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Capacity and Decoding Rules for Classes of 
Arbitrarily Varying Channels 

IMRE CSISZAR AND PRAKASH NARAYAN, MEMBER, IEEE 

Ahstrucf -We consider the capacity of an arbitrarily varying channel 
(AVC) for deterministic codes with the average probability of error crite- 
non and, typically, subject to a state constraint. First, sufficient conditions 
are provided that enable (relatively) simple decoding rules such as typical- 
ity, maximum mutual information, and minimum distance, to attain capac- 
ity. Then the (possibly noisy) OR channels and group adder channels are 
studied in detail. For the former the capacity is explicitly determined and 
shown to be attainable by minimum distance decoding. Next, for a large 
class of additive AVC‘s, in addition to providing an intuitively suggestive 
simplification of the general AVC capacity formula, we prove that capacity 
can be attained by a universal decoding rule. Finally, the effect of random 
state selection on capacity is studied, enabling us to comment on the merits 
and limitations of a previous “mutual information game” approach. 

1. INTRODUCTION 

HE CAPACITY of an arbitrarily varying channel T (AVC) for deterministic codes and the average proba- 
bility of error criterion is, in the absence of channel state 
constraints, either equal to its capacity for random codes 
or else to zero (Ahlswede’s alternatives [l]). In an earlier 
paper [9] we have shown that the latter contingency arises 
only for the trivial reason of symmetrizability, and deter- 
mined capacity also in the presence of a state constraint 
when Ahlswede’s alternatives have been shown no longer 
to hold. 

This paper is a continuation of [9]. As in [9], we consider 
discrete memoryless AVC‘s and deterministic codes with 
the average probability of error criterion. The communica- 
tion situation modeled is one wherein both encoder and 
decoder are ignorant of the channel state sequence, and 
the state selector-though cognizant of the code-is igno- 
rant of the message transmitted. While a knowledge of the 
basic terminology and notation of [9] is assumed of the 
reader, further familiarity with [9] is not necessary to 
understand this paper, with the sole exception of a proof 
in Appendix 11. 
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In Section I1 the problem of decoding for AVC’s is 
addressed. The decoding rule used in [9] was quite com- 
plex. It did not belong to the class of a-decoding rules in 
the sense of Csisz6r-Korner [5], i.e., it could not be 
defined solely in terms of the joint types of the 
codeword-received sequence pairs; in fact, triple joint 
types were also involved. A need for complex decoders for 
AVC‘s also arose with the maximum probability of error 
criterion (cf. Ahlswede [2] and Csiszhr-Korner [6]). To our 
knowledge the first nonstandard decoding rule in Shannon 
theory appears in [2]. While finding a good decoder in the 
class of a-decoding rules for every AVC appears unlikely, 
a sufficient condition set forth in Theorem 1 and its 
corollary nevertheless will enable us to demonstrate that 
certain common a-decoding rules suffice for the classes of 
AVC‘s considered in later sections. In particular, Theo- 
rems 2 and 3, respectively, provide sufficient conditions 
for the efficacy of the maximum mutual information (MMI) 
and typically decoding rules. The former possesses the 
desirable feature of being universal, i.e., independent of 
the given channel. The capacity of a discrete memoryless 
channel can always be attained by using the MMI de- 
coding rule (Goppa [ll],  Csiszhr-Korner [7, sec. 2.51). 
Decoding by joint typicality has been employed by 
Dobrushm-Stambler [lo]; Theorem 3 is closely related to 
their result. For the class of additive AVCs, the typicality 
decoding rule is partically equivalent to a universal one 
whch we term the independence decoding rule. A suffi- 
cient condition for its appropriateness for a given AVC is 
provided in Theorem 4. For AVC‘s with binary input and 
output alphabets, Theorem 5 identifies a condition for the 
simple minimum distance decoding rule to be effective. 
T h s  condition will apply, in particular, to the OR channel 
considered in Section 111. For an application of minimum 
distance decoding to binary AVC‘s with the maximum 
probability of error criterion, see Ahlswede-Wolfowitz [4]. 

In Sections I11 and IV some interesting examples of 
AVC’s are considered. In Section I11 we determine the 
capacity under a state constraint of the OR channel with 
and without noise, and comment on the solution of a 
combinatorial problem as a special case of our results for 
the noiseless OR channel. Section IV deals with the class of 
AVC‘s whose inputs, states, and outputs belong to (finite 
subsets of) a possibly infinite commutative group 9, with 
the output being determined by the group addition of 
input, state, and possibly noise. The binary and arithmetic 
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adder AVC‘s of [9] are simple (noiseless) cases of such 
group adder AVC‘s. For finite 3 with the input alphabet 
being equal to 9, Theorem 7 provides a simple formula for 
the capacity under a given state constraint without requir- 
ing any assumptions on the particular cost function ap- 
pearing therein. For the general case we also obtain a 
useful, albeit less explicit, result (Theorem 8). 

In Section V we consider additive AVC‘s with vector 
addition as the group operation but otherwise more gen- 
eral than the group adder AVC‘s of Section IV; in particu- 
lar, the noise is also allowed to be arbitrarily varying. 
Under some hypotheses on the input and state constraints, 
Theorem 9 establishes the intuitive result that the capacity 
is positive if and only if the state constraint is more 
restrictive than the input constraint and shows that capac- 
ity can be attained by the independence decoding rule. 
Also, for these AVC‘s the general capacity formula of [9] is 
somewhat simplified. 

The effect of various kinds of randomized state selection 
on capacity is considered in Section VI. Theorem 10 deter- 
mines the capacity for three different versions of indepen- 
dent state selection subject to an expectation constraint. 
For dealing with channels partially controlled by an adver- 
sary, McEliece [14] has suggested a game-theoretic ap- 
proach with mutual information as the pay-off function. 
The results of Section VI will enable us to specify the 
conditions under which this approach is justified from the 
viewpoint of AVC theory. 

Finally, we shall show in Appendix I that the previous 
sufficient conditions for positive capacity due to 
Dobrushin-Stambler [ 101 and Ahlswede [l] are not neces- 
sary in general. Ahlswede [l] had also obtained a necessary 
and sufficient condition which, in the terminology of mul- 
tiuser Shannon theory, was a noncomputable “product 
space characterization” (cf. [7, p. 2591); we shall indicate 
that nonsymmetrizability may be regarded as a “single 
letterization” of that condition. We now recall the main 
results of [9] which will be used throughout this paper. 

Given an AVC W with input alphabet 3, set of states 
Y ,  and output alphabet g, let us denote by WO, for any 
distribution Q on 9, the channel 3 -, g defined by 

W Q ( Y I X )  = W ( ~ l x ,  s ) Q ( s ) -  (1.1) 
S €S 

The mutual information I (  X A Y )  between random vari- 
ables with joint distribution P x v ( x ,  y )  = P ( x ) W Q ( y l x )  
will be denoted by I (  P, WO).  

As in [9], we denote by ‘42 the set of channels U: 3 + Y 
such that for every x E 3, x’ E 3, y E 

W ( y l x , s ) U ( s l x ’ )  = c W ( y l x ‘ , s ) U ( s l x ) .  (1.2) 
s € Y S €Y 

The AVC is said to be symmetrizable if and only if ‘42 # +. 
By Theorem 1 of [7], the capacity C of an (unconstrained) 
AVC is zero if and only if the AVC is symmetrizable; for a 
nonsymmetrizable AVC 

c = rnax min I (  P, we). (1.3) 
P Q  

The simplest symmetrizable AVC’s are those that are 
symmetric, i.e., 3 = 9, and W( y l x ,  s) = W( yls,  x )  for 
every x and s. In this case, (1.2) holds with U being the 
identity matrix. Another simple instance of symmetrizabil- 
ity, termed deterministic symmetrizability, arises when (1.2) 
holds for some deterministic channel U ,  i.e., with a matrix 
whose entries are (0,l)-valued. We remark, however, that 
even for deterministic AVC’s with X = 9, deterministic 
symmetrizability is not a necessary condition for C = 0 (cf. 
Example 1 in Appendix I). 

We also recall the concept of a state constraint A, which 
permits only those state sequences s = ( sl,. . . , s,) that 
satisfy 

1 “  

* r = l  
I ( s )  = - c I ( s , )  I A (1.4) 

where I is a given nonnegative-valued function on Y with 
min, I ( $ )  = 0. 

The capacity under state constraint A may be positive 
even if the AVC is symmetrizable, and depends on the 
functional 

A , ( P )  = min c P ( x ) U ( s l x ) l ( s ) .  (1.5) 
l J E @ . X . S  

Thus by the corollary of Theorem 3 of [9], the capacity 
under state constraint A is zero if A is greater than 

A , =  maxA,(P)  = l J €@X€T min max c U ( s l x ) l ( s )  (1.6) 
P 

(with A,( P) = CO if ‘42 = +), while it is positive and equals 

C ( A ) =  max I ( P , A )  if A < A ,  (1.7) 
P :  A , ( P )  z A 

where 

I ( P , A ) =  min I ( P , W Q )  (1 4 

I ( Q >  = c Q ( s > l ( s > .  (1.9) 

Q :  / ( e )  I A 

with 

S €Y 

In particular, it is possible that C(  A )  lies strictly between 
0 and the random code capacity under state constraint A 
(cf. [8]), which equals 

C,(A) = m a x I ( P , A )  (1 .lo) 
P 

with no constraint on the distribution P. 
Remark: In [9], A, was defined as max,A,(P). The 

alternative expression in (1.6) results by observing that 
from (1.5) and the minimax theorem 

max A , ( P )  = min max c P ( x ) U ( s l x ) l ( s )  

and further, that the inner maximum is attained when P is 
concentrated at a point x E X maximizing Z: ,U(s lx ) l ( s ) .  

In [9], we had in fact determined the capacity C(r ,  A )  
for the case where the codewords x = ( x l , .  . . , x , )  were 
required to satisfy an input constraint 

P l J E @  p x,s 

1 ”  
d x )  =; c d x , )  5 r (1.11) 

I = 1  
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for some given function g on .% and constant I?. Then the 
capacity with no input constraint, denoted by C(A), was 
obtained as C(gmax ,  A )  because the constraint (1.11) be- 
came inactive if r = gma. By [9, theorem 31, with g (  P )  
defined as in [9, eq. (1.9)], 

signs to each y E Y” the message i maximizing the non- 
probabilistic mutual information Z(x, A y )  (in case of a 
tie, an error is declared). Here, for sequences x E %”, 
y E Y”, I(  x A y )  is defined as the mutual information of 
dummy random variables representing the joint type of x 
and y ,  i.e., 

max I ( P , A ) > O ,  if max A , ( P ) > A  Z ( x A  y )  = Z ( X A  f ) ,  whereP?g=P,,,. (2.1) 

The typicality decoding rule assigns message i to a re- 
if max A o ( P )  < A .  ceived sequence y E Y” if, supposing that the codewords 

are of type P ,  the codeword x corresponding to message i 

w, A )  

P :  A,(/‘) 2 A 
g ( p )  I r 

P :  g ( P )  5 r 

P :  g ( P ) s r  

(1 .U) satisfies 

In the case max,: g ( P )  ~ r A,( P )  = A, left undecided by 
this theorem, we could still assert C( I?, A )  = 0 if (for every 
P )  the minimum in (1.5) was attained by a 0-1 matrix 
U E 42 (cf. the remark following the proof of 19, theorem 
31). Again, it is possible that C(r, A )  lies strictly between 
0 and the random code capacity under state constraint A 
and input constraint r (cf. [SI), which equals 

C,.( r, A )  = max I( P ,  A ) .  (1.13) 
P :  g ( p )  2 r 

11. DECODING RULES FOR AVC‘S 

We now address the problem of whether, and for which 
AVC’s, simpler decoding rules than that employed in [9] 
are effective. In this section we shall always deal with 
AVC’s with state constraint A. These, of course, include 
unconstrained AVC‘s as well by simply setting A > 
max, I(s) .  To avoid repetition, we proceed with the under- 
standing that an AVC with state constraint A is given 
without explicitly mentioning this in the definitions and 
theorems. 

