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Abstract—We derive single-letter characterizations of (strong)
secrecy capacities for models with an arbitrary number of termi-
nals, each of which observes a distinct component of a discrete
memoryless multiple source, with unrestricted and interactive
public communication permitted between the terminals. A subset
of these terminals can serve as helpers for the remaining terminals
in generating secrecy. According to the extent of an eavesdropper’s
knowledge, three kinds of secrecy capacity are considered: secret
key (SK), private key (PK), and wiretap secret key (WSK) capacity.
The characterizations of the SK and PK capacities highlight the
innate connections between secrecy generation and multiterminal
source coding without secrecy requirements. A general upper
bound for WSK capacity is derived which is tight in the case when
the eavesdropper can wiretap noisy versions of the components
of the underlying multiple source, provided randomization is
permitted at the terminals. These secrecy capacities are seen to
be achievable with noninteractive communication between the
terminals. The achievability results are also shown to be universal.

Index Terms—Common randomness, multiple source, pri-
vate key, public discussion, secrecy capacity, security index,
Slepian–Wolf constraints, wiretap.

I. INTRODUCTION

I T might seem surprising that separate terminals, which ob-
serve the outputs of distinct albeit correlated sources, could

devise a secret key by means of public communication. In other
words, these terminals are able to generate common random-
ness regarding which an eavesdropper, with access to this com-
munication and perhaps also to side information comprising the
outputs of other “wiretapped” sources which are correlated with
the previous sources, can glean only a negligibly small amount
of mutual information.

This fact was first noted, to our knowledge, by Maurer (see
[8]). The case of two terminals has been extensively examined
by Maurer [8], Ahlswede and Csiszár [1], and Csiszár and
Narayan [6], with the last also allowing a “helper” terminal
which observes the output of another source, to assist in
generating secrecy. Still, a single-letter characterization of
the secrecy capacity—the largest rate at which secrecy can
be generated—is known only under special circumstances,
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e.g., when the permissible communication is limited to just a
single transmission by one of the two participating terminals
(of arbitrary rate [1] or of constrained rate [6]). A simple case
for which a complete and heuristically expected answer is
available, entails secrecy generation by two terminals with
unrestricted communication when the eavesdropper has no side
information beyond this communication. The corresponding
secrecy capacity is equal to the mutual information of
the random variables (rvs) , , whose respective independent
and identically distributed (i.i.d.) repetitions are observed by
the two terminals [8], [1]. With the assistance of a helper, which
observes i.i.d. repetitions of an rv , the secrecy capacity
is [6]; and if the helper is
wiretapped, the corresponding secrecy capacity is
[1], [6].

In this paper, we consider models with an arbitrary number
of terminals, each of which observes a distinct component of a
discrete memoryless multiple source. Unrestricted public com-
munication is allowed between these terminals, i.e., no rate con-
straints are imposed on the communication, which may be in-
teractive. It is understood that all the transmissions are observed
by all the terminals. If the terminals were to communicate over
a network with links of fixed connectivity and constrained rates,
a more complex model would be required. Also, our models
tacitly assume that all the public transmissions are impervious
to any deliberate attempts at inserting corruption. In a cryp-
tographic situation, this assumption implies, in effect, that the
public transmissions are authenticated, or that the eavesdropper
is passive, i.e., unable to tamper with such transmissions. (For
unauthenticated public transmissions, see for instance [10].)

Our main technical contribution is the determination of the
secrecy capacity when an eavesdropper observes the com-
munication between the terminals but does not have access
to any other information. Suppose that terminals
observe i.i.d. repetitions of the rvs , respectively.
Let be an arbitrary subset1 of terminals.
We show that the largest rate at which the set of terminals
can generate secrecy with the remaining terminals serving as
helpers, is obtained by subtracting from the total joint entropy

the smallest rate of communication which
enables each terminal in to reconstruct all the compo-
nents of the multiple source. The problem of determining the
latter rate is, of course, one of multiterminal source coding
which is not concerned with any secrecy constraints. Note,
however, that helpers for secrecy generation do not correspond
to helpers in the sense of multiterminal source coding (see
[4]), and determining the rate above involves no helpers in that
sense. The mentioned result highlights an inherent connection

1Throughout, the symbol denotes a subset which need not be a proper
subset.
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between secrecy generation and multiterminal source coding,
and affords the following heuristically satisfying interpretation:
the total rate of shared common randomness achievable by
these terminals, viz. , can be decomposed into
the least rate of communication needed for this purpose and the
largest secrecy rate. We provide a single-letter characterization
of this smallest rate of communication, and thereby also of the
secrecy capacity. The capacity result, though not in the form
of an explicit formula, is remarkably simple; in particular, it
does not involve any auxiliary rvs. We also show that in order
to achieve the secrecy capacity, there is no need for interactive
communication; a single autonomous transmission from each
terminal is adequate. Furthermore, additional randomization at
the terminals does not serve to enhance the secrecy capacity.

In the general case in which the eavesdropper also observes
wiretapped sources in addition to the communication between
the terminals, a complete solution is not to be expected since
the problem remains unresolved even when . However,
we do obtain a single-letter characterization in the special case
when the wiretapped sources represent a subset of the helpers.
For instance, when and the terminal is
wiretapped, this model depicts the situation when a centralized
server helps the other terminals generate a “private key” (PK)
which is concealed even from itself. (This case, for ,
also subject to communication rate constraints, was considered
in [6].) Additionally, the result for this special case provides
an upper bound for the general case which is sometimes tight.
The last occurs in the practically realistic situation in which the
wiretapped sources constitute noisy versions of the components
of the underlying multiple source.

All our capacity results mentioned above hold in a strong
sense; specifically, achievability results are established for the
“strong” version and converse results for the “weak” version of
Definition 1 in Section II. The concept of strong secrecy ca-
pacity was introduced in [9], and our concept (used previously
in [5], [6]) is even stronger. While the phenomenon of the weak
and strong definitions of secrecy capacity leading to identical re-
sults has been demonstrated for various models in [9], [5], [11],
[6], it is worth mentioning that our technique leads directly to
strong achievability.

