is attained when two of are
zero, and either or or ac-
cording to whether the first, the second, or the third mutual
information term is the smallest. Recalling (35), the proof is
completed.

VI. EXAMPLES

Example 1: Consider the DMC with
and

where denotes the indicator function. First, note that its
capacity region is

Consider SK generation for . The lower
bound for provided by Theorem 2 is equal to 0.5
since belongs to the capacity region of the MAC
iff . This SK rate is also achieved by simple source
emulation; see the Comment following Proposition 5.
The achievability of an SK rate of 0.5 can be seen also sepa-

rately by the following explicit scheme which generates 1 bit of
perfect SK (i.e., -SK with for by means of
independent transmissions over the DMC by the input terminals
using symbols followed by public communication only
by the output terminal. Terminal 1 transmits or 1 w.p.

and , while terminal 2 transmits and

or 1 w.p. , independently of . Ter-
minal 3 then sends the public message

. Clearly, all the terminals can perfectly re-
cover , say, from any and the communication

while satisfying the secrecy condition

Thus, is a perfect SK for of rate 0.5.
Next, for the upper bound, apply Theorem 6 with .

Then, the choice
yields the sum in (26) as . It follows

that . Thus, .
Furthermore, by Theorem 2, the PK capacity region

contains . In fact, ,
which can be seen as follows. Suppose that
contains a rate pair outside . By the convexity of the PK
region, it contains a rate pair with . Then, again
by Theorem 2, would be an achievable SK rate for

, which contradicts .

Example 2: Consider the DMC with
and

Its capacity region is
The Corollary of Theorem 2 yields that
. By the Comment following Proposition 5, the SK rate

of 0.75 is achievable also by simple source emulation. On the
other hand, Theorem 6 gives the upper bound

. Theorem 7 gives a better upper bound of
0.7911 [23]. The exact value of the SK capacity is unknown.
Next, consider PK generation for with privacy

from . Noting in (16) that the only permissible choice
of is , we get that the right-
hand side of (16), with conditionally independent of ,
equals . Thus, by Theorem
4, it follows that

with the previous maximum attained by
. Thus, the largest PK rate achievable by general source em-

ulation is 0.5. The exact value of the PK capacity remains un-
known, for Theorem 6 yields only the trivial upper bound 1.

Example 3: Consider the DMC with



CSISZÁR AND NARAYAN: SECRECY GENERATION FOR MULTIACCESS CHANNEL MODELS 27

Its capacity region is the same as that of the MAC in Ex-
ample 1. The Corollary of Theorem 2 yields the lower bound

. The same scheme for SK generation
for as in Example 1 attains an SK rate of 0.5.
By Proposition 5, the SK rate of 0.5 is achievable also by
general source emulation. However, by the Comment following
Proposition 5, it is not achievable by simple source emulation.
By the Corollary of Theorem 4, we obtain as in Example 1

that , so that .

Example 4: Consider the DMC
with and

i.e., the DMC outputs at terminals are mutually
independent rvs, each distributed uniformly on regardless
of the inputs, and the output at terminal is the modulo 2 sum
of the inputs and the remaining outputs. For SK generation for
any with , the lower bound provided by The-
orem 4 yields ; this SK rate of is achieved
by simple source emulation. Specifically, with the input termi-
nals in transmitting i.i.d. repetitions of a -tuple of mu-
tually independent rvs , each distributed uniformly
on , the DMC generates i.i.d. repetitions of an -tuple
of rvs , where are mutually inde-
pendent with each distributed uniformly on and is
the modulo 2 sum of . In this emulated source
model, the largest achievable SK rate for equals ; see
[9, Example 1]. Furthermore, in the explicit scheme provided
therein, the key generated for satisfies the secrecy condition
(2) for with , thereby constituting a perfect PK
for with privacy from in addition to being a perfect
SK for . Thus, we have , too.
For the special case , the achievability of an SK rate

of can be seen also separately by the following explicit
scheme which generates 1 bit of perfect SK for by means
of independent transmissions over the DMC by the input termi-
nals using symbols followed by public communi-
cation only by the output terminals but not by the input termi-
nals. Specifically, the input terminal transmits over the
DMC a sequence with being -valued
w.p. and ; all such sequences are
mutually independent. The output terminal
sends a public message which is the block

excluding , while the output terminal
sends the public message

where the additions are modulo 2. It is easily seen that
, say, is perfectly recoverable from and the public com-

munication . Furthermore, satisfies the
secrecy condition (1) with , and so constitutes a perfect
SK of rate .