It will be easier to present our results in a mathemati- 
cally satisfactory manner if we distinguish between a de- 
coding rule and a decoder. Recall that a code of block- 
length n,  with message set { 1; . * ,  N } ,  is a pair of map- 
pings f :  {l; . -, N }  -+ T“, cp: GY” -+ (0;. -, N } ;  here f is 
the encoder, cp is the decoder, and a decoder output 0 
means that an error has been declared. 

By a decoding rule we shall mean a prescription for 
defining a decoder when the codewords x i  = f ( i ) ,  i = 
1; . . , N ,  are gven. For convenience, we shall permit this 
prescription to depend also on a parameter, typically, a 
threshold that can be “suitably” chosen. For some received 
sequences y E GY”, the decoder may assign more messages 
than one as “candidate” decoder outputs. In such a case, 
however, none of the candidates is accepted; instead, an 
error is declared (i.e., the decoder output is set equal to 0). 
Of course, an error is declared also if the rule assigns no 
“candidate” message to y .  This convention will facilitate 
the proof of the efficacy of specific decoding rules (for 
suitable classes of AVC‘s), such as the MMI and typicality 

max x, v lpx ,y(x?  Y ) -  p(x)WQ(ylx) 12 ?, 

for some Q with I (  Q )  I A .  (2.2) 

Here 7 > 0 is a constant and a parameter of the decoding 
rule that can be “suitably” chosen. 

In the terminology of Csiszhr-Korner [7, p. 341, condi- 
tion (2.2) states that y is W,-typical under the condition 
x, with constant 7, for some of the channels WQ with 
l ( Q )  I A. For the purposes of this paper we will use the 
following abbreviated terminology for condition (2.2): y is 
(x, ?)-typical. Further, we will say that y is ?-typical if it is 
(x, ?)-typical in this sense for at least one codeword x. 
Note that typicality in this special sense is defined only for 
received sequences and only if the codeword set is given. 
At this point, we recall our implicit assumption in this 
section that in all definitions and theorems an AVC with 
state constraint A is given. 

Definition 1: A decoding rule will be called good for 
input distribution P if for any 6 > 0 a neighborhood of P 
can be found such that for sufficiently large block lengths 
n ,  for any type P’  in this neighborhood, there exist codes 
with codewords xl,. ‘ a ,  x N  of type P‘  and decoder speci- 
fied by the given decoding rule (possibly with a parameter 
depending on 6)  with rate 

1 
- log N > I (  P , A )  - 6 
n (2.3) 

and average probability of error 

F ( s )  I 6,  for everys E 9’“ with l ( s )  I A .  (2.4) 

Further, we say that capacity can be attained by the given 
decoding rule if t h s  rule is good for input distributions P 
such that I (  P,  A )  is arbitrarily close to C( A). 

The next definition will enable us to formulate concisely 
a useful sufficient condition for the goodness of a decoding 
rule, viz., Theorem 1 and its corollary. 

Definition 2: A decoding rule will be called (5, ?)-admis- 
sible for codeword type P if it assigns to each ?-typical 
y E Y“ at least one candidate message i ,  and for x’= x i ,  

decoding rules defined later. 
The maximum mutual information (MMI) decoding rule 

is universal (i.e., it does not depend on the given AVC and 
state constraint). Given the codewords xl; . ., x N ,  it as- 

a) Z(x’A y ) > I ( P , A ) - 5 ,  
b) for each codeword x such that y is (x, ?)-typical, 

letting X ,  X‘, Y be dummy random variables repre- 
senting the joint type of x, x’, y ,  and for an arbitrary 
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S with distribution Q (say), such that a joint distribution for which the condition (2.7) has been 

max I Pxsy ( x ,  s 3 Y ) - P ( x  ) Q (3  ) W (  Y I X  7 s ) I I 7, 
A .  5 ,  \ 

I ( Q )  I A (2.5) 
we have 

I (  XY A XIS) > 7. (2.6) 
Remark: When a decoding rule involves a parameter, 

we will permit the latter to be selected depending on E and 
7 in Definition 2. In particular, the parameter 7 of the 
joint typicality decoding rule will be set equal to the 7 of 
Definition 2. 

Theorem I :  For any 5 > 0, there exist r > 0 and y > 0 
such that for sufficiently large blocklength n ,  for any type 
P ,  there exist codewords x1; . ., x N  of type P with 

1 
- logN> M I ( P , A ) - 3 (  
f I  

such that if the decoder is defined by a ( E ,  T)-admissible 
decoding rule, then 

max ~ ( s )  I exp( - n u ) .  
s: /(s) 5 A 

Corollary: A decoding rule is good for an input distribu- 
tion P if for every E > 0, there is a 7 > 0 and a neighbor- 
hood of P such that for codeword types in this neighbor- 
hood the given decoding rule is ( E ,  T)-admissible. 

Proof: The proof is effectively contained in that of the 
main result of [9], which relied in essence of the admissibil- 
ity of the decoding rule therein. For details, see Appendix 
11. The corollary immediately follows by the continuity of 
Z( P ,  A )  as a function of P .  

Theorem 2: For every (Y > 0 and 5 > 0, there exists 7 > 0 
such that the MMI decoding rule is ( E ,  T)-admissible for 
every codeword type P such that 

postulated, the required inequality (2.6) follows by conti- 
nuity, if 7 is sufficiently small. This completes the proof of 
the first assertion of Theorem 2. 

Finally, if for some fixed P we have I( X A Y )  > I( S A 
Y )  whenever Pxsy(x ,  s, y )  = P ( x ) Q ( s ) W ( y l x ,  s )  with 
I (Q)  I A, then by continuity, for a sufficiently small (Y > 0, 
(2.7) will hold for joint distributions of the latter kind even 
if P is replaced by P’, in a sufficiently small neighborhood 
of P .  Then the last assertion of Theorem 1 follows from 
the first one and the corollary of Theorem 1. 

To obtain an analogous result for the typicality decod- 
ing rule, we define the following conditions, the first of 
whch is effectively due to Dobrushn-Stambler (DS) [lo]. 

Definition 3: A distribution P on X is said to satisfy 
Condition DS if no distribution Q on Y and channel U: 
X + 9’ exist such that for every x’ E X and y E Y 

P ( x ) W ( y l x ,  s ) u ( s l x ’ )  = W ( y l x ’ ,  s ) Q ( s ) .  (2.9) 

Further, P is said to satisfy (the weaker) Condition DS ( A )  
if no Q and U exist satisfying (2.9) and, in addition (cf. 

I ( Q )  I A ,  c P ( x ) U ( s l x ) f ( s )  I A .  (2.10) 

x, s S 

(1.9)) 

S 

Condition DS states that by putting any channel U: X -+ Y 
in cascade with the channel W p :  Y + Y defined by 

W Y I s )  = c p ( x ) w ( Y l x J ) ,  
X 

the resulting channel UW‘: X + Y cannot be of the form 
WQ as in (1.1). A better understanding of this condition, 
which is not too perspicuous, may be obtained by compar- 
ing it with other relevant conditions for AVC’s (cf. Ap- 
pendix I). 

(2‘7) I (  X A  Y )  2 I ( S  A Y ) +  (Y 

whenever Pxs,(x,  s, y )  = P ( x ) Q ( s ) W (  y lx ,  s )  with l ( Q )  
I A. In particular, the MMI decoder is good for an input 
distribution P if I (  X A Y )  > Z(S A Y )  for Pxsy as before. 

Theorem 3: The typicality decoding rule is good for 
every strictly positive P which satisfies Condition DS (A) ,  
i.e., for which (2.9) and (2.10) cannot simultaneously hold 
for any Q and U.  

Proof: Let x, x’, y ,  and the dummy random variables 
X ,  X’, Y,  S be as in Definition 2. Then by the definition of 
the MMI decoding rule, I(  x’ A y )  = max, I (  x, A y ) ,  and 
in particular, 

Z ( X ’ A  Y )  = I ( x ’ A  y )  2 I ( x A  y )  = I ( X A  Y ) .  (2.8) 
As y is (x, T)-typical, we obtain from (2.1) and (2.2) that 
I(  x A y )  is close to I (  P ,  WQ)  2 I( P ,  A )  if 7 is sufficiently 
small. This and (2.8) establish a) in Definition 2. Turning 
to b), observe that 

I ( X Y  A X’lS) 2 I ( Y A  X’lS)  = I ( Y A  xS)- z ( Y  A S )  
2 Z ( Y A  X ’ ) - Z ( Y A S )  
2 I( x A Y )  - I (  Y A s ) ,  

Corollary: Capacity can be attained by the typicality 
decoding rule if some input distribution P with I( P ,  A )  = 

C( A )  satisfies DS( A). Here the strict positivity of P is not 
required. 

Proof: This is an easy consequence of the corollary of 
Theorem 1. The role of the hypothesis on P is to ensure 
the validity of condition (b) in Definition 2. To see this 
heuristically, let X ,  X‘, S, Y be as in Definition 2, and 
assume that the codeword type actually equals P ,  and 
7 = 0. Then 

pX’S(x’ , s )  = p ( x ‘ ) w Q ( y l x ‘ )  

P x s y ( x , s ,  Y )  = p ( X ) Q ( s ) w ( Y l x , s )  (2.11) 

where the last step follows from (2.8). Since X ,  S,  Y satis- 
fies (2.5), i.e., their joint distribution is arbitrarily close to 

for some Q and Q with I ( Q )  I A ,  I ( Q )  I A ,  and condi- 
tion b) requires that Z(XY A X’lS) be nonzero. However, 
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Z( XY A X’ lS)  = 0 means that 

p x , , s y ( x ,  x’, s, Y )  = P y s ( x ’ ,  4 p , Y , s ( x >  Y l 4 .  

Upon dividing both sides by P ( x ’ )  (permissible by the 
strict positivity assumption) and summing over x and s, 
we get 

PY,X,(YIX’) = c ps l , ( s lx ’ )pY , s (Y l s ) .  (2.12) 
S €Y 

This, however, contradicts the hypothesis on P as (2.9) 
and (2.10) would now hold foi P ,  Q ,  and U = PS,,. 

Since 7, though arbitrarily small, cannot be set equal to 
0, a rigorous proof entails some technical details and is, 
therefore, deferred to Appendix 11. 

To see that the strict positivity of P is not needed in the 
corollary, observe that the set of P ’s for which DS ( A )  
holds is a closed set. Hence its complement is an open set 
and, therefore, any P in the corollary can be approximated 
by strict positive distributions to which Theorem I11 can 
be applied. 

Remarks: 1) For the special case of an unconstrained 
AVC, Theorem 3 states that the typicality decoder is good 
for every strictly positive P which satisfies DS. This asser- 
tion is almost identical to the main result of 
Dobrushin-Stambler [lo], whose failure to completely solve 
the AVC capacity problem stemmed from their reliance on 
the typicality decoding rule. In particular, Theorem 3 
provides a direct proof of the fact that an unconstrained 
AVC, which has some input distribution P satisfying 
Condition DS, or an AVC with state constraint A which 
has some input distribution P satisfying Condition DS (A) ,  
has positive capacity. 

2) Stambler’s [15] theorem on the capacity of the AVC 
with states known at the receiver can also be obtained from 
Theorem 3, applying it to the AVC W whose output 
alphabet is CY X 9’ and K ( y ,  s‘lx, s) = W(ylx ,  s) if s‘= s, 
and 0, otherwise (cf. [7], pp. 227). Indeed, for W every 
input distribution P satisfies Condition DS, except for the 
trivial case where for some s E 9’ the channel W ( .  I - ,  s) 
has capacity zero. To see this, notice that for W, (2.9) 
becomes 

c P ( x ) W ( y l x ,  s ) u ( s l x ’ )  = W ( y l x ’ , s ) Q ( s ) .  

This, however, implies that W( ylx’, s) is independent of x’ 
whenever Q ( s )  # 0 because summing over y gives that 
U(s1.x’) = Q ( s ) .  