Section II contains the preliminaries. Our main results are
stated in Section III, and the proofs are provided in Section IV.
Section V addresses the computation of the secrecy capacities.
In particular, we obtain explicit formulas when
form a Markov chain or, generally, a Markov chain on a tree.
The discussion in Section VI includes the universality of our
strong achievability results for the class of discrete memoryless
multiple sources, and extensions of the characterizations of the
various secrecy capacities to the discrete stationary ergodic mul-
tiple source.

II. PRELIMINARIES

Let , , be rvs with finite alphabets
, respectively. For , we denote

and, in particular, ,
. Similarly, for real numbers , and

set , we shall use the notation . We

shall denote i.i.d. repetitions of by
and of by .

Given , for rvs , , we say that is -recoverable from
if for some function of . All

rvs are assumed to take values in finite sets, even if not stated
explicitly.

In the models considered in this paper, the components
of a discrete memoryless multiple source with generic rvs

are, respectively, observed by different ter-
minals. Thus, with observation length , the th terminal
observes . Hereafter, will always denote the
number of terminals and the observation length, unless stated
otherwise. The terminals are allowed to communicate over
a noiseless public channel, possibly interactively in several
rounds. We assume without any loss of generality that such
transmissions occur in consecutive time slots in rounds. The
communication is described in terms of mappings ,
with corresponding to the transmission in slot by ter-
minal , where , ; in general, is
allowed to yield any function of and of the previous
transmissions described by . The
corresponding rvs representing the communication will be
depicted by , where with

, and we denote .
For our purposes, it will transpire that noninteractive com-

munication suffices, i.e., with , where
, . Randomization at the terminals is not per-

mitted in our basic models. However, as we show later, most of
our results remain unaffected when randomization is permitted.

A function of will be termed -common randomness
-CR for a set of terminals , achievable with commu-

nication , if is -recoverable from for
each .

A function of constitutes an -secret key -SK for a
set of terminals , achievable with communication , if

is -CR for which is achievable with , and, in addition,
it satisfies the secrecy condition2

(1)

and the uniformity condition

(2)

Here, denotes the set of possible values of . The terminals
in thus generate an SK, with the terminals in
serving as helpers (e.g., centralized or trusted servers in a key es-
tablishment protocol) by furnishing the terminals in with ad-
ditional correlated information; the SK thus generated is effec-
tively concealed from an eavesdropper with access to the public
communication and is nearly uniformly distributed.

A more frequently encountered practical situation arises
when the eavesdropper has access to side information in ad-
dition to the public communication between the terminals. To
model this situation, consider an rv jointly distributed with

, and suppose that the eavesdropper can
wiretap the component of the i.i.d. repetitions of .

2All logarithms and exponentiations are with respect to the base .
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Then an -SK for a set of terminals will be called an
-wiretap secret key ( -WSK) if it satisfies the stronger secrecy

condition

(3)

A particular case, depicting the situation in which some of the
helper terminals are compromised, arises when for a
set . An -WSK for this case, i.e., when (3) is satisfied
for , will be called an -private key ( -PK) for which
is private from the terminals . This notion is meaningful,
of course, only for proper subsets and for nonempty
subsets . A practical situation of this kind arises, with

, when terminal represents a centralized server which
helps the other terminals generate an SK that is concealed even
from itself. For studying PK capacity (defined below), attention
could be restricted to the case when is a singleton set; the
general case could be reduced to it by replacing the terminals in

with a solitary terminal which observes . Still, we prefer
to avoid this restriction as some of our results can be presented
more naturally when the set of compromised helper terminals
is arbitrary.

A less special, and practically important, case of wiretap se-
crecy which we shall also consider arises when the eavesdropper
can wiretap noisy versions of some or all of the components
of the underlying multiple source. In this case, formally

where the conditional probability mass function
(pmf) of given is of the product form

(4)

We shall consider three kinds of secrecy capacity, corre-
sponding to the concepts above of -SK, -WSK, and -PK.

Definition 1: Given , a number is
an achievable SK rate for a set of terminals if -SKs

for are achievable with suitable com-
munication (with the number of rounds possibly depending on

), such that

and (5)

The largest achievable SK rate for is the SK capacity .
Achievable WSK and PK rates are defined analogously, and so
are the WSK capacity and the PK capacity .
An achievable SK, WSK, or PK rate will be said to be strongly
achievable if above can be taken to vanish exponentially in

; a secrecy capacity (i.e., an SK, WSK, or PK capacity) will be
termed strong if all smaller rates are strongly achievable.

Remarks: Clearly, the condition could be
replaced by , where is the set of pos-
sible values of . It is also obvious that in our definition of
-CR and -SK (-WSK, -PK), we could drop the condition that

is a function of with no change in achievable rates. It
was pointed out by Maurer [9] that the secrecy and uniformity

conditions (1)–(3) were inadequate for cryptographic purposes,
and should be strengthened by omission of the factor . Note
that our concept of strong achievability demands even more.
Moreover, if is not required to be a function of , we
could strengthen the uniformity condition (2) to strict unifor-
mity, , without changing the strongly achiev-
able rates, as in [11].

Example 1: Let be binary rvs, where
are mutually independent with each uniformly

distributed on and .
Note that each equals the modulo sum of the other ’s,
which are independent and uniformly distributed on .
We claim that in this elementary example, 1 bit of perfect SK
(i.e., -SK with ) is achievable for any set of terminals

, with observation length . First, let
, . Let each terminal ,

, transmit at rate , with being
the block excluding , and let

where the additions are modulo . It is easily seen that
, say, is perfectly recoverable from any and the commu-

nication . Moreover, all of is perfectly
recoverable from , implying that

where the last equality holds because strict inequality in
is ruled out by

This shows that , and so is a perfect
SK for all the terminals.

Next, let be arbitrary and assume without any loss
of generality that . In this case, let the trans-
missions be as above but with the omission of all bits
with . Then is a perfect SK for the termi-
nals . Moreover, since the transmissions of the terminals ,

, equal the entire available at those termi-
nals, is also a (perfect) PK for ,
private from the set of terminals .
In this example

We have shown above that these values are achievable SK or PK
rates (with ). The results in this paper will show that they
cannot be bettered (see Example 4 in Section V).