Next, in the upper bound for in Theorem 6, we have
from (24) that for any

(36)

Fix , and consider the choice for
or for some , and

else. For this choice of , and noting that
, (36) gives

noting in the first inequality above that the summand in the last
term equals 0 if .
Thus, , and, in particular, .

Also, , as a PK for with privacy from any
is also an SK for . Observe that Example 1 above is

a special case of the present example with , and
.
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VII. DISCUSSION

We have considered secrecy generation for multiaccess
channel models whose resources consist of facilities for secure
noisy channel transmission from the input to the output termi-
nals, public noiseless communication among all the terminals,
and (mutually independent) randomization at the terminals.
Our main results are single-letter lower and upper bounds for
SK and PK capacities, in Theorems 4 and 6, which agree in
special cases but not in general. The general channel model
considered here appears more defiant than its special case with
a single input for which single-letter characterizations of SK
and PK capacities were found in [10].
A familiar technique for approaching channel secrecy prob-

lems is by means of source emulation. For instance, the avail-
able results on the oblivious transfer capacity of simple channel
models are obtained by this technique [2]. Regarding secrecy
capacities of channel models, they are known to be achievable
by simple source emulation in the case of a single input terminal
[10]. For multiple input terminals, the general source emulation
introduced in this paper can strictly outperform simple source
emulation even for models with a single output terminal. Note
that the achievability results proved by means of general source
emulation in Theorem 4 use very simple protocols.
We show for a MAC model with a single output, in which

all the terminals seek to share secrecy, a necessary and suffi-
cient condition for to be an achievable SK rate by general
source emulation is that must lie in the capacity re-
gion of the MAC; thus, the maximum SK rate achievable by
source emulation is the largest such in the MAC capacity re-
gion. A main open question for this special model, as well as
for the general channel model, is whether secrecy rates can be
achieved beyond those attainable by the simple protocols en-
tailed by general source emulation, by resorting to the complex
protocols described in Section II. Even for the special case of
Example 2, this question remains unresolved. However, for this
case, the general upper bound of Theorem 6 is bettered by that
of Theorem 7.

APPENDIX A

In order to complete the proof of the upper bound (25) in The-
orem 6, we show in (28) for every

and that

(A1)

and observe that the right side above equals the expression in
the claimed bound in (29).
As in [10, Appendix B], the left side of (A1) equals

(A2)

where

(A3)

Considering the separate terms in (A2), the counterparts of (B4),
(B5), and (B7) in [10, Appendix B] are

(A4)

since is a function of
and so is determined by

;

(A5)

and

(A6)

By (A2)–(A6), the left side of (A1) decomposes as
where

and

are the same as in [10, Appendix B], while

(A7)
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By [10, Appendix B], and . Turning to , we
claim that for each , the term of the sum in ,
denoted by , satisfies

(A8)

proving which will establish (A1).
For every , the first term of in (A7) is

(A9)

while the third term is

(A10)

where the inequality holds since is a function of
and so is

determined by . Furthermore, since
implies

so that in the right side of (A10)

(A11)

Combining (A9), (A10), and (A11), we get that is
bounded above as

(A12)

Now, we observe in the right side of (A12) that the summands
in the first and second sums, respectively, are

(A13)

and

(A14)

where the insertion of in the first expression in
(A14) is permissible for the reason in the passage following
(A10).
Finally, from (A12), (A13), and (A14), we get that for every

which is (A8).
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For the proof of Theorem 7, a refinement of the bounding of
in (A7) is needed for the special case of a MAC in class

with .
In this case, the term of the sum in (A7) is

Here, if because is
a function of if . For the same reason,
if , then

If , a similar bound holds with and inter-
changed, and the assumption allows fur-

ther bounding by . Using
this, and that (see (A9))

where the conditional entropy is unaltered by further condi-
tioning on the past, we obtain

(A15)

APPENDIX B

The proof of the nonnegativity of (23) relies on the following
technical lemma; that of (22) follows with .

Lemma B: Let ,
and be arbitrary sets with . For rvs ,
and for every collection of weights

satisfying

(B1)

it holds that

(B2)

Comment: Lemma B is a special case of Lemma B1 in [10]
and also of Theorem 1 in [16].