For the important class of additive ADC’s the typicality 
decoding rule is practically equivalent to what we term the 
independence decoding rule, which has the merit of being 
universal. In fact, for additive AVC’s the hypothesis of 
Theorem 3 will also imply the goodness of the latter 
decoding rule; this will be established in Theorem 4 to 
follow. 

An AVC W will be called additive if W( y Jx, s) depends 
on x and y through the difference y - x only. Of course, 
this requires that F and CY be subsets of a commutative 
group 9. Here 9 need not be finite and, indeed, in Section 
5 we will consider additive AVCs with 9 = Rd. 

X 

Formally, an additive AVC with (finite) input alphabet 
9- C 9 and (finite) set of states Y is defined by a channel 
V: 9’ ---* 9, where 2’ is a (finite) subset of 9, by setting 

W ( y l x , s )  = v(y - XIS) .  (2.13) 
It is understood here that ‘?Y= { y :  y = x +  z, x €3, 
z E 2’}, and that V ( z l s )  = 0 for z P 2”. 

For an additive AVC the independence decoding rule 
assigns, by definition, message i to a received sequence y 
whenever the codeword x = x ,  is q-independent of the 
error vector y - x in the sense that 

Z ( X A ~ - X ) < ? J .  (2.14) 

Here 17 > 0 is a parameter that can be suitably chosen. 
To precisely formulate the claimed equivalence of the 

typicality and independence decoding rules for additive 
AVC’s, viz. Lemma 1 to follow, we need a concept of 
regularity for probability distributions on ’3. For distribu- 
tions P and Q on 9 with finite support, the convolution 
P * Q is defined by 

( P  * Q ) ( Y )  = P ( x ) Q ( y  - x) .  (2.15) 
k €9- 

We will say that P is regular if 
P * Q, = P * Q2 implies Q, = Q 2 .  (2.16) 

Observe that for the case 9 = R d  this is automatically 
satisfied as the characteristic function of P (having a finite 
support) cannot vanish in an interval. If 9 = (0; . + ,  k - 1) 
with mod-k addition, then (2.16) holds if and only if the 
polynomial p ( D )  = C f z t P ( i ) D ‘  is not a divisor of D‘ - 1. 
In particular, for k = 2 or 3,  only the uniform distribution 
on 9 is nonregular. For k 2 4, there are others, but only 
finitely many. 

Lemma 1 :  Let an additive AVC be given with state 
constraint A .  Then 

1) for any 17 > 0 there exists T >  0 such that if y is 
(x, T)-typical for some codeword x, then x and y - x 
are 17-independent ; 

2) for any closed set 9 of distributions on 9- which are 
regular in the sense of (2.16), and for any T > 0, there 
exists q > 0 such that if x and y - x are q-indepen- 
dent, then y is (x, .r)-typical provided that the code- 
words are of type P E 9’ and that y is q-typical. 

Notice that if 9 = R d  then the restriction in part 2) of this 
lemma is immaterial and 9’ can be taken to be the set of 
all distributions on F. 

Proof: See Appendix 11. 

Theorem 4: For an additive AVC the independence 
decoding rule is good for every regular input distribution 
P which is strictly positive and satisfies Condition DS ( A ) .  

Corollary: Under the hypothesis of the corollary of The- 
orem 3 capacity can be attained by the independence 
decoding rule. 

Proof: By Definition 2 and Lemma 1, part 2), if the 
typicality decoding rule is ((,.r)-admissible for codeword 
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types in 9 (with any > 0), then the independence decod- 
ing rule is ( E ,  7)-admissible for 9, 7, and TJ as in Lemma 
1, part 2. Hence the proof of Theorem 3 establishes Theo- 
rem 4 as well if we observe that all distributions in a 
sufficiently small neighborhood of a regular P are also 
regular. 

The corollary follows as before. In the corollary, the 
regularity hypothesis need not be imposed as any distribu- 
tion can be approximated by a sequence of regular (and 
strictly positive) ones. 

For channels with binary inputs and outputs, the simple 
minimum distance (MD) decoding rule often suffices. This 
rule assigns to a received sequence y the message i E  
{ 1,. . . , N } that minimizes the Hamming distance d(  x,, y )  
(in case of ties an error is declared). We conclude this 
section by determining a general relation between MD and 
MMI. This will enable us to establish the efficacy of the 
MD decoding rule for important classes of AVC’s. We 
need the following simple lemma. 

Lemma 2: Let X, X’, Y be binary random variables 
such that 1) X and X’ have the same distribution (1 - p ,  p ) ,  
and 2) in the conditional distribution matrix of Y given X, 
the sum of the minor diagonal elements does not exceed 1. 
Then 
Pr { X’# Y }  I Pr { x# Y }  implies I (  X ’ A  Y )  2 I (  X A Y ) .  

Proof: Fixing Y,  consider the class of all joint distri- 
butions P,, with X-marginal (1 - p ,  p ) .  Clearly, a joint 
distribution in this class is uniquely determined by the 
probability Pr { X # Y }. In particular, the conditional 
probability matrix V of Y given X can be represented as a 
function of Pr { X # Y }; moreover, this function is linear. 
Since I (  X A Y )  is a convex function of the conditional 
probability matrix V, it follows that (within the considered 
class of joint distributions) it is a convex function also of 
Pr { X +  Y }. This function attains its minimum when X 
and Y are independent, i.e., when V(l\O)+ V(O11) =1,  and, 
therefore, it is monotone decreasing for those values of the 
argument Pr { X # Y } that correspond to a conditional 
probability matrix with V(llO)+ V(0ll) 11 (since the latter 
sum is an increasing function of Pr { X # Y }). 

Theorem 5: For an AVC with binary input and output 
alphabets such that 

whenever I ( Q )  5 A (2.17) 

Theorem 2 remains true when “MMI” is replaced by 
“ MD.” 

Proof: Given the codewords, all of type P ,  and a 
7-typical received sequence y ,  let x be any codeword for 
which y is (x, T)-typical, and let x’ have minimum Ham- 
ming distance from y .  Let X, X’, Y be dummy random 
variables representing the joint type of x, x’, y .  The proof 
of Theorem 2 will then apply verbatim if we establish (2.8). 

W,(llO)+ W,(Oll) <1 

To this end, observe that 
1 1 

n n 
Pr { X ’ Z  Y } = - d ( x ’ ,  y )  5 - d (  1, J J )  = Pr{ X #  Y } .  

By Lemma 2, this implies (2.8) provided that condition 2) 
of that Lemma is satisfied. However, this is ensured by 
hypothesis (2.17) if 7 is sufficiently small, because P,, = 
PI, .I’ satisfies (2.2). This completes the proof. 

Remark: Dobrushin-Stambler [lo] provided the follow- 
ing example. Let an AVC with X = Y = {O,l}, 9’ = 
{0,1,2,3} be determined by 

W(Ol0,O) =1 W(Ol0,l) = 0.6 W(OlO,2) = 0.6 
W(0(0,3) =1 W(Ol1,O) =0 .4  W(Ol1,l) = o  
W(011,2) = 0.4 W(011,3) = 0 

The capacity of this AVC is positive and is attained by 
P = (0.5,0.5). However, as this P does not satisfy Condi- 
tion DS, the capacity of t h s  AVC could not be determined 
by the approach of [lo]. Ahlswede [l] found this fact 
somewhat disappointing, particularly as this channel was 
covered by earlier results of Ahlswede-Wolfowitz [4] which 
involved less mathematical effort. It is reassuring that 
Theorem 5 does apply to this example, guaranteeing that 
capacity can be attained by MD decoding (we omit the 
straightforward but none too enlightening calculations). 

111. THE OR CHANNEL 

The OR channel without noise is the AVC with X = Y 
= CiY = {O,l}, whose output is obtained from its input and 
state by the Boolean operation OR. We also permit additive 
binary (1 - r ,  r )  noise with a known r < 1/2. The noisy OR 
channel is determined by 

w ( O ~ O , O )  =I -  r W(OlO,l) = W(Ol1,O) 
= w(Ol1,l) = r (3.1) 

and W(l Ix, s) = 1 - W(Olx, s). The noiseless OR channel is 
formally defined by (3.1) with r = 0. 

The OR channel may model a multiple-access channel 
that performs, from the point of view of a single user, the 
OR operation on bits transmitted concurrently by other 
users. It may also be a model of a computer memory with 
defects, with state 1 representing a defective cell stuck at 1. 
Commencing with the work of Kuznetsov and Tsybakov 
[13], coding for such channels has been extensively studied 
(cf. Heegard and El Gama1 [12], and references therein). 
Whereas in [12] the performance criterion involves averag- 
ing over an ensemble of state sequences, our AVC ap- 
proach in contrast requires the error probability to be 
uniformly small over all feasible state sequences (however, 
unlike in [12], side information about the states is not 
available to the sender or the receiver). 

Obviously, the OR channel defined by (3.1) has, without 
any state constraint, capacity zero (even the random code 
capacity is zero). We will adopt the constraint that the 
fraction of occurrences of s = 1 does not exceed a given 
A < 1. This comprises a “state constraint A” in the sense 
of (1.4) with I ( s )  = s. 

To determine the capacity C( A), first observe that for 
Q = (1 - q, q), the channel We: X -+ CiY (cf. (1.1)) is deter- 
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mined by 

WQ(OlO) = qr +(I  - q) (1 -  r )  = r +(I -  4)(1-2r),  

WQ(0ll) = r .  (3.2) 
Hence for P = (1 - p ,  p ) ,  the mutual information I ( P ,  WQ) 
denoted by I (  p ,  q) ,  equals 

I ( P 4 )  = h ( ‘ + O -  P ) ( l -  4 ) ( 1 - 2 r ) )  
- ( 1  - p ) h ( r  +(I  -4 ) (1 -2 r ) ) -ph ( r )  (3 .3)  

where h ( t )  = - t logt -(1- t)log(l- t ) .  It is intuitively 
obvious, and easily verified by differentiation, that I(  p ,  q )  
is a decreasing function of q. With (1.9) yielding f ( Q )  = q, 
i t  follows from (1.8) that 

I (  P ,  A )  = min I( p , q )  = I( p ,  A ) .  (3.4) 

Next, we determine A , ( P ) ,  namely (cf. (1.5)) the mini- 
mum of 

y i  A 

CP(x)U(slxP(4 = (1 - P ) U ( W +  P W l l )  
r .  s 

over the set of channels U: (0 , l )  + (0 , l )  that satisfy 
(1.2). Clearly, it suffices to consider (1.2) with y = 0, 
x=O, x f = l .  Then 

(1- r )U(OlI )+ rU(II1) = rU(olo)+rU(l lO) 
which is satisfied by exactly those channels U for which 
U(1Il) = 1. Thus A,( P )  = p,  A,, = maxp A,( P) = 1, and 
from (1.7) and (3.4) we obtain 

C ( A ) =  max I ( p , A )  (3-5) 
p : p > A  

for every A < 1. On the other hand, the random code 
capacity Cr( A )  equals maXp I (  p ,  A), with no constraint on 

Equation (3.3) offers a geometric interpretation which 
can be used to obtain I (  p ,  A )  as shown in Fig. 1. Let A ,  
B ,  and D be points on the h ( t )  curve with t ,  = r ,  t ,  = r + 

p (cf. (1.10)). 