Finally, it will be useful for us to introduce two “security
indices” for the situation when an SK and an eavesdropper’s
knowledge are, respectively, represented by the rvs and ,
taking values in the finite sets and . Ideally, should be in-
dependent of and uniformly distributed on . The deviation
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from this ideal can be measured by the information-theoretic se-
curity index

(6)

Note that it is the smallness of , with an appropriate choice
of , which is effectively called for in the definitions above of
-SK, -WSK, and -PK. Simple algebra shows that equals

the information divergence between the joint pmf of , , and
the Cartesian product of the uniform pmf on and the marginal
pmf of . An alternative security index is the variation distance
between these two pmfs on , or equivalently, the average
variation distance of the conditional pmf of conditioned on

from the uniform pmf on , the average being taken
with respect to the pmf of :

(7)

Lemma 1: We have, with for the second inequality,
that

(8)

For our purposes, the second inequality will be crucial. The
proof of Lemma 1 is the same as that of a similar result ([5,
Lemma 1]). Still, for completeness, a proof will be provided in
Appendix B.

III. STATEMENT OF RESULTS

In analogy with the SK, WSK, and PK capacities, we could
also define a notion of CR capacity. However, in the context of
our models, with no rate constraints imposed on the communi-
cation between the terminals, it is obvious that is always an
achievable CR, so that the CR capacity trivially equals .
Interestingly enough, however, it transpires that the problem of
determining the SK capacity for a set of terminals is
closely connected with that of determining the minimum rate of
overall communication which renders an achievable CR for
these terminals, i.e., makes them “omniscient” in effect. Simi-
larly, the PK capacity for , private from a set ,
will be related to the minimum rate of overall communication
needed to make an achievable CR for the set of terminals

if each terminal transmits all of .

Definition 2: Given , a number is
called an achievable rate of “communication for omniscience”
(CO rate) for a set of terminals , if is achievable as

-CR for these terminals with communication
(with the number of rounds possibly depending on ), such
that

and (9)

where denotes the cardinality of the range of . Fur-
ther, given a set , an achievable CO rate for when
each terminal transmits all of , is defined similarly
but with is (9) replaced by the communication of the ter-
minals . The smallest achievable CO rate is denoted by

in the former case and by in the latter case.

We shall relate the problem of determining the smallest
achievable CO rates and , and thereby the
SK and PK capacities and , to straightforward
extensions of the Slepian–Wolf multiterminal source coding
problem which have the achievable rate regions

(10)
and

(11)

respectively. The inequalities in (10) and (11) will be referred to
as the SW constraints.

Proposition 1: It holds that

(12)

where is given by (10). Further

(13)

where is given by (11). These CO rates can be
achieved with noninteractive communication, and for achiev-
able CO rates larger than (resp., ), is
achievable as -CR with exponentially vanishing .

Proposition 1 is a source coding theorem of the
“Slepian–Wolf type,” with the additional element that
interactive communication is not a priori excluded, which
makes the converse part nontrivial. While perhaps it has not
been stated heretofore in the literature in exactly the same
form, a related result appears in [14].

Theorem 1: The (strong) SK capacity for a set of
terminals equals

(14)

and can be achieved with noninteractive communication.

Remark: The proof of Theorem 1 below uses transmissions
by all the terminals in as well as omniscience at all the termi-
nals in , to show that the SK capacity can be achieved. These
two features were also seen previously in Example 1. However,
neither feature is necessary in order to achieve the SK capacity.
For instance, in the case with , ,
the SK capacity can be achieved by
means of just a single transmission from either terminal 1 (at rate

) or terminal 2 (at rate ) (cf. [8], [1]); also,
this enables omniscience at the receiving terminal but not at the
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transmitting terminal. In the case with ,
, and , , forming a Markov chain,

(see Example 5 in Section V). This SK capacity can be achieved
by a single transmission from terminal 2 (cf. [6, Theorem 2.4]);
however, omniscience is not enabled at any terminal.

Theorem 2: The (strong) PK capacity for a set of
terminals , private from terminals , equals

(15)

and can be achieved with noninteractive communication.

Next, to consider the effect of randomization, assume that ter-
minal generates an rv , , such that and

are mutually independent. The notions of SK, WSK, and
PK capacities with randomization at the terminals can be formu-
lated as above with in the role of , .

Theorem 3: The SK capacity , , and the PK
capacity , , , are not increased by
randomization at the terminals.

The following result concerning WSK capacity is a con-
sequence of Theorem 2. To formulate this result, introduce
a dummy terminal , and assign to it the rv whose
i.i.d. repetitions are accessible to the eavesdropper. Denote
by the PK capacity for the set of terminals pri-
vate from the dummy terminal, when and

are replaced by and
; a single-letter characterization of

is provided by Theorem 2.

Theorem 4: is always an upper bound for ,
and so is for any rv which is conditionally inde-
pendent of when conditioned on . If ,
with the conditional independence property (4), then

provided that randomization is permitted at the ter-
minals.

Remark: By Theorem 3, the SK capacity and the PK capacity
remain unaffected upon permitting randomization at the termi-
nals. The question as to whether the same applies to the WSK
capacity, too, shall not be addressed here.

Example 2 (Special Case of Theorem 4): To spe-
cialize Theorem 4 to the case , , con-
sider the augmented set of terminals, viz. , with being
assigned to the dummy terminal 3. Then the set in (11) with

is determined by the two SW constraints

whereby (15) gives

Hence, Theorem 4 specialized to this case gives that the WSK
capacity is bounded above by the infimum of for

rvs which are conditionally independent of when
conditioned on . This bound for the case , obtained
in [1], has been the best one known until recently (see [12]).
Moreover, while the WSK capacity for is known to
equal if , , form a Markov chain in some
order (see [8], [1]), Theorem 4 implies the same equality also
when , , , is a Markov chain in this order, and

(provided randomization is permitted at the terminals);
this latter case is apparently not covered by previous results.