Proof: We have

The claimed nonnegativity of (23) follows upon taking
and in Lemma B. This lemma also pro-

vides a formal proof of the nonnegativity of (8) and (9), with
.

APPENDIX C

Lemma C: For a MAC with two inputs and one output,
and any protocol3 as in Section II, it holds for
that

(C1)

Proof: First we show that

(C2)

Recall that the communication in interval equals a sequence
of messages sent consecutively by the terminals

in rounds. If message is sent by terminal 1, then

3The independence of is not needed for this lemma.
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since is a function of and the prior communication
. The inequality

follows similarly when is sent by terminal 2, and holds with
equality when is sent by terminal 3 for then is a function of

. The validity of these inequalities for
implies (C2).

The assertion (C1) follows from (C2) and the inequality

(C3)

The latter is a version of the dependence balance bound [14, eq.
(1)]; note that the conditioning on here does not affect
the proof.

REFERENCES

[1] R. Ahlswede and I. Csiszár, “Common randomness in information
theory and cryptography—I: Secret sharing,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1121–1132, Jul. 1993.

[2] R. Ahlswede and I. Csiszár, “On oblivious transfer capacity,” in Proc.
IEEE Int. Symp. Inf. Theory, Nice, France, Jun. 2007, pp. 2061–2064.

[3] C. H. Bennett, G. Brassard, and J. M. Robert, “Privacy amplification
by public discussion,” SIAM J. Comput., vol. 17, no. 2, pp. 210–229,
1988.

[4] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “General-
ized privacy amplification,” IEEE Trans. Inf. Theory, vol. 41, no. 6, pp.
1915–1923, Nov. 1995.

[5] T. M. Cover and C. S. K. Leung, “An achievable rate region for the
multiple-access channel with feedback,” IEEE Trans. Inf. Theory, vol.
27, no. 3, pp. 292–298, May 1981.

[6] I. Csiszár, “Almost independence and secrecy capacity,” Probl. Pered.
Inform. (Special Issue Devoted to M.S. Pinsker), vol. 32, no. 1, pp.
48–57, 1996.

[7] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348,May 1978.

[8] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems, 2nd ed. Cambridge: Cambridge Univ.
Press, 2011.

[9] I. Csiszár and P. Narayan, “The secret key capacity of multiple termi-
nals,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3047–3061, Dec.
2004.

[10] I. Csiszár and P. Narayan, “Secrecy capacities for multiterminal
channel models,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp.
2437–2452, Jun. 2008.

[11] I. Csiszár and P. Narayan, “Secrecy generation for multiple input mul-
tiple output channel models,” in Proc. IEEE Int. Symp. Inf. Theory,
Seoul, Korea, Jun./Jul. 2009, pp. 2447–2451.

[12] A. Gohari and V. Anantharam, “Information-theoretic key agreement
of multiple terminals—Part I: Source model,” IEEE Trans. Inf. Theory,
vol. 56, no. 8, pp. 3973–3996, Aug. 2010.

[13] A. Gohari and V. Anantharam, “Information-theoretic key agreement
of multiple terminals—Part II: Channel model,” IEEE Trans. Inf.
Theory, vol. 56, no. 8, pp. 3997–4010, Aug. 2010.

[14] A. P. Hekstra and F. M. J. Willems, “Dependence balance bounds
for multiple access channels with feedback and equal output two-way
channels,” in Proc. Zesde Symp. Over Informatie Theory de Benelux,
Mierlo, The Netherlands, May 1985, pp. 193–198.

[15] M. Madiman and A. Barron, “Generalized entropy power inequalities
and monotonicity properties of information,” IEEE Trans. Inf. Theory,
vol. 53, no. 7, pp. 2317–2329, Jul. 2007.

[16] M. Madiman and P. Tetali, “Information inequalities for joint distribu-
tions, with interpretations and applications,” IEEE Trans. Inf. Theory,
vol. 56, no. 6, pp. 2699–2713, Jun. 2010.

[17] U. M. Maurer, “Secret key agreement by public discussion from
common information,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp.
733–742, May 1993.

[18] U. M. Maurer, “The Strong Secret Key Rate of Discrete Random
Triples,” in Communications and Cryptography: Two Sides of One
Tapestry, R. E. Blahut, D. J. Costello Jr., U. Maurer, and T. Mittel-
holzer, Eds. Norwell, MA: Kluwer, 1994, ch. 26, pp. 271–285.