(1 - A)(1-2r), and t = r +(l- p ) ( l -  A)(l-2r), respec- 
tively. Then I ( p ,  A )  equals that part of the ordinate of D 
which lies above the secant AB. Further, with increasing 
p ,  the point D moves from right to left. Clearly, I( p ,  A )  
attains its maximum if and only if the tangent to the h ( t )  
curve at D is parallel to the secant A B .  Denoting the 
maximizing p by p* = p * ( A ,  r ) ,  we observe that I( p ,  A )  
increases with p for p < p *  and decreases for p > p* 
(explicit formulas for p* and C,( A )  = I( p * ,  A), though 
easy to obtain, are omitted owing to their tediousness). 
Thus 

C ( A )  =C,(A) if A < p * ( A , r )  

C( A )  = I( A ,  A )  < C,( A )  if A > p*(  A ,  r ) .  (3.6) 

Geometrically (see Fig. l), the first or second case will 
obtain accordingly to whether the tangent to the h ( t )  
curve at the point E ,  corresponding to t ,  = r + ( 1 -  A)2(1 
-2r),  has a smaller (possibly equal) or a larger slope, 
respectively, than the secant AB. In other words, A I 
p * ( A ,  r )  if and only if 

1 - r -(1- A),(1-2r) 

log r +(I  - A)2(1 -2r )  
h ( r  + (1 - A)(1-2r))  - h (  r )  

- < . (3.7) 
(1- A)(1-2r) 

We now show that (3.7) necessarily holds if A I1 /2 .  TO 
this end, observe in Fig. 1 that always 

t , < t , < l - f t ,  (3.8) 

and t ,  2 ( t l  + t2)/2 if A 11/2. Hence (by concavity) it 
suffices to show that (3.8) implies 

h ( f , ) - h ( t J  
t 2  - tl 

or, substituting t = ( t ,  + t2)/2, u = ( t ,  - t1)/2, that “t 
h ( t +  U)- h ( t -  u)-2uh’(t) 2 0 ,  if 0 I u I t s  +. 

The last inequality holds with equality for u = 0, and 
differentiation shows that the left side is an increasing 
function of u in the interval 0 I U I t. This establishes our 
claim, i.e., for A I 1/2 we always have C( A )  = Cr( A).  

Next, as an application of Theorems 2 and 5 we prove 
that the capacity of the OR channel under state constraint 
A can be attained by the MD decoding rule. First we show 
that the hypothesis of Theorem 2 is satisfied by any 
P = ( l - p , p )  with p >  A, i.e., we have for every Q =  
(1 - q, 4) with q I A and random variables X ,  S, Y with 
P,y.yy(x, s, .v) = P ( ~ ) Q ( s ) Q ( y l x ,  s), that 

I (  XA Y )  > I ( s  A Y ) .  (3.9) 
Fig. 1 .  t l = r .  r 2 = r + ( l - A ) ( l - 2 r ) .  t 3 = r + ( l - A ) ’ ( l - 2 r ) .  t =  

r + ( 1  - p)(l - A ) ( l  - 2 r ) .  Now, I (  X A Y )  = I (  p,  q )  (cf. (3.3)) and by symmetry, 
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I( S A Y )  = I( q, p ) .  Then by (3.3), 
Z ( X  A Y ) -  Z(S A Y )  

= - (1 - p )  h ( r + (1 - q ) (  1 - 2r) )  - ph  ( r ) 
+ (1 - q ) h ( r + (1 - p )( 1 - 2r) )  + qh ( r ) 

h ( r  +(1- p ) ( l - 2 r ) )  - h ( r )  
(1 - P ) ( l  - 2 4  

=(1- p) ( l  - q ) ( l  - 2 r )  

h ( r  + (1 - q)(1-2r))  - h ( r )  

( l -q ) (1 -2 r )  
- 

In the square brackets the first of the two difference 
quotients is larger since h( t )  is concave and (1 - p)(l - 2r )  
< (1 - q)(1-  2r)  by the assumption p > A 2 q. This estab- 
lishes (3.9). To prove the goodness of the MD decoding 
rule for all P = (1 - p ,  p )  with p > A, it suffices in view of 
Theorem 5 to show that WQ(l 10) + Wp(O(l) < 1 for every 
Q = (1 - q, q )  with q s A. This, however, is obvious from 
(3.2) even without the constraint q I A. The following 
theorem summarizes our main result for the OR channel. 

Theorem 6: The capacity of the OR channel with addi- 
tive binary (1 - r ,  r )  noise (0 5 r <1/2) and state con- 
straint A (0 < A < 1) is given by 

max I( p ,  A )  = C,( A ) ,  

[ (A,  A )  <c,, otherwise 

if (3.7) holds 
C ( A ) =  P 

(3.10) 

with I( p ,  A )  defined as in (3.3). In particular, for A I 1/2, 
always C( A )  = C,( A). Finally, the capacity (3.10) can be 
attained by the minimum distance decoding rule. 

For the noiseless OR channel (i.e., for r = 0) we will 
show in Appendix I11 that the random code capacity 
equals 

C,(A) = l ~ g [ l + ( l - A ) A " / ' - " ]  (3.11) 

and that (3.7) is satisfied if and only if A I A* = 0.6086. 
Hence for a noiseless OR channel the capacity formula 
(3.10) becomes 

i 

/ l o g [ l + ( l -  A)A""-*] =C,(A) ,  

(3.12) if A I A* 
h (( 1 - A ) ~ )  - (1 - A )  h ( A )  < C, ( A ) ,  

C (  A )  = 

if A > A * .  

Numerical computations indicate that also for r > 0 
there exists a threshold A*(r) such that C(A) equals the 
random code capacity if and only if A I A*( r ) ;  moreover, 
1/2 I A*( r )  I A* = 0.6086 and A*( r )  - 1/2 if r + 1/2. 
While we do not have a proof for these results, we will 
prove in Appendix I11 that for any given r <1/2, C(R) is 
strictly less than the random code capacity if A is suffi- 
ciently close to 1. 

We know that the capacity of any OR channel can be 
attained by the MD decoding rule. In the noiseless case the 
simplest decoding rule suffices: decode message i if the 

received sequence y could have arisen due to codeword xi 
(i.e., if x i  has a zero in every position where y has a zero); 
if there are more such codewords than one, declare an 
error. This decoding rule clearly improves upon "mini- 
mum distance" as the latter could result in an impossible 
codeword; otherwise, the two rules are equivalent. 

Our result for the noiseless OR channel affords the 
following combinatorial interpretation. Let N( n ,  A, c )  de- 
note the maximum number N of binary n sequences such 
that if InA) positions are covered with the covered bits 
being always read as Is, then regardless of which positions 
are covered it is still possible to identify at least N(1- c )  
of these sequences (the nonidentifiable sequences may 
depend on the positions covered). Then 

1 
n - . ~  n lim - logN(n, A , c )  = C ( A ) ,  for all 0 < c  < I  

with C(A) given by (3.12). The same problem appears 
much more difficult when c = 0 (compare with the discus- 
sion of [9, Example 11. If the positions were instead cov- 
ered at random, each with probability A ,  and identifiabil- 
ity were required with high probability, this becomes a 
standard coding problem for a discrete memoryless chan- 
nel known as the Z-channel. The capacity of the latter 
channel equals C,(A) in (3.11). Note that for A > A*, the 
deterministic and random versions of this combinatorial 
problem have different answers, which is at variance with 
[9, Example 11. 

IV. GROUP ADDER AVC's 

In this section we consider AVC's whose inputs, states 
and outputs are elements of a commutative group 9, the 
output being determined by the group addition of input, 
state, and possibly noise. Formally, such an AVC is de- 
fined by 

W ( Y ~ X ,  S )  = R ( y  - x - S )  (4.1) 
where R is a given distribution on 9, called the noise 
distribution. These AVC's, called group adder AVC's, con- 
stitute a special class of additive AVC's (cf. (2.13)) treated 
in the next section. The group 9 may be finite or infinite 
(e.g., 9 = R d ,  with ordinary vector addition), but X, 9', 
and Y are restricted to be finite subsets of 9, and R is 
assumed to have a finite support. 

A noiseless group adder AVC is obtained when R is 
chosen as the point mass at the 0 element of 9. Two 
simple examples of such an AVC are the binary adder and 
arithmetic adder AVC's in [9, Examples 1 and 21. 

We assume that 0 E 5, 0 E 9, and consider state con- 
straints of the form (1.4) with an arbitrary function I 
satisfying I ( s )  2 I(0) = 0. Further, we assume that the noise 
distribution R is regular in the sense of (2.16), i.e., 

Q, * R = Q2 * R implies Q, = Q 2 .  (4.2) 

Clearly, the AVC defined by (4.1) is symmetric if  X = 9; 
we will show that it is nonsymmetrizable if 191 < I.%/. 
Further, we will provide a formula for the key functional 
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A , ( P )  (cf. (1.5)), in general. To this end, we first identify 
the set 92 of channels satisfying (1.2). 

Substituting (4.1) into (1.2), we obtain the equations 

R ( y  - x - s ) U ( S ~ X ’ )  = R ( y  - XI- s ) U ( S ~ X )  
S €B S €B 

(4.3) 
with the understanding that if Y is a proper subset of 9, 
then U ( s ( x )  = 0 for s 4 9. Setting XI= 0, and substituting 
on the left side x + s = t ,  (4.3) yields 

R ( y - t ) U ( t - x I O ) =  C R ( y - s ) U ( s l x ) .  (4.4) 
I €B S €S 

Denoting the distribution U( .  10) by U,, (4.4) states that 
the convolutions of R with the translate of U, by x, and 
with U ( .  Ix) ,  respectively, are equal. Then by the regularity 
assumption (4.2), 

V ( s l x )  = U , ( $ - x )  (4.5) 
for every x E X, s E 9. 

If 9’=9, then any channel U: X - + Y  of the form 
(4.5), for any distribution U, on 9, obviously belongs to 9 
thereby determining 9 for this case. If 9’ is a proper 
subset of 9, the distribution U, in (4.5) is constrained by 
the condition that U ( s ( x )  = 0 if s P S, x E 3. Thus Uo(t)  
must be 0 for every t E 9 that can be represented as 
t = s - x with s 4 9, x E 3. In other words, a necessary 
condition for U E 4? is that it be of the form (4.5) with a 
distribution on 9 such that 

U,( t )  = 0 whenever x + t 4 S for some x E X. (4.6) 
It is easy to see that this condition is also sufficient. Notice 
that (4.6) implies that U, is supported on Y,  because for 
t 4 9’ the choice x = 0 yields U ( t )  = 0. 

If 191 < )%1, then for every t E 9 there exists x E X 
with x + t 4 9, and hence no distribution can satisfy (4.6). 
Thus in this case ‘42 = @ as claimed. 

Having determined ‘42 for a group adder AVC in gen- 
eral, we obtain from (1.5) that 

A,( P)  = min P(x)U(s lx) l ( s )  
U S @  x . s  

= min C ~ ( x ) ~ , ( s - x ) l ( s )  = min/(P*U,) 
U0 

(417) U0 x . s  

where the minimum is taken over all distributions U, on Y 
satisfying (4.6), and where I (  -) for a distribution is defined 
by (1.9), i.e., l ( Q )  = C,Q(s) f ( s ) .  

The capacity of a general AVC is determined in terms of 
the mutual information functional I( P ,  WQ) (cf. (1.3), 
(1.7), (1.8)), where I (P ,  WQ) denotes the mutual infor- 
mation Z ( X  A Y )  for X and Y with Pxv(x ,  y )  = 
P(x)WQ(ylx). For a group adder AVC (4.1), the last 
condition means that 

We now determine the AVC capacity under state con- 
straint A when % = 9. Then if Y is a proper subset of 9, 
the AVC is nonsymmetrizable and hence A,( P )  is identi- 
cally + W. For the case Y = 9, we need the following 
lemma. 

Lemma 3: In the case % = Y = 9, max,A,( P )  is 
attained by the uniform distribution P* = { P ( x )  = 

1 / I 9 D X E %  and 
1 

A, = max A,( P )  = A,( P * )  = - C I ( s ) .  
191 S €B P 

Proof: In this case, ‘& consists of all channels of the 
form (4.5) with no restriction on U,, and from (4.7) 

maxA,(P)  =max minf(P*U,). 

Since the convolution of the uniform distribution with any 
other distribution on 9 is again the uniform distribution, 
(P*, P*) is a saddle point of I (  P * U,). 

Theorem 7: The capacity of a group adder AVC (4.1) 
with % = 9 under state constraint A < A, (given by 
Lemma 3 if 9’ = 9, and A, = 00 if Y is a proper subset 
of 9)  is 

P p U0 

C( A )  = logl9I- max H ( Q  * R )  (4.10) 
Q :  / ( Q )  5 A 

while for A 2 A, the capacity of 0. Further, the capacity 
can be attained by the MMI decoding rule. 