Finally, while Theorems 1 and 2 give single-letter characteri-
zations of SK and PK apacities, they may not lend themselves to
a straightforward determination of whether a capacity in ques-
tion is positive. The next result, whose proof is independent of
Theorems 1 and 2, provides necessary and sufficient conditions
for zero capacity, namely, the existence of “independent parti-
tions.”

Theorem 5:
i) For , the SK capacity iff

for some with , .
ii) For , , the PK capacity iff

for some with ,
.

IV. PROOFS OF THEOREMS 1–5

The main technical tools are supplied by Lemma 2 that fol-
lows and Lemma B.3 in Appendix B, which are used to prove
the converse and achievability parts, respectively, of both The-
orems 1 and 2. Lemma 2 is also used to prove the converse part
of Proposition 1. Lemma 2 affords, in effect, a decomposition of
the total joint entropy into the normalized conditional
entropy of any achievable -CR conditioned on the communi-
cation with which it is achieved, and a sum of rates which sat-
isfy the appropriate SW conditions. Lemma B.3 guarantees, for
i.i.d. repetitions of a pair of rvs and for a given
function of , the existence of a function of with
“large” range such that for this and , the se-
curity index defined in (6) decays to exponentially rapidly
as . This lemma follows from an extension of the “al-
most independence” result ([5, Theorem 1]), viz. Lemma B.2 in
Appendix B, which, in turn, is a consequence of the “coloring
lemma” in [2]. Lemma 2 is followed by the proof of the con-
verse part of Proposition 1 (whose achievability part is proved
in Appendix A), and then by the proofs of Theorems 1 and 2.
The proof of Theorem 3 is then given, based on Lemma 2. The-
orem 4 is proved next as a consequence of Theorem 3. Theorem
5 is established last, based on—as stated earlier—a different set
of ideas from those used in the proofs of the earlier theorems.

Lemma 2: Given , let
be -CR (with values in a finite set ) for a set of terminals

, achievable with communication .
Then

(16)

for some (see (10)).
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Moreover, if for a set , each terminal trans-
mits the entire , then (16) holds with replaced by

for a suitable (see (11)).
Proof: Since and are functions of

Setting

(17)

the previous equality gives

(18)

Thus, defined by

satisfies (16), and it remains to show that . To that
end

Since is -CR for , it is -recoverable from and if
, and, hence, by Fano’s inequality

for . Further, since is a function of and
for , only those terms can
be nonzero for which , . Upon bounding
these terms from above by omitting , and similarly
bounding the terms by
omitting , it follows that

whenever . This proves that .
In order to prove the second assertion of the lemma, assume

without any loss of generality that . Then the
assumption that each transmits all of means that

, , so that in (17), ,
. Then, (18) becomes

and the proof is completed as above.

Proof of Proposition 1: We prove the converse part here.
The achievability part is easy to prove by standard techniques,
and in Appendix A we show that it is a special case of a gen-
eral theorem ([4, Theorem 3.1.14]) concerning normal source
networks without helpers; this will produce a stronger result,
which is also relevant for our purposes.

Suppose first that is achievable as -CR for the ter-
minals in with (possibly interactive) communication

, where . By Lemma 2 applied to

is equal to

for some . It follows that for this

(19)

As , (19) proves the claim that

is a lower bound for achievable CO rates (see Definition 2).
Suppose next that is achievable as -CR as above when

each terminal transmits all of ; then the total commu-
nication is

where comprises the transmissions of the terminals
. By the second part of Lemma 2, (16) holds in this case with

replaced by for some
, and, hence, (19) also holds with the same replacement.

Since

it follows that

for some . This establishes the claim that
is a lower bound for achievable

CO rates when each terminal transmits all of .

Proof of Theorem 1:
Converse Part. Suppose that represents -SK for ,

achievable with (possibly interactive) communication ,
where (see Definition 1). Then (1) and Lemma 2 give
that

(20)
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for some . Here, by Propo-
sition 1, and because is a function of

. Hence, (20) shows that is an upper
bound for achievable SK rates, as claimed.

Achievability Part. We have to show that each
is a strongly achievable SK rate for

the set of terminals , achievable with noninteractive com-
munication. To this end, fix an arbitrarily small and
note that, by Proposition 1, noninteractive communication

with

(21)

suffices to achieve as -CR for the set of terminals , with
exponentially vanishing . Of course, the same communication
then makes any function of an -CR. Hence, it suffices to
prove the existence of a function of with range

such that

goes to exponentially fast.
Recalling the bound (21) on the cardinality of the range of

, the latter is a consequence of Lemma B.3 in Appendix B
applied to and constant, with ,
provided that . Since can be
chosen arbitrarily small, this completes the proof.

Proof of Theorem 2:
Converse Part. Let represent -PK which is private

from , achievable with (perhaps interactive) commu-
nication , where . On account of the privacy condi-
tion (see (3) with ), we can assume without any loss of
generality that each terminal transmits all of ; thus,

where comprises the transmissions of the terminals
. Then, by (3) and the second part of Lemma 2

(22)

for some . Here, by
Proposition 1, and . Hence, it follows that

is an upper bound for achievable
rates, as claimed.

Achievability Part. The proof is almost identical to that of the
achievability part of Theorem 1, but since each terminal
completely reveals , the communication that we now have to
consider is

Accordingly, the second part of Proposition 1 has to be invoked
for the achievability of as -CR with exponentially van-
ishing , using such communication of rate

Moreover, to show the existence of a function of with
the desired secrecy property, Lemma B.3 has to be applied to

, , with and

The details are omitted.

Proof of Theorem 3: Considering first the case of SK ca-
pacity, let represent -SK for ,
achievable with communication when randomiza-
tion is permitted, where . Proceeding exactly as in the
proof of the converse part of Theorem 1, it is seen that
still satisfies (20) where , as (16) remains
unchanged in the present case. (Precisely, this can be seen from
the proof of Lemma 2 by replacing the previous choice of by

in this case.) To complete the proof note that the observation
following (20) concerning is not valid in the present case
as no prior assumption is made on the cardinality of the range
of the rv . However, using (2) in lieu, we get from (20) that

(23)

Hence, remains an upper bound for all
achievable SK rates with randomization at the terminals.