[19] U. M.Maurer and S.Wolf, “Unconditionally secure key agreement and
the intrinsic conditional information,” IEEE Trans. Inf. Theory, vol. 45,
no. 2, pp. 499–514, Mar. 1999.

[20] U. M. Maurer and S. Wolf, “Information-theoretic key agreement:
From weak to strong secrecy for free,” in Proc. EUROCRYPT, 2000,
pp. 352–368.

[21] R. Renner and S.Wolf, “New bounds in secret-key agreement: The gap
between formation and secrecy extraction,” in Proc. EUROCRYPT,
2003, pp. 562–577.

[22] F. M. J. Willems, “The feedback capacity region of a class of discrete
memoryless multiple access channels,” IEEE Trans. Inf. Theory, vol.
28, no. 1, pp. 93–95, Jan. 1982.

[23] F. M. J. Willems, “On multiple access channels with feedback,” IEEE
Trans. Inf. Theory, vol. 30, no. 6, pp. 842–845, Nov. 1984.

[24] A. D. Wyner, “The wiretap channel,” Bell Syst. Tech. J., vol. 54, pp.
1355–1387, 1975.

Imre Csiszár received the diploma in mathematics from the L. Eötvös Univer-
sity, Budapest, in 1961, and the Doctor ofMathematical Science degree from the
Hungarian Academy of Sciences in 1977. He has been with theMathematical In-
stitute, now called Rényi Institute, of the Hungarian Academy of Sciences since
1961, being Head of the Information Theory Group there from 1968 to 2008.
Also, he had been Professor of Mathematics at the L. Eötvös University, Bu-
dapest, and the University of Technology and Economics, Budapest; currently,
he is Professor Emeritus of the latter. He has held visiting professorships at sev-
eral universities in Europe and the US. His research interests are centered on
information theory and its applications in probability and statistics. He is coau-
thor of the books Information Theory: Coding Theorems for Discrete Memo-
ryless Systems (New York: Academic Press, 1981; second edition Cambridge:
Cambridge University Press, 2012) and Information Theory and Statistics: A
Tutorial (Hanover: now Publishers, 2004).
I. Csiszár is Regular Member of the Hungarian Academy of Sciences. He is

Honorary President of the J.Bolyai Mathematical Society (Hungarian Mathe-
matical Society), and Fellow of the IEEE. He has been recipient of several aca-
demic awards, including the 1988 Prize Paper Award of the IEEE IT Society, the
Award for Interdisciplinary Research of the Hungarian Academy of Sciences in
1989, the Shannon Award of the IEEE IT Society in 1996, the Bolzano Medal
of the Czech Academy of Sciences in 2006, and the Széchenyi Prize of the Hun-
garian Republic in 2007.

Prakash Narayan received the Bachelor of Technology degree in Electrical
Engineering from the Indian Institute of Technology, Madras in 1976. He re-
ceived and the M.S. degree in Systems Science and Mathematics in 1978, and
the D.Sc. degree in Electrical Engineering, both from Washington University,
St. Louis, MO.
He is Professor of Electrical and Computer Engineering at the University of

Maryland, College Park, with a joint appointment at the Institute for Systems
Research. He has held visiting appointments at ETH, Zurich; the Technion,
Haifa; the Renyi Institute of the Hungarian Academy of Sciences, Budapest;
the University of Bielefeld; the Institute of Biomedical Engineering (formerly
LADSEB), Padova; and the Indian Institute of Science, Bangalore. His research
interests are in multiuser information theory, communication theory, communi-
cation networks, cryptography, and information theory and statistics.
Dr. Narayan has served as Associate Editor for Shannon Theory for the

IEEE TRANSACTIONS ON INFORMATION THEORY; was Co-Organizer of the
IEEE Workshop on Multi-User Information Theory and Systems, VA (1983);
Technical Program Chair of the IEEE/IMS Workshop on Information Theory
and Statistics, VA (1994); General Co-Chair of the IEEE International Sympo-
sium on Information Theory, Washington, D.C. (2001); and Technical Program
Co-Chair of the IEEE Information Theory Workshop, Bangalore (2002). He
served as a Member of the Board of Governors of the IEEE Information Theory
Society from 2007 to 2012.