Corollary: The capacity of this AVC without state con- 
straint is 0 if 9 = 9 and is positive and equal to 

C=loglSI- m a x H ( Q * R )  
Q 

if Y is a proper subset of 9. 

Proof: By (1.7) and (1.Q for A < A, we have 

C ( A ) =  max min I ( P , w ~ )  
P :  A o ( P )  2 A Q :  / ( Q )  5 A 

where I ( P ,  WQ) is now given by (4.8) and (4.9). The max 
and min can be interchanged by the standard min-max 
theorem argument. For a fixed Q the maximum of 
I ( P ,  WQ) is achieved for a choice of P that maximizes 
H ( Y ) ,  and max H ( Y )  = logl9l is attained when P = P*,  
the uniform distribution on 9. Notice that P* satisfies the 
constraint A,( P*) 2 A by Lemma 3. This completes the 
proof of the capacity formula (4.10). For A 2 A,, the 
capacity is obviously 0 because Q = P* satisfies the con- 
straint I ( Q )  I A ,  and yields I ( P ,  WQ) = 0 for all P .  

To prove the last assertion, on account of Theorem 2 it 
suffices to check that for random variables as in (4.8), with 
P = P* and l(Q) I A 

I (  x A Y )  2 I (  S A Y ) .  

Since (4.8) implies I (  s A Y )  = H( Y )  - H( x 4- z), for P = 
P* we have I ( S  A Y )  = 0, while Z(X A Y )  > C(A) > 0. 

Y = X + S + Z ,  with X ,  S, Z independent, 

Px= P ,  Ps=Q,  P z =  R .  (4.8) This completes the proof. 

Remarks: 1) Theorem 7 shows, in particular, that in this 
case the capacity is equal to the random code capacity. 

From (4.8), we can write 

I (  P, WQ) = H (  Y )  - H (  S + z) . (4.9) 
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Notice the remarkable fact that in Theorem 7 no assump- 
tion was needed on the function I appearing in the state 
constraint . 

implying that P * U, = Q, i.e., 

C P ( x ) u o ( s  - x )  = Q ( s > .  (4.14) 

2) Setting 9 = (0, l} with mod-2 addition, and l ( s )  = s, 
Theorem 7 covers the noiseless binary adder AVC of [9] as 
well as its noisy version with arbitrary “noise distribution” 
R = (1 - r ,  r ) ,  r # 1/2. For this channel Theorem 7 gives 
the capacity C(A) =1- h ( A  * r )  if A <1/2 (and 0 if 
A 2 1/2), which for r = 0 reduces to 1 - h( A )  as obtained 
in [9]. Notice that by applying Theorem 5 ,  it follows that 
the capacity of this binary AVC can be attained by the 
MD decoding rule provided that r < 1/2. 

For the case where 9- is a proper subset of 9, no result 
as explicit as Theorem 7 is expected. Nevertheless, a gen- 
eral result will be stated as Theorem 8. It will involve 
capacity under input constraint r (in addition to state 
constraint A), with the understanding that the input and 
state constraints (1.4) and (1.11) are defined in terms of 
the same function I ( . ) ,  

Theorem 8: For a group adder AVC with state con- 
straint A ,  the typicality decoding rule is good for every 
strictly positive input distribution P satisfying A o ( P )  > A. 
For those P’s as before which are regular, the indepen- 
dence decoding rule is also good. Moreover, if either 
1) S = 9, and this set is not closed under addition in 9, 
or 2) 9 = Rd,  9- c Y c ( R + ) d ,  and I ( . )  is a nondecreas- 
ing function in the sense that f (  t l )  5 f (  t , )  if t ,  I t ,  com- 
ponentwise, then 

A,( P) = I( P), A - max f ( x )  (4.11) 
O - X E T  

and 

C (  r, A )  = max I( P, A )  > 0 (4.12) 
P :  i z s i ( p ) s r  

if r > A ,  A < A,, while C(r, A )  = 0, otherwise. 

Remark: Z(P,  A )  is concave in P, being the minimum 
of concave functions Z(P ,  We). Hence the right side of 
(4.12) is either equal to C,( A )  = maxp Z(P ,  A), or else the 
maximum is attained at the boundary. More precisely, if 
Z(P*,  A )  = C,(A) implies I (P*)  < A, then the maximum is 
attained with 1 ( P )  = A, whereas if 1( P*) > r, it is attained 
with f ( P )  = r. All these cases are actually possible as 
already shown by the simple examples of [9]. 

Proof: To prove the first assertions, on account of 
Theorems 3 and 4 it suffices to show that if A , ( P )  > A ,  
then (2.9) and (2.10) cannot simultaneously hold. Suppose, 
therefore, that (2.9) holds for some (2 and U. With (4.1), 
this means that 

C P ( x ) R ( y  - x - s ) U ( s l x ’ )  = x R ( y  - x ’ - s ) Q ( s )  
x ,  s S 

(4.13) 

where as in (4.3) we extend the summation over s to all of 
9 by setting U(sJx) = Q(s) = 0 for s 4 Y ,  while x ranges 
over S. Substituting x ’ =  0, we obtain 

R * P * U, = R * Q (where U,( e )  = U ( ,  IO)) 

Further, for any t E 9 such that t 4 x ‘ 4  Y for some 
x’ E 3, it follows from (4.14) with the substitution s = t + 
x’ that U,( t )  = 0 (using the assumed strict positivity of P). 
Hence (4.14) yields that Q = P * U, for some U, satisfying 
(4.6). On account of (4.7), we then get A , ( P )  5 f ( Q ) .  By 
the assumption A , ( P )  > A, this means that (2.10) does 
not hold. This completes the proof of the first assertions of 
the theorem. 

Further, in case l), it is clear from (4.6) that the unit 
mass at 0 is the only admissible U,; thus, trivially A,( P) = 

f ( P ) .  In case 2), for any admissible U,, 

I( P * U,) = P( x )  U,( s - x )  I( s ) 
x .  s 

2 ~ P ( x ) U , ( s - x ) I ( x )  = I ( P )  
x .  s 

where the inequality follows from the monotonicity of 1 
since U,(s - x) > 0 implies s 2 x .  Hence by (4.7), Ao( P) 
= I( P) also in this case, proving (4.11). The last assertions 
follow from (4.11) by (1.12)-applied now with g ( - )  = I(.) 
-together with the passage following (1.12). 

We conclude this section by observing that the key to 
our treatment of group adder AVCs was the explicit de- 
scription (viz (4.5), (4.6)) of the set @ of channels satisfy- 
ing (1.2). Under suitable conditions on I (  .) an alternative 
approach is possible, which applies also to general additive 
AVC‘s as will be seen in the next section. 

V. ADDITIVE AVC’s 

In this section we will study additive AVC’s W whose 
input and output alphabets are (finite) subsets of Rd. Thus 
according to (2.13), 

W ( y l x ,  3)  = V ( y  - 4 s )  (5.1) 

where the set of states 9’ is an arbitrary finite set, and 
I/: Y -+ 2 is some given channel from Y into a finite set 
2 c Rd. For z 4 2, we set V ( z l s )  = 0; with this conven- 
tion, (5.1) makes sense also when y - x 4 2. 

The model (5.1) includes the extension of the group 
adder AVC (with 9 = R d )  to the case where the noise 
distribution may also vary arbitrarily. To see this, set 
Y = Y1 X Y2 where Y1 c R d  and to each s2 E 9, there 
corresponds a “noise distribution” R S 2  on R d  (with finite 
support). Then setting V( zIsl, s,) = Rs2( z - s,), ( 5 . 1 )  gives 
the following generalization of (4.1): 

W ( y J x , s , , s , )  = R S 2 ( y - x - s 1 ) -  ( 5  4 
For AVC‘s of this kind, it is natural to let the “cost” 
depend on s1 alone and also to postulate that all “noise 
distributions” R S 2  have zero expectation vector. Then the 
expectation vector of V ( .  Is1, s,) defined by V( LIS,, s 2 )  = 
R S J z  - sl) equals sl, and the cost I ( s )  depends on s = 

( sl, s2) through this expectation vector only. 
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For general additive AVC‘s (cf. (5.1)), we will denote the To this end, multiply both sides of (5.6) by y and sum 
expectation vector of V( - Is) by E,, i.e., over y .  Since with the substitution y = x + Z ,  

E ,=  c V ( z 1 s ) z .  (5.3) V ( y  - x ( s ) y  = x + V ( z 1 s ) z  = x + E, 
Z €Z V X 

Motivated by the foregoing consideration, we restrict our- it follows that ~~ 

selves to state constraints A with I ( s )  depending on s 
through E,. Thus with some abuse of notation, c P ( x ) x +  C U ( s l x ’ ) E , = x ’ +  C Q ( s ) E s .  ( 5 . 8 )  

X S S 

I($) = / ( E , )  
where the latter I is a nonnegative function on R d  with 
I(0) = 0. Input constraints I’ will be understood in terms 
of the same function I ( - ) .  Inequalities for elements of R d  
will be understood as holding componentwise. 

Theorem 9: For an additive AVC with input and state 
constraints as just given, with A < max, E I( x ) ,  suppose 

This, together with the convexity of I (  a ) ,  yields 

c P (x’) W l x ’ ) I (  E , )  
x’, s 

2 Z P ( X Y (  c U ( ~ l X ’ ) ~ , )  

= x P ( x ’ ) l ( x ’ +  c Q ( s ) E , -  ~ P ( X ) X  

X ’  S 

X X’ Athe- S 

5.9) 

b l C l 1 b l  

1) 9- c (R + ) d ,  0 E 9-, E, 2 0 for all s E 9, and I(-) is 
convex and I ( t l )  s l ( t 2 )  for t, I I,; or 

2) 9- and %” are symmetric around 0, for each s E Y 
there is an S’E Y such that V(z1s’) = V ( - z l s )  for all 
z E 9, and I(.) is a convex even function. 

Under condition 1 (respectively, 2), the independence de- 
coding rule is good for every (respectively every symmet- 
ric) distribution P on 9- with minx P ( x )  > 0 and I ( P )  > A. 
In particular, in both cases 

C(I ‘ ,A)>  max I ( P , A ) ,  i f r > A .  (5.4) 
P: A S / ( P ) S I -  

If, in addition, there exists a mapping f :  9- + Y such that 
for all x E 3, z E R d ,  

V ( z l f ( x ) )  = R ( z  - x )  (5 .5)  
where R is a distribution on R d  with zero expectation 
vector, then (5.4) holds with equality and moreover 
C(r, A )  > 0 if and only if r > A. 

Remark: Hypothesis (5.5) implies that the AVC W is 
deterministically symmetrizable. In fact, by (5.5) with z = 

y - x’, (5.1) gives that 

W(ylx’, f ( 4 )  = V ( y  - x ’ l f ( x ) )  = R ( y  - x - 4;  
by symmetry, W(ylx, f ( x ’ ) )  equals the same. Observe that 
hypothesis (5.5) always holds for the AVC’s described in 
the paragraph containing (5.2). 

Proof: By Theorem 4 the goodness of the indepen- 
dence decoding rule will be established if we demonstrate 
that P satisfies DS (A),  i.e., that (2.9) and (2.10) cannot be 
simultaneously satisfied. 

For W as in (5.1), (2.9) becomes 

P (  x ) V (  ,V - x ~ s ) U ( S ~ X ’ )  = ~ Q ( S )  V(  JJ - ~ ’ 1 s ) .  (5.6) 
.x. s S 

We will show that (5.6) implies 

CP(x)U(s l+(E, )  > A ,  (5.7) 
.x. s 

i.e., (recalling that now I ( s )  = / ( E s ) )  that the second in- 
equality in (2.10) can never hold if (2.9) does. 

In case l), substituting x’=O in ( 5 . Q  we see that 
C,P(x)x I ZQ(s)E, .  Therefore, by the assumptio.- on 
/(*), the last sum in (5.9) is bounded below by 
C, ,P(x ’ ) l (x ’ )  = I ( P ) .  By the hypothesis I ( P )  > A, this 
establishes (5.7). 