Turning to PK capacity, we proceed as in the proof of the con-
verse part of Theorem 2, noting that by (3) with and the
second part of Lemma 2, (22) is satisfied where

. The proof is then completed along the same lines
as that above for SK capacity.

Proof of Theorem 4: The upper bound
is obvious from the definitions. If is conditionally

independent of given , then the secrecy condition (3) im-
plies the same for in the role of . Hence, if is an -WSK
when the eavesdropper wiretaps , it is also an -WSK when

is wiretapped, and hence the upper bound above holds also
when is replaced by .

Suppose next that , with the con-
ditional independence property (4). Then the terminals can
simulate the wiretapped sources, provided that they are allowed
to randomize. Using randomizing rvs (with

, being mutually independent), each terminal
can generate and reveal an rv such

that the joint pmf of equals that of . Then,
using the assumption (4), the joint pmf of is the
same as that of . In particular, the secrecy condition
(3) holds for iff it does so for in the role of .
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This means that is an -WSK for a set of terminals
iff in the model with augmented by a dummy terminal to
which is assigned (see the passage preceding Theorem 4),

is an -PK for which is private from the dummy terminal.
Since obviously , this completes the
proof.

Proof of Theorem 5:
Sufficiency in i), ii). The sufficiency of the existence of “inde-

pendent partitions” for zero capacity is easy. For any
with , , consider a consolidated model
with two terminals which observe and , respectively.
Clearly, cannot exceed the SK capacity (without helper)
for the consolidated model. The latter equals (cf.
[8], [1]). Hence, whenever for
some with , .

Similarly, cannot exceed the PK capacity for the
consolidated model (with ) with the users maintaining
additional secrecy from a wiretapped helper observing . The
PK capacity in the latter situation equals (cf.
[1], [6]). The asserted sufficiency follows.

Necessity in i), ii). To prove the necessity of the existence of
an independent partition for zero capacity, we give a sufficient
condition for positive capacity and show that this condition, in
turn, is implied by the nonexistence of independent partitions.

Consider first the case of the SK capacity. Let be a graph
with vertex set , where forms an edge iff

for some (possibly with ). For such
, clearly an SK can be generated with the help of

at rate not less than , by interpreting as com-
prising wiretapped helpers whereby they completely reveal their
respective source outputs (cf. [1], [6]). (It is immaterial here that
this SK will be concealed also from .) Then, the connected-
ness of the vertices in is sufficient for , which is
seen as follows. If and , , are edges of with
common vertex , then , and , can, respectively, generate
two independent SKs of 1 bit, say (possibly with help as above),
in nonoverlapping time intervals, followed by communicating
to , the binary sum of these SKs thereby enabling (resp., )
to recover the SK for , (resp., , ). Any one of these two SKs
constitutes a valid SK for , , . This means of SK propagation
will enable all the vertices in —by their connectedness—to
share an SK, so that .

It suffices to show that if the vertices in are not connected,
then an independent partition exists. Suppose that the vertex

is not connected to every vertex in . Let be the set of
vertices in which are connected to . Note that ,

. Then and form an independent parti-
tion. Specifically, can be represented as the sum
of conditional mutual information terms of the form

, where , , . Since
cannot be an edge of if , , all these terms

in the sum equal zero.
The case of the PK capacity is similar with the following mod-

ifications. We now define the graph with vertex set , with
forming an edge iff for some

(possibly with ). For such ,
a PK can be generated with the help of and private from
at rate not less than ; this is seen by in-
terpreting too as comprising wiretapped helpers (cf. [1], [6]).
(The resulting additional privacy from as well is immaterial
here.) Then the connectedness of the vertices in is sufficient
for . The proof is completed by arguing along the
same lines as for the SK capacity above; the details are omitted.

V. COMPUTATION OF SECRECY CAPACITIES

The single-letter characterizations of the SK and PK capac-
ities in Theorems 2 and 3 reduce their computation to linear
programming problems. In this context, the duality theorem of
linear programming ([13, pp. 90–96]) is relevant. The version
stated in this section is, in effect, the same as [13, Corol-
lary 7.1l], and is formally obtained from the latter by replacing

, , by - , - , - .

Duality Theorem: Let be a matrix, a -dimen-
sional column vector, and an -dimensional row vector, such
that the minimum of subject to is finite. Then this
minimum equals the maximum of subject to , ,
and that maximum is attained for a row vector whose positive
components correspond to linearly independent rows of .

In order to apply this theorem to compute , let be the
incidence matrix of the family of sets that do not con-
tain , i.e., the rows of are the incidence vectors of the sets
as above. Let the components of be the conditional entropies

for as above, and let (with
components). Then the duality theorem gives that , the
minimum of subject to , is equal to the maximum of
linear combinations , with positive weights

, for collections of sets as above whose incidence vectors
are linearly independent and whose linear combinations, with
the weights , equal . In particular, such a collec-
tion consists of no more than sets. The duality theorem can
be similarly applied to the computation of PK capacity, which
requires a determination of ; in that case, the role of

above will be played by the cardinality of .

Example 3 (SK capacity for , ): To
determine the minimum of subject to
the SW constraints (cf. (10))

(i)
(ii)
(iii)
(iv)
(v)
(vi)

the collections of (no more than three) subsets of to be con-
sidered are: the pairs for equal to , , or ;
and the three-tuple ; the weights are all

for the first three collections and are all for the last collec-
tion. Formally, the collection also comes into
account with weights ; however, adding the inqualities (i), (ii),
(iii) gives a weaker bound for than adding either
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(i), (vi) or (ii), (v) or (iii), (iv). Thus, the duality theorem yields
that is equal to the maximum of

and

It follows by simple algebra that

is equal to the minimum of

and

The SK capacity for , and the PK capacity
for , , can also be computed sim-

ilarly. (However, the latter secrecy capacities have been found
earlier in [6], [1], unlike above.)