In case 2), since I is now a convex even function, we 
have 

,(x + c ) +  I (  - x + c) = I ( .  + c ) +  I ( x  - c)  

2 2I(x) = I ( x ) +  I( - x )  
for every c E Rd. Hence for a symmetric P 

1 
C P ( X ) f ( X  + c )  = - C P ( X ) ( I ( X  + c ) +  I( - x + c ) )  
x 2 ,  

1 
2 5 C P M W  + I ( -  4)  

X 

= C P ( X ) I ( X ) .  
X 

This means that in this case too, the last sum in (5.9) is 
bounded below by I ( P )  > A, completing the proof of the 
first assertion of Theorem 9. 

Next, if P is any input distribution with l ( P )  <: r for 
which a good decoding rule exists (given the state con- 
straint A), then by definition C( r, A )  > I (  P, A). In par- 
ticular, in case 1) the first assertion (just proved) of the 
theorem immediately implies inequality (5.4). In case 2), 
the same would follow if we showed that the maximum in 
(5.4) is attained for a symmetric P. This, however, is a 
consequence of the fact that hypothesis 2) implies I (  P, A )  
= I( P’, A )  whenever P ‘ ( x )  = P( - x) for every x E 9, 
and of the concavity of I ( P ,  A )  as a function of P. 

Finally, under hypothesis (5.5), the deterministic chan- 
nel U: 2Y -9’ defined by f belongs to the set U of 
channels satisfying (1.2), as observed in the earlier remark. 
Since (5.5) and (5.3) imply E , ( , ) = x  (because R has 0 
expectation), it follows that 

A , , ( P )  = min x P ( x ) U ( s l x ) f ( E , )  
“ E @  r,s 

2 c P ( x ) I ( q ( x , )  = w. 
\ 
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This result leads, by (1.9) with g ( . )  = /(a), to the conclu- 
sion that (5.4) must hold with equality, and C(T, A )  > 0 if 
r > A. By the argument following (1.12), it also follows 
that C(r, A )  = 0 if r I A. This completes the proof of 
Theorem 9. 

In each case we will also suppose that an input con- 
straint r is given in terms of some "cost function" g ( . )  on 
9- (cf. (1.11); here, unlike in the previous section, g(.) is 
arbitrary and may be unrelated to I ( - ) ) .  

Theorem 10: The capacity under input constraint r of 

VI. RANDOMIZED STATE SELECTION 
- -  

an AVC with random state selection as in 3)-3), abbrevi- 
ated C(')(  I?, A), i = 1,2,3, is given by 

c(l)(r, A )  = c,(r, A )  In this section, we discuss the capacity of an AVC when 
the state selector is permitted to randomize. Recall that for 

average probability of error for a given state sequence c(2)(r, A )  { 2 c r 7  > '7 

a code with codewords x l ; - * , x N  and decoder @, the 

S E Y "  is 

i f A < A ,  
if A 2 A, 

C ( T , A ) > O ,  i f A <  max A o ( P )  
P :  g ( p ) I r  

if A >  max A , ( P )  
P :  g ( ~ )  I r 

l N  
F ( s )  = - W"( ~ I x ~ , s ) .  (6.1) c3' (r ,  A )  = 

N r = l  y :  + ( y ) + i  

If randomized state selection is permitted subject to cer- 
tain constraints, a positive number R is called an e- 
achievable rate if for every 6 > 0 and sufficiently large n 
there exist codes with rate larger than R - 6 and with 
EF(S) < E uniformly for all admissible random state se- 
quences S = (S, ,  . . -, &). The corresponding capacity is 
the largest R which is c-achevable for every E > 0. 

The capacity of an AVC without state constraints is not 
affected by randomized state selection because any code 
that satisfies F(s) < c  for every s €9'" also satisfies 
EF(S) < c for every random state sequence S. Similarly, 
the capacity under state constrained A remains unchanged 
by randomized state selection subject to the constraint 

I( S )  I A almost surely. (6.2) 
On the other hand, if (6.2) is replaced by the "average 
constraint" 

E I ( S )  I A (6.3) 
then the corresponding capacity will be equal to that of the 
unconstrained AVC (cf. Csiszhr-Narayan [SI; that random 
codes were considered there does not make any difference 
in the present context). Also, as in [SI, under the constraint 
(6.3) the c-capacity (the largest c-achievable rate) is typi- 
cally larger, for any fixed c > 0, than its limit as c + 0 
which is (by definition) the capacity. 

To obtain more attractive results, randomized state se- 
lections subject to (6.3) will be addressed with the addi- 
tional restriction that the states at different instants be 
selected independently, i.e., the components of S = 

(S , ,  . . . , S,) be independent random variables. Three dif- 
ferent models are considered. 

1) SI; . ., S,? are required to have the same distribution; 
then (6.3) reduces to the constraint 

1 ( Q )  A (6 -4) 

with C,(F, A )  and C(r, A )  as in (1.12), (1.13). 

Proof: If S1;..,Sn are independent state random 
variables with distributions QI; e ,  Q,I, then with the nota- 
tion 

(cf. (l.l)), we obtain from (6.1) that 

EF(S) = C . . . Q,I(s , )F(s> 
s E 9 n  

1 N  
= -  c W,"(ylx,) = g ( Q ) .  (6.7) 

In other words, for any given code, EF(S) equals the 
average probability of error F(Q) of the same code on the 
AVC defined by (6.6) (whose states are the distributions 
on 9') for state sequence Q = (e,;. e ,  The latter 
AVC is, in effect, the convex closure of the original one 
(cf., e.g., [7, p. 205]), but as different distributions Q may 
give rise to the same channel W,, the representation of the 
component channels of the convex closure as W, need not 
be unique. 

consists of 
identical components satisfying (6.4). Hence using (6.7), 
the capacity C(l)(r, A )  will be the same as the capacity 
under input constraint r of the compound channel defined 
by the family of channels W, with l (Q)  I A. 

Compound channels are mathematically much simpler 
than AVC's. Indeed, by a trivial extension of the standard 
compound channel coding theorem (cf., e.g., [7, p. 1731) to 
the constrained input case, the capacity under input con- 
straint r of the aforementioned compound channel is the 
maximum of 

r = l  y: +(J l )+f  

In case l), the sequence Q = ( QI,. . . , 

on the common distribution Q of S,; . ., S,?. min I( P, We) = I( P, A )  (6.8) 
Q :  / ( Q )  s A 2) S,; . ., S, need not have the same distribution, but 

( 6 ' 5 )  
3) No restrictions, other than independence and (6.3), 

each should satisfy over P satisfying g( P) I r. This proves that C")( r, A )  = 

In case 2) we have a genuine AVC problem. By (6.5) and 
(6.7), C(2)(I', A )  will be equal to the capacity under input 
constraint r of the AVC defined by { W,: I (  Q )  2 A }. The 

Cr(F, 11). E I ( S , )  I A .  

are imposed on S,; . -, S,. 
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latter AVC must be considered without state constraints as 
the constraints (6.5) are fully taken into account by letting 
the state set be { Q: f ( Q )  I A } .  The inconvenience caused 
by this state set being infinite is easily overcome. (The 
hypothesis of a finite set of states could in general be 
dispensed with by an approximation argument such as in 
[7, p. 2161; this, however, is not needed now). Indeed, 
regarding the set { Q: l ( Q )  I A }  as a simplex in the 
191-dimensional space, let Y*  denote the (finite) set of its 
vertices. Then the previous AVC is the convex closure of 
the AVC { WQ: Q E Y * }  and hence has the same capacity 
under input constraint r as the latter. Since this capacity 
is equal to C(2)(I‘, A), it remains to prove that the last 
AVC (with finite set Y * )  is symmetrizable if and only if 
A 2 Ao, and that if nonsymmetrizable, its capacity under 
input constraint r equals max,: g ( p )  < J ( P ,  A )  = C,(T, A). 

The last assertion follows from the fact that, in general, 
the capacity under input constraint T of a nonsymmetriz- 
able AVC is the maximum over P (with g ( P )  5 r) of the 
minimum of the mutual information Z(P ,  V )  for V in the 
convex closure of the given AVC (apply (1.12) with A = 

I,, to make the state constraint inoperative). As the 
convex closure of {WO: Q E Y*}  is { WQ: l ( Q )  I A } ,  the 
last minimum now equals (6.8). To verify the condition for 
symmetrizability, notice that any AVC (with finite state 
set) is symmetrizable if and only if its convex closure is 
deterministically symmetrizable. Since a mapping from X 
to {Q: l ( Q ) < A }  is the same as a channel U: X + Y  
with 

Hence for any given code 

E C ( S )  5 max ~ ( s )  + / i , /nS2.  

It follows that C(3)( P, A) 2 C(  r, A + 6)  for every 6 > 0, 
and since C(r, A )  is continuous in A subject to (6.12) 
(cf. (1.12)), t h s  proves the reverse of inequality (6.11) 
under condition (6.12). 

We still have to prove that if A does not satisfy (6.12), 
then C(3)( r, A )  = 0. Since by (1.5) and the minimax theo- 
rem 

max A , ( P )  = min max c P ( x ) U ( s l x ) l ( s ) ,  
U E ~  P :  g ( p ) s r  x , s  

I: /(I) I A + S 

p :  g ( p ) I r  

if (6.12) does not hold then there exists U E 49 such that 

c P ( x ) U ( s l x ) l ( s )  I A ,  whenever g ( P )  I r. 
X,A 

(6.13) 

Proceeding as in the proof of Lemma 1 of [9], consider any 
code with codewords xl; . ., x N  satisfying the input con- 
straint (l.ll), and let S, = (S,,; . -, s,,), j = 1, .  . -, N, be 
random state sequences with independent components 
whose distributions are defined by Pr { S,, = s} = U(slx, ,) ,  
where U E @ satisfies (6.13). Then 

El(S , )  = C P , , ( x ) U ( s l x ) l ( s )  I A ,  
x, s 

i.e., each S, satisfies the constraint (6.3). On the other 
hand, by [9, eq. (3.29)], 

N - 1  
U ( s l x ) l ( s )  I A ,  for every x E X ,  (6.9) EC(S,) 2 - for at least one j .  

S 2N ’ 
the deterministic symmetrizability of the AVC {We: l ( Q )  
- < A }  means that 

b(. ,x’) ( Y I X  ) = WV(. , X )  ( Y 1x9 (6.10) 

for some U satisfying (6.9). Recalling the definition (1.1) of 
WO, (6.10) means exactly that U satisfies (1.2), i.e., U E 49. 
Finally, by (1.6), the existence of a U E 49 satisfying (6.9) 
is equivalent to A 2 A,. This completes the proof of 
Theorem 10 for case 2). 

Case 3) could be dealt with similarly, but a direct 
approach is simpler. Since 

(6.11) C(3)( r, A )  I C(  r, A )  
holds by definition for 

A <  max A o ( P )  (6.12) 

it suffices to establish the reverse inequality. Now, for an 
arbitrary sequence of independent random variables S = 
( S , ,  . . . , S,)  satisfying (6.3), Chebyshev’s inequality implies 
that for any 6 > 0 

P r { / ( S )  > A + 6 )  s P r ( -  [ / ( S , ) - E / ( S , ) ]  >S; 
n2S2 ,=, 

P :  g ( p )  c r 

1 ” 

n r = l  

1 ” s - var/(S,) </&,/nS2. 