Example 4 (Upper bounds for SK capacity for arbitrary
and ): Consider a partition of

into (disjoint) sets, each intersecting , where
. Then the SW constraint

(24)

with the choice appears among those defining
(see (10)). Substituting in (24) and adding these in-
equalities for yields

as exactly one of the sets and, hence, exactly of the
sets contain any particular . Therefore,

Denoting by the minimum of

(25)
over all partitions whose atoms intersect

, we obtain that satisfies

(26)

Note that the bound (26) is tight for the rvs in Example 1,
where , and where it is shown by an explicit con-
struction that . Moreover, (26) is always tight
for , ; see Example 2. It is tempting to conjecture
that the bound (26) is always tight. Indeed, (25) is commonly

interpreted as a measure of the mutual dependence of the rvs
, , and hence measures the minimum mu-

tual dependence associated with admissible -partitions of .
It would be heuristically appealing if the SK capacity could al-
ways be expressed in terms of such dependence measures. Still,
it is not expected that the conjecture above will hold true. By the
duality theorem, equals the maximum lower bound for

yielded by any collection of sets with linearly
independent incidence vectors admitting a linear combination
(with positive weights) equal to . When is large,
there are several such collections other than those comprising
the complements of atoms of a partition of , and no particular
reason is apparent for the best lower bound for to be
always provided by one of the latter special collections. How-
ever, we have not delved into this issue, which remains open
even for the case .

We close this section with additional examples of interest in
which the various secrecy capacities are computed.

Example 5 (SK capacities when is a Markov
Chain:

i) Consider first the case . Since

for each , and since by the assumed Markovity
the mutual information term equals , obviously

(27)

We shall show, in fact, that (27) holds with equality. To this end,
on account of Theorem 1, it suffices to find

such that

(28)

say. We claim that

if
if

(29)

is a suitable choice. As the Markov assumption implies that

the choice (29) does satisfy (28). To show that (29) also satisfies
the SW conditions determining the set in (10), i.e.,

(30)

for each proper subset , suppose first that

Then, using the Markov property

(31)
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with the understanding that constant. As both

and

are upper bounds for the right-hand side of (31), it follows that
(30) is certainly satisfied if or . If and

, we bound the right-hand side of (31) by

provided that . Then,
implies that this is further bounded above by

so that (30) is satisfied also in this case. The last argument does
not work if , but then (since is a proper subset
of ), and we can proceed similarly as above starting with the
upper bound

for the right-hand side of (31).
Suppose next that is not of the form .

Then, it can be represented as

and the Markov property implies that

Since (30) holds for each , as we have just shown, it follows
that it holds for as well. This completes the proof
of equality in (27).

ii) The result above also allows the determination of the SK
capacity for arbitrary . Denote the smallest and
largest by and , respectively. If ,

, then (27) holds also with in the role of , for
the same reason. Thus, in this case, (since,
by definition always). In the general case,
the obvious upper bound for , obtained similarly as in
(27), is

Here, again, equality must hold, since by the previous result,
the right-hand side equals the SK capacity in the case where

is replaced by ;
thus, it is achievable even with the helper terminals
and not transmitting at all.

Hence, when is a Markov chain, we always have
that

(32)

and only those helpers can actually help the terminals in
achieve this SK capacity whose indices fall between the smallest

and the largest .

Example 6 (PK and WSK capacities when is a
Markov Chain): For the PK capacity to be positive,
a necessary condition is that , with and

being as defined in Example 5. Indeed, if
for some , then

Subject to the necessary condition above, we have

(33)

The proof is similar to that of (32), using Theorem 2 in-
stead of Theorem 1. It suffices to consider the case when

, and then we can proceed as in Example 5,
using instead of (29)

if
if

for achieving the minimum in (33). The details are omitted.
We note that the PK capacity (33) depends on and only
through , , and the elements of closest to from
the left and to from the right (if any).

The result (33) enables a determination also of the WSK ca-
pacity when the eavesdropper has access to i.i.d. repetitions of

, such that is a Markov chain.
To see this, by Theorem 4, we consider an augmented model
with terminals to which are assigned the sources with
generic rvs . The PK capacity for
this latter model which is private from the dummy terminals to
which and are assigned, is then equal to (at least
if this WSK capacity is defined with randomization permitted).
Thus, in this case

(34)

The WSK capacity (34) represents a new result even for the
special case when (see Example 2).

Example 7 (Markov chain on a tree): Consider a tree with
vertex set , i.e., a connected graph con-
taining no circuits. For in the edge set of , let

denote the set of all vertices connected with by
a path containing the edge . The rvs form a
Markov chain on the tree (see [7]) if for each ,
the conditional pmf of given depends only on .
Note that when is a chain, this concept reduces to that of a
standard Markov chain.
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The analog of (27) for this case is

a consequence of and
the fact that the Markov property implies

(35)

Moreover, it can be seen similarly as in Example 5 that the
bound above is tight. Take an edge of attaining

, and for let be the first
edge of the path in that connects with . Then the analog of
(28) with in the role of is satisfied by ,
as can be seen from the consequence

of (35), decomposing the conditional entropies using the
Markov assumption. These ’s also satisfy the SW conditions
(30) analogously as in Example 5. In that example, (30) was
verified first with ; now, the case to be
verified first is with being the vertex set of a subtree of .
The straightforward details are omitted.

The formula for above enables us to readily obtain
the following analog of the formula for in (32):

(36)

here, denotes the smallest subtree of whose vertex set
contains .