This means that for no nontrivial code satisfying the initial 
input constraint (1.11) can EC(S) be uniformly small for 
all admissible state sequences S; consequently, 

c(3)(r, A )  = 0 

In dealing with channels partially controlled by an ad- 
versary, McEliece [14] has considered a two-person zero- 
sum game between the “communicator” and the “jammer” 
with mutual information as the pay-off function. In our 
case this leads to the random code capacity 

C , ( r , A )  = max min z ( P , w ~ )  
P : g ( P ) - s A  Q : / ( Q ) < A  

- - min max Z(P,WQ) (6.14) 
Q :  / ( Q )  s A p :  g ( P )  I r 

as the value of the game. In justifying his approach, 
McEliece [14, pp. 134-1351 remarks, first, that if the 
jammer were to use h s  optimal strategy, then no code with 
a rate higher than (6.14) could achieve a small average 
probability of error; second, the communicator could em- 
ploy codes with rates arbitrarily close to (6.14) that ensure 
a small average probability of error regardless of the 
channel chosen by the jammer, if this channel were memo- 
ryless. The compound channel coding theorem is referred 
to as a reason for the last assertion which, therefore, must 
have been meant for the communication situation of our 
case 1). On the other hand, the rather vague formulation in 
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[14] could be interpreted as pertaining to cases 2) and 3) 
also. If true, this would indeed enhance the appeal of the 
mutual information game approach. By Theorem 10, when 
independent but not necessarily identically distributed 
jamming subject to (6.5) is permitted, the desired assertion 
is “almost true”: it may occur that the jammer could 
prevent reliable transmission at any positive rate, but if 
fiat, the capacity remains equal to (6.14); the necessary 
and sufficient condition for the latter desirable case is 
A < A , .  

For independent jamming subject only to (6.3), the 
capacity may also be positive but strictly less than (6.14). 
Nevertheless, Theorem 10 permits us to identify those 
cases when indeed C(3)( r, A )  = C,( r, A); e.g., for additive 
AVC‘s such as in Section 5 ,  this holds whenever r > A 
and the unconstrained maximum of I(  P, A )  is attained for 
some P with l ( P )  2 A. Notice that C(3)(I‘, A), when 
positive, is always given as ma-min of concave-convex 
functions over convex compact sets, viz., 

C ( r , A ) =  rnax min z ( P , w ~ )  

(cf. (1.12) and (1.8)). Therefore, the max and min may be 
interchanged, and the Q* attaining the minimum of 

P :  A , ( P ) r A  Q :  / ( Q ) s A  
g ( p )  5 r 

may be interpreted as an optimum strategy for the jammer 
in the following restricted sense. The communicator, aware 
of the jammer’s possible knowledge of the code he is going 
to use, dare not select one that could be rendered useless; 
therefore, he rules out codeword types with A , ( P )  I A. 
Now the jammer no longer needs to know the actual code 
to prevent reliable transmission with rate larger than the 
capacity C(r, A); he can always use an independent and 
identically distributed random state sequence with distri- 
bution Q*. 

We emphasize the assumption implicit in our model that 
the code has to be chosen first and that the jamming 
strategy may depend on it (though not on the actually 
transmitted codeword). Of course, there are many different 
models that could represent practical communication situ- 
ations. A simple one would require the jamming strategy 
to be selected first and revealed to both sender and re- 
ceiver; then the jammer’s best strategy would always be 
the same as in case l), and the capacity would be equal to 
C,( r, A). Among the more challenging possibilities is the 
model solved by Ahlswede [3] where the actual state se- 
quence (rather than just the jamming strategy) is revealed 
to the sender but not the receiver. We mention that reveal- 
ing the state sequence to the receiver never leads to a new 
mathematical problem on account of the possible reduc- 
tion to the case without such side information (cf. Remark 
2 following Theorem 3). 

McEliece [14] also considers the case where the commu- 
tator and jammer are allowed to use “n-dimensional strate- 
gies” X = ( X , ,  . . . , X,,) and S = (S,; . e, S,) satisfying 
Eg(X) I r, E l ( S )  I A (in our notation). By his Theorem 

2.1, if the payoff is (l/n)Z(X A Y )  where the output 
sequence Y = ( Y,; e ,  Y,) satisfies P y , x , s  = W “ ,  the value 
of this game is the same as (6.14) and a pair of optimal 
strategies consists of independent and identically dis- 
tributed sequences X and S with distributions yielding a 
saddle point for (6.14). In seeking a coding interpretation 
of this result it must be remembered that even for discrete 
memoryless channels the mutual information between 
length-n sequences need not be a possible rate of codes 
with small error probability for the same block length n; 
rather, as a rule a much larger block length is necessary. 
This suggests the following modification of model 2) ap- 
pearing in Theorem 10. Let the random state sequence 
S = (S,; . - ,  S,) be required to consist of independent 

(where n = lk, k is fixed), the random variables within 
each block being allowed to be arbitrarily correlated; 
further, let each block SI = ( S( l -  l ) k +  ,,. . . , & )  satisfy the 
constraint El(S , )  I A. For this case, Theorem 10 provides 
the following. 

Corollary: The capacity under input constraint r and 
random state selection as above equals C(2)(  r, A). 

Proof: Apply Theorem 10 to the 4-block extension 
W k  of the given AVC, defined by 

blocks (Si,. . * ,  Sk),(Sk+l,. * S2k),*. . ,(S(,-i)k+i,.  S,k) 

k 
W k ( Y I 4  = n w ( Y I I x I > s I )  (6.15) 

with the obvious definitions of the cost functions appear- 
ing in the input and state constraints. By McEliece’s theo- 
rem just cited, the random code capacity under input 
constraint r and state constraint A of this extended AVC 
is equal to kC,(T,R). It remains to verify that A($’, the 
analog for W k  of A, in fact equals Ao. 

Let @(&) denote the family of bhannels U ( k ) :  T k  + Y k  
for which 

S €Yk s €yk 

r = l  

Wk( y l x , s ) U ( k ) ( s I x ’ )  = wy y l x ’ , s ) U ( s l x ) .  

(6.16) 

Then by (1.6) and (1.4) 

A T ) =  min max U c k ) ( s l x ) l ( s )  
U ( k )  € ‘@‘k )  X E X k  E y k  

1 k 

(6.17) 

where 

- - c u ( ~ , , ~ ~ ~ , ~ l - ~ , ~ l + ~ , ~ ~ ~ , ~ ~ l  
SI 3. . ‘ 3 s,- 1, s,+ 1.‘ ’ . 1 sk 

X,,’ . ., X I -  1 ,  x, X I +  1’ * > 4- (6.18) 

Since (6.15) and (6.16) imply that the channel (6.18) 
belongs to @ defined by (1.2) (for every fixed 
xl; -, x , - ~ ,  x , + ~ ;  a ,  xk) ,  (6.17) and (1.6) give AV) 2 A,. 
On the other hand, since the k-block extension U k  of any 
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channel U E ‘4Y obviously belongs to ‘ 4 Y ( k ) ,  and for U ( k )  = 
U k  the channel (6.18) equals U, the reverse inequality 
A($) I A, also follows from (6.17) and (1.6). 

VII. CONCLUSION 

The general results of CsiszLr-Narayan [9] on the capac- 
ity for deterministic codes and average probability of error 
have been applied to specific classes of arbitrarily varying 
channels, typically with state constraints. For OR channels 
and group adder channels, explicit or nearly explicit capac- 
ity formulae have been obtained. Their noiseless special- 
izations are of independent combinatorial interest, as 
pointed out here for the OR channel and previously in [9] 
for two examples which were special group adder channels. 
For a large class of additive AVC‘s, an intuitively appeal- 
ing and simpler form of the general capacity formula was 
derived with the capacity being positive if and only if the 
input constraint were less restrictive than the state con- 
straint. For all these classes of AVC‘s we have shown, 
using general sufficient conditions derived in Section 11, 
that capacity is attainable using relatively simple decoding 
rules such as minimum distance for the OR channels and 
independence (or error vector and codeword) for additive 
AVC’s. We have also discussed how randomized state 
selection affects capacity, the random state sequence being 
subject to an expectation constraint. As the expectation 
constraint alone fails to raise the capacity above the un- 
constrained one, we have considered various kinds of 
additional restrictions, each involving independence of the 
state random variables. In some, but not in all, cases the 
resulting capacity equals the random code capacity which 
is also the value of the mutual information game proposed 
by McEliece [14]. 

Attention has been restricted in this paper to the dis- 
crete case. Continuous alphabet AVC‘s could be treated 
with the aid of suitable discrete approximations. This, 
however, requires mathematical techniques of a different 
hue and, therefore, will be done elsewhere. We mention, 
though, that our interest in additive AVC‘s has largely 
been motivated by the continuous-alphabet AVC whose 
output equals the sum of its input, state, and arbitrarily 
varying noise of variance not exceeding 02 .  Indeed, using 
the results of Section V (and also the known formula for 
the value of the corresponding mutual information game) 
it can be shown that the capacity of this AVC under 
mean-square input constraint r and mean-square state 
constraint A is equal to that of a memoryless channel with 
signal power r and noise power A + a2  if r > A, while 
otherwise the capacity is zero. 

APPENDIX I 
Example 1: Let 9 be a finite, noncommutative group. Let 

9” = 9’ = = 9, and let the input x and state s uniquely deter- 
mine the output as y = xs. This deterministic AVC has capacity 
(even random code capacity) equal to zero; (1.2) is satisfied by 
U ( s l x )  =constant = l / l S l .  However, this AVC is not determinis- 
tically symmetrizable. Indeed, deterministic symmetrizability 

would require the existence of a function f :  9 + 9 such that 

xf(  x’ )  = x’f( x )  (1.1) 
for every x and x’ in 9. Substituting x = e (the identity element 
of 9), we see that f must have the special form f ( x )  = xu, with 
a = f( e ) .  However, (1.1) then yields xx’a = x‘xa, or, xx’ = x’x, 
which contradicts the assumed noncommutativity of 9. 

One sufficient condition for an (unconstrained) AVC to have 
positive capacity is the existence of a distribution P on X 
satisfymg Condition DS (cf. Definition 3). This condition is due 
to Dobrushin-Stambler [lo]. Another sufficient condition, due to 
Ahlswede [ l ] ,  is as follows. 

Condition A: There exist distributions PI and P2 on X such 
that for no pair of distributions Q l ,  Q ,  on 9’ does 

C P i ( x )  Q i ( s )  W( AX, s) = C P * ( x )  W( ~ 1 x 7  s) (1.2) 
x . s  x. s 

hold for every y E Y. 
We now show that Condition A implies Condition DS for 

some P which in turn implies nonsymmetrizability, but nonsym- 
metrizability does not imply the existence of any P satisfying DS. 
This means that, while “DS for some P ”  and A are sufficient 
conditions for C > 0, neither is necessary. 

Notice first that if P does not satisfy DS and P’ is arbitrary, 
then multiplying both sides of (2.9) by P’(x’)  and summing over 
x’ yields 

C P ( x ) W ( y l x , s ) Q ’ ( s )  = x’,s P ’ ( ~ ’ ) W ( y l x ’ , s ) Q ( s )  
x. s 

with Q’(s )  =E.,,U(slx’)P‘(x’). This means that (1.2) holds for 
PI = P ,  P2 = P’,  Q, = Q’, Q2 = Q. Therefore, if Condition A is 
satisfied, the distributions PI and P2 therein must satisfy DS. 
Next, if the AVC is symmetrizable, then multiplying both sides of 
(1.2) by P ( x )  and summing over x yields (2.9) with Q ( s )  = 

E , U ( s l x ) P ( x ) ;  therefore, no P can satisfy Condition DS. The 
next example exhibits a nonsymmetrizable AVC for which no 
input distribution satisfies DS. 

Example 2: Let 9- = { 0 , 1 , 2 } ,  9’ = { O , l } ,  Y = { O , l } ,  and de- 
fine W by 

W(Ol0,O) = 1  W(Ol1,O) = 0.9 W(Ol2,O) = 0.8 
W ( O l 0 , l )  = 0 W(Ol1, l )  = 0.2 W ( 0 1 2 , l )  = 0.1. 

To show that this AVC is nonsymmetrizable, note that if U ( .  I .) 
satisfies (1.2), then as U(1lx)  = l - U ( O l x ) ,  we obtain from (1.2) 
for y = 0 that 

W(OlX, l )  + [ W(OlX,O) - W(OlX, l ) ]  U(0lX’) 
= W(Olx’,l)  + [ W(Olx’,O) - W ( O l x ’ , l ) ]  U ( 0 l x ) .  