The results of Example 6 also easily extend to the present
case. In particular, a necessary condition for is
that no be a vertex of . Subject to that condition

(37)

Of particular interest is an explicit formula for the WSK ca-
pacity in the case when the eavesdropper has access to noisy
versions of the sources with generic variables , i.e.,
to i.i.d. repetitions of satisfying the
conditional independence assumption (4). Note in this case that
the auxiliary model, with terminals to which are assigned the
rvs , , also represents a Markov chain
on a tree; the underlying tree is obtained from by adding
new edges, one from each to the corresponding dummy
terminal to which is assigned. By Theorem 4, the WSK ca-
pacity in question is equal to the PK capacity for the
auxiliary model. Hence, (37) gives

(38)

VI. DISCUSSION

We have derived single-letter characterizations of (strong) se-
crecy capacities for models with an arbitrary number of termi-
nals, each of which observes a distinct component of a discrete

memoryless multiple source, with unrestricted public commu-
nication allowed between these terminals. A subset of these ter-
minals can serve as helpers which abet the remaining user termi-
nals in generating secrecy. According to the degree of the eaves-
dropper’s knowledge, three kinds of secrecy capacity are con-
sidered, viz. SK, PK, and WSK capacity. Our characterizations
of the SK and PK capacities underscore the innate connections
between secrecy generation and multiterminal source coding.
In particular, the results indicate that the total joint entropy of
the rvs describing the multiple source can be decomposed into
the most parsimonious rate of communication among the ter-
minals which enables the user terminals to become omniscient,
i.e., reconstruct all the components of the multiple source, and
the SK capacity that corresponds to (secret) CR which is con-
cealed from an eavesdropper privy to the interterminal commu-
nication. When the eavesdropper wiretaps a subset of the helper
terminals, a similar decomposition—in which the compromised
helpers simply reveal their source components—yields the PK
capacity. Of special practical interest is the situation in which
the eavesdropper can wiretap noisy versions of the components
of the underlying multiple source, in which case the previous
result enables a characterization of the WSK capacity, at least
when randomization is permitted at the terminals. This charac-
terization yields a simple explicit formula in the case when the
rvs of the multiple source form a Markov chain on a tree.

We have also derived a general upper bound for the WSK
capacity, whose specialization to the case of two terminals co-
incides with the best upper bound known until recently in that
case. Yet, a characterization of the WSK capacity, in general,
remains unyielding; in particular, whether it has an analogous
decomposition property as above is a question which merits fur-
ther attention.

An aspect of our results, deliberately not emphasized in their
statement for the sake of simplicity of exposition, is a form of
universality, i.e., a lack of reliance on a knowledge of the joint
pmf of the underlying rvs. Such an aspect in the context of CR
generation without secrecy constraints, termed robust CR, has
been previously studied in [2], and similar ideas apply in the
present case too. Specifically, Proposition 1 and Theorems 1–3
admit the strengthening that given the rate-tuples or ,
and any , all the required mappings (in particular, the
transmissions at the given rates) can be chosen in such a manner
as to enable the corresponding assertions to hold regardless of
the joint pmf of the underlying rvs, as long as for this joint pmf
the appropriate SW conditions are satisfied even with added
to their right sides. These strengthenings readily follow using
Proposition 2 (Appendix A) and Lemma B.4 (Appendix B).

While our achievability proofs of Theorems 1–3 use trans-
missions by all the terminals in as well as
omniscience at all the terminals in , neither feature is
necessary for achieving the secrecy capacities. In this context,
the least rate of communication between the terminals needed to
achieve a secrecy capacity (perhaps without said omniscience)
is of interest. This would be relevant for studying the situation
in which rate constraints are imposed on permissible transmis-
sions from the terminals, depicting bandwidth limitations asso-
ciated with the use of shared public channels (cf. e.g., [6]). Also,
in a cryptographic situation, it might be considered prudent to
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curtail public communication to a minimum needed to generate
secrecy.

Finally, the memorylessness assumed in the discrete multiple
source is not essential for our results; in fact, they hold as well
for the discrete stationary ergodic multiple source with only per-
functory changes. Specifically, Proposition 1 and Theorems 1–3
are now stated with all the relevant entropies and conditional en-
tropies replaced by entropy rates and conditional entropy rates.
Proposition 1 can be proved following the approach in [3], albeit
without the universality and exponential decay in error proba-
bility asserted in Proposition 2 (Appendix A) under the mem-
orylessness assumption. Theorems 1–3 also hold likewise, but
with not necessarily strong secrecy capacities, and without uni-
versality.

APPENDIX A

In this appendix, we show that the achievability part of Propo-
sition 1 is a special case of a general theorem concerning normal
source networks without helpers. An important observation is
that in the context of the achievability part, attention can be re-
stricted to noninteractive communication.

In a normal source network without helpers [4], each
component of a memoryless multiple source, with generic rvs

, say, is connected to exactly one encoder, and each
decoder which is required to decode certain component sources
is connected to their encoders; these are the only connections
in the network; in particular, interactive communication is
excluded.

In the source network which underlies the problem of deter-
mining , the decoders are at the terminals , and
each of them is connected to the encoders at the terminals ,
and additionally directly to the th source; see Fig. 1(a). While
the latter is not a feature of the normal source network model,
the problem can be cast in the framework of a normal
source network without helpers by the simple device of intro-
ducing dummy component sources with generic rvs ,

; see Fig. 1(b). The dummy source is then connected
to a dummy encoder whose encoding operation is the identity
mapping, and this dummy encoder is connected only to the de-
coder at terminal . Formally, let the component sources that the
decoder at terminal is required to decode be all with

, and ; of course, as , this is tantamount to
omniscience for each .

By [4, Theorem 3.1.14], the achievable rate region of a
normal source network without helpers consists of those -tu-
ples that satisfy the SW conditions

(39)

for all decoders and sets , where denotes the set of
component sources which decoder is required to decode. For
the network involving the dummy sources as above, , ,
consists of the indices and another index representing the

(a)

(b)

Fig. 1. (a) Source network with , . (b) Normal source
network without helpers for Fig. 1(a).

dummy source . For not containing the index of the
dummy source , the SW condition (39) reduces to

(as implies ). If the previous condi-
tion is satisfied for some , then so is the SW condition
(39) for such that . This is obvious because

The source network underlying the problem of determining
is the same as in Fig. 1(a), with the understanding

that at each terminal in , the encoding operation is the identity
mapping. In this case, the SW conditions need not be consid-
ered for sets intersecting , as their validity for sets
contained in immediately implies the same for all .

We have thus demonstrated that the achievability part of
Proposition 1 is a consequence of [4, Theorem 3.1.14]. More
importantly, the strengthened assertions related to the latter
concerning universally attainable error components ([4, pp.
267–268]) also apply to the omniscience problem at hand,
yielding the following.

Proposition 2: Given any -tuple , any ,
and sufficiently small , for sufficiently large there exists
a code for the source network underlying the problem,
with encoder rates not exceeding , , for which
the error event that some of the decoders do not cor-
rectly decode , has probability less than when-
ever satisfies the SW conditions in (10).
A similar statement is also true for the problem.

Note that the code in Proposition 2 does not depend on the
joint pmf of , and is universally good
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for all joint pmfs for which the SW conditions in (10) are sat-
isfied. A similar statement holds for the code in the
problem.

APPENDIX B

In this appendix, we first prove Lemma 1, and then develop
auxiliary results in a form which will directly serve to prove our
achievability results.

Proof of Lemma 1

The first inequality is just the “Pinsker inequality” between
variation distance and information divergence (cf. e.g., [4, p.
58]). The second inequality is proved using the bound

(40)

valid for arbitrary pmfs , on a set of size , where
denotes variation distance. Note that while this bound is

stated in [4, p. 33], subject to , the proof therein
is valid whenever , and (40) trivially holds when

since if , . Now,
substituting in (40) for the uniform pmf on , and for the
conditional pmf of conditioned on , we obtain

(41)

Multiplying both sides by and summing over
, the claim

follows by the definitions (6) and (7) of and , and
Jensen’s inequality.

The achievability proofs in this paper, similar as those in [5],
[6], rely on the “coloring lemma” in [2]. Since the full force
of that lemma is not needed here, we state below its assertion
which we shall use.

Lemma B.1 ([2, Lemma 3.1]): Let be any family of
pmfs on a finite set , and let be such that every
satisfies

(42)

Then the probability that a randomly selected mapping
fails to satisfy

(43)

simultaneously for each , is less than .

Remark: This probability bound appears not in the statement
of [2, Lemma 3.1] but in its proof, with a factor erroneously

missing. We are indebted to F. Matúš for pointing out this trivial
error caused by the omission in the derivation of a multiplication
by [2 (p. 239, line 15 from below)]. Its correction does not
adversely affect the applications in [2], [5], [6].

The following consequence of Lemma B.1 generalizes the
“almost independence” result of [5, Theorem 1] in which the
arbitrary function below did not appear. For a formal statement,
we introduce for rvs and taking values in finite sets and

, respectively, with joint pmf , and for a given mapping
, the following notation:

(44)

(45)

if
otherwise.

(46)

Lemma B.2: Given , , and as above, and such
that

(47)
the probability that a randomly selected mapping

fails to satisfy

(48)

is less than . In particular

(49)

is a sufficient condition for the existence of a mapping
satisfying (48).

Remark: The left-hand side of (48) is the variational security
index (see (7)), for , .

Proof: Using (45), (46), the hypothesis (47) can be equiv-
alently written as

(50)

and, therefore, it implies, upon setting

(51)

that

(52)
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Further, for in the set

(53)

it holds—using (46)—that , and conse-
quently

This and (51) imply

(54)

Note also the obvious consequence of (53) that

(55)

On account of (54), the family of pmfs
satisfies the hypothesis (42) of Lemma B.1, with

replaced by . Since this family consists of at most
pmfs, it follows by Lemma B.1 that a randomly selected

fails to make the inner sums in (48)
corresponding to pairs simultaneously less than

, only with probability less than

Bounding those inner sums in (48) that correspond to pairs
trivially by , and using (52), (55), the assertion

of Lemma B.2 follows.

Lemma B.3: Given i.i.d. repetitions of a pair of rvs
, and a positive number , for any function
of with range cardinality , and pos-

itive number , there exists a function of
with values in such that for this

and , the security index

goes to exponentially rapidly as .
Proof: Apply Lemma B.2 to in the role of

, with , where is suffi-
ciently small.

With this choice, the hypothesis (47) of Lemma B.2 is ob-
viously satisfied when is sufficiently large, even with

if is less than a threshold depending on .
Hence, Lemma B.2 guarantees the existence of with
values in such that for and

, the variational security index ,
whenever and satisfy the condition
(49) for and as above, with replaced by . Clearly,

when , this condition is satisfied for suffi-
ciently large, provided that and have been chosen
sufficiently small.

Finally, the just-proved exponential convergence of to
implies the same for as well, by Lemma 1.

In Lemma B.3, the function of which serves as an appro-
priate choice of , might depend not only on the given function

but also on the joint pmf of , . The next lemma improves
upon the result by jettisoning the latter dependence.

Lemma B.4: Given the finite sets , , a function
, and a positive number , there exists a map-

ping such that the security index

(56)

goes exponentially to , uniformly for i.i.d. repetitions of any
rvs with

(57)

where is arbitrarily small but fixed.
Proof: By Lemma 1, it suffices to prove the assertion for

the security index instead of . The main idea of the proof
is that for i.i.d. repetitions of some pair of rvs ,
and given the mappings ,

, the security index

(58)

can be bounded above by an average of polynomially many
terms equal to similar security indices with , replaced by
pairs , of rvs with values in , , uniformly distributed
on joint type classes , . For notation and
simple facts concerning types as used below, see, e.g., [4].

Formally, note that

and that the conditional probabilities here are the same as uncon-
ditional probabilities for , uniformly distributed on ,

replacing . Thus, denoting by the analog of (58)
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when is replaced by uniformly distributed on
the type class , it follows that

(59)

Next, we apply Lemma B.2 to pairs uniformly dis-
tributed on . Representing the type as the joint
pmf of dummy rvs , (with values in , , respectively) with
joint pmf , the conditional probabilities for

uniformly distributed on , constant when
nonzero, are equal to . Hence, with

, the hypothesis (47) of Lemma B.2 is satisfied,
independently of the value of , whenever

(60)

say, and .
It follows that, given with ,

the probability that a randomly selected mapping
with fails to satisfy simul-

taneously for all type classes which meet (60), is
less than

The last bound goes (doubly exponentially) to if
, say, even if is allowed to go to exponentially with

a small exponent. This proves that there exists
such that exponentially, simul-

taneously for all types represented by dummy

rvs , satisfying . On account of
(59), this completes the proof, since for satisfying (57),
the probability that does not belong to a type class

with , is exponentially
vanishing uniformly for all possible .
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