Substituting x = 0, x’= 1, followed by x = 0, x’= 2, and finally, 
x = 1, x’ = 2, we obtain for the unknowns U(Ol0) = U, U ( 0 l l )  = 
U ,  U(012) = w, the following three equations: 

~ = 0 . 2 + 0 . 7 u  w=O. l+O.7u 0 . 2 + 0 . 7 w = 0 . 1 + 0 . 7 ~ .  
The inconsistency of this system of equations proves nonsym- 
metrizability. To show that no input distribution satisfies DS, it 
suffices to consider (2.9) for y =  0 only. Notice that for any 
distribution P on X = { 0 , 1 , 2 } ,  we have 

2 2 

x = o  x = o  
P(  x)  W(Olx,O) 2 0.8 P(  x)  W ( O l x , l )  I 0.2 .  

Taking, for instance, Q = ( 1 / 2 , 1 / 2 ) ,  we observe that 
1 

0.45 I W ( O ( x ’ , s ) Q ( s )  5 0.55, for x’= 0 , 1 , 2 .  
s = o  
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Hence it is clear that there exists U ( .  1.) satisfying (2.9), i.e., 

1 2 2 
P( x )  W(Olx,O) U(0lX’) + P ( x )  W(OlX,l)  U(1lx’) [2 I [ x = o  

= W ( O l x ’ , s ) Q ( s )  
s = o  

for x’ = 0, 1,2,  as claimed. 
Remarks: 1) Since for AVC’s with a binary input alphabet, 

nonsymmetrizability obviously implies Condition A (set PI and 
P2 to be point masses at the two input symbols), Example 2 is the 
simplest possible. 

2)  By the “strong separation lemma” of Ahlswede [ l ] ,  Condi- 
tion A is both necessary and sufficient to render C > 0 for the 
class of AVC’s with the property that for every channel K 
9- + 9, there exists a distribution Q on 9 such that 

c v ( s l x )  w ( ~ l x , s )  = Q ( s >  W ( ~ l x , s )  (1.3) 
S S 

for all x E 3, y E ?Y. A simple and direct proof showing that for 
such AVC‘s Condition A is necessary for nonsymmetrizability, is 
as follows. If Condition A does not hold, then for every Pl and 
P2 there exist Q ,  and Q2 satisfying (1.2). Denote by &(. Ix, x’) 
and V,(. Ix, x’)  any Q, and Q2 corresponding to the point masses 
at x and x’ in the roles of P, and P2. Then (1.2) becomes 

c & ( S I X  > x’) W( YlX, s) = c v2 ( S I X ,  x’) w( y lx’ ,  3). 
S S 

By assumption (1.3), the left and right sides above equal 
C , Q l ( s l x ’ ) W ( y l x ,  s )  and CsQ2(sIx)W(ylx’ ,  s ) ,  respectively, for 
suitable e,( .  Ix’) and Q 2 ( .  Ix). This proves symmetrizability since 
U ( s l x )  = ( 1 / 2 ) [ Q , ( s ( x ) +  Q ( s l x ) ]  satisfies (1.2). 

3) Let A” denote the condition that A is satisfied for blocks of 
I_ength n-(rather than for n =l), i.e., that for s.me disiributions 
PI and Pr on 9-’7, there exist no distributions Q, and Q2 on Y’l 

such that 

c PI ( x) PI ( s 1 W” ( Y 1x7 s 1 
x E P, s E 9’1 

= c 4( X ) Q , ( S ) W “ (  ylx,s). 
X € P , s  €9“ 

It is known (implicit in [ l ,  sec. 71) that the validity of A” for some 
n 2 1 is both necessary and sufficient for positive capacity. In the 
terminology of multiuser Shannon theory, this is a “product 
space characterization” of AVC’s with positive capacity, while 
nonsymmetrizability is the equivalent “single-letter characteriza- 
tion’’ (cf. the comments in [7, p. 2591). Whereas in multiuser 
theory such characterizations are typically in terms of informa- 
tion measures, it is striking that we now have a “single letteriza- 
tion” of a “product space characterization,” neither of which 
involves information measures. 

APPENDIX I1 
Proof of Theorem I :  Readers familiar with [9]  will easily real- 

ize that the proof is implicitly contained in that of [9 ,  lemma 51. 
We now describe the modifications needed to make this explicit. 
The equation numbers appearing below correspond to those of 
[9] ,  unless stated otherwise. 

a) We wish to establish (3.16), with I (  P) replaced by I (  P, A),  
and 6 = 31, for any type for which the given decoding rule is 
(1,  admissible (the hypothesis P ( x )  > /3 of Lemma 5 is no 
longer required). 

b) In (3.17), replace I (  P) by I (  P, A )  and skip the paragraph 
following (3.1 7). 

c) Choose 9 > 0 small enough to ensure that if the joint type 
of x,, s, y belongs to V,,, defined by (2.4) with I ( s )  I A ,  as 
required by the state constraint, then y is (x,, T)-typical and (2.5) 
in our Definition 2 of (6, T)-admissibility is satisfied by dummy 
random variables X ,  S ,  Y ,  representing this joint type. Then if an 
error is made when the true codeword, state, and received se- 
quence are as above, our (.$,.r)-admissible decoding rule must 
have assigned some candidate message j # i to y such that for 
X ,  X’, S,  Y representing the joint type of x,, x,, s, y ,  (2.5) and 
(2.6) in Definition 2 hold, and also I( X‘ A Y )  2 I (  P, A )  - 3 (the 
latter by condition a) in Definition 2). Thus if gq denotes the set 
of joint distributions P,,,, satisfying the latter conditions (in- 
stead of those in the paragraph following (3.20)), then (3.21) will 
remain valid. 

d) Equation (3.28) now implies the bound exxsy( i , s )  I 
exp { - n(S/3) - 3c)}, with 6 = 31, simply by the condition 
I( X’ A Y )  2 I(  P, A )  - 5 and (3.17) (as modified in b)). 

Proof of Theorem 3: On the account of the corollary to Theo- 
rem 1 ,  it suffices to prove that for every 5 > 0, there exists T > 0 
and 6 > 0 such that the typicality decoding rule is ( 5 ,  s)-admissi- 
ble for those codeword types P‘ that satisfy 

max 1 P ( x )  - P ’ ( x )  I < 6. (11.1) 
X 

Now let x,,. . . , xN be codewords of common type P‘. Observe 
first that the typicality decoding rule assigns, by definition, at 
least one message i to any 7-typical y E CY”. Then the joint type 
of x’= x, and y satisfies (2.2) and hence I ( x ’ A  y )  is arbitrarily 
close to I (  P‘, WQ) 1 I( P’, A )  if T is sufficiently small. Hence, 
condition a) of Definition 2 is satisfied. 

Turning next to condition b), it suffices to show that if 
X ,  X’,  S ,  Y are random variables such that P, = Px = P’, and 

max ( .,Y) - P’( X )  wQ( A X )  I I 7 .  
x .  v 

maxlPxsy(X,S,y)- P ’ ( x ) Q ( s ) w ( Y l x ? s ) l I  7 9  

X . S , Y  

for some Q and (2 with I (Q)  I A, I(0) I A ,  then (2.6) must 
hold if 6 (in (11.1)) and T are sufficiently small. 

Suppose indirectly that there exists a sequence of joint distri- 
butions PJY,,,, k = 1 , 2 ; .  e, with Pik )  = P ( k )  x = P ( k )  in the role 
of P’ and satisfying (II.l), where 6, + 0, and with 

maxIP$J( x ,  Y )  - P ( k ) (  x )  WQ(k)( Y l x )  I I 7k 9 
\ . I  

max l ~ ~ i b ( x , s , y ) -  ~ ‘ ” ( x ) P ‘ ” ( s ) ~ ( y ~ x , s ) l ~  ~ k ,  

where I ( Q ( ” )  I A ,  I (@’))  I A ,  and T~ -+ 0, such that neither of 
these joint distributions meets (2.6) with T = T ~ .  Then picking a 
convergent subsequence of P,.$YZsy, its limit Pxx,sv will satisfy 

Y , $ ,  1’ 

P r y ( X ’ , Y )  = P(X’)WQ(YlX’) ,  

Pxs y ( x 7 s 7 Y )  = P( x )  Q ( s ) W( Y I x 9 s ) ( 11 4 
for certain Q and Q with / ( Q )  I A, I (Q) I A ,  and also 

I (  XY A YlS)  = 0. 

The latter means that 
Pxx,sy( x, x’s ,  Y )  = Pr,( x ’ ,  s) P,Y,.l.S( X ?  V I S ) .  

Dividing both sides by P(x’)  and summing over x and s, this 
results in 

P,.l,.(YlX’) = c P,lx(s lx’)P, . l . s (Yls) .  (11.3) 
S €9 
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However, (11.2) and (11.3) mean that P, Q, and U = Psi, satisfy 
(2.9) and (2.10), the latter since /(e) I A ,  and 

c P ( x ) U ( s ( x ) l ( s )  = c Q ( s ) l ( s )  = l ( Q )  S A .  
x . s  S 

This contradiction of the hypothesis on P completes the proof. 

(1.1) becomes 
Proof of Lemma 1: (1) For an additive AVC defined by (2.13), 

WQ( ylx) = VQ( y - x) with VQ( z )  = 1 Q( s) V( 21s). 
S 

( 11.4) 

With (11.4), the (x, T)-typicality (2.2) means that 

Substituting y - x = z ,  this provides that the joint type of x and 
y - x is arbitrarily close to the product distribution P X VQ; thus 
(2.14) certainly holds if 7 is sufficiently small (depending only on 
q and the cardinalities of 3 and CY). 

2) If x and y satisfy (2.14), the joint type of x and y - x is 
close to P X T,  where T =  P v - x .  Thus (2.14) implies that 

where f ( q )  -+ 0 as q --* 0, uniformly in P and T. If y is q-typical, 
i.e., if it is (x’, 7)-typical for some x’, then (11.5) also holds with 
x’ instead of x and q instead of T .  From this and (11.6), we 
obtain by summing over x that 

( ( p  * vQ)(Y) - (p  * T H Y )  I S  ( 9  +f(q)) lTl .  (11.7) 

For sufficiently small q, this must imply that 

say. Indeed, else one could not find P,,, Vo,,, T,, n = 1,2; . ., 
satisfying (11.7) with q,, -+ 0, such that (11.8) would not hold for 
Vy,, and T,, for any n. Then picking a subsequence with e,, -+ P, 
Vy,,, -+ VQ, 7;,, -+ T,  say, we would get P * VQ = P * T,  VQ f T,  
contradicting our hypothesis on 9. 

Finally, if q is so small that (11.7) implies (11.8) and also 
f(q) I 7/2, then (11.6) and (11.8) give (11.5), i.e., that y is 
(x, T)-typical. 

APPENDIX I11 
We first show that inequality (3.7) does not hold if A is 

sufficiently close to 1. By Theorem 6, we will then prove that 
C( A )  < c.( A). Set 

1 - r - (1 - A)’(l-2r) 
r +(1- A)’(l-2r) 

F( A )  = (1 - A )  log 

h(  r +(1- A)(1-2r)) - h( r )  
1-2r 

- . (111.1) 

We claim that F ( A )  > 0 if A is sufficiently close to 1 (but not 

equal to 1). Since h’(t) = log(1- t ) / t ,  differentiation yields 

1 - r -(1- A)2(1 -2r) 
F’( A )  = -log 

r + ( l -  q2(1-2r) 
2(1- A)(1-2r) [ 1 - r - (1 - A)’(1-2r) 

+(l- A )  

I 2(1- A)(l-2r) + 
r +( 1 - A)2( 1 - 2r) 

1- r-(l-  A)(1-2r) + log (111.2) 
r+(l-A)(1-2r) . 

Consider the first case r # 0. Then F(1) = F(l)  = 0, and it is 
clear from (111.2) that 

8 l-r-(l-A)(1-2r) 
,”( 1) = - log an r+(l-A)(l-2r) 

1 
= ( l-r + f ) (1 - 2r) > 0 

thereby establishing our claim. 
In the case r = 0, a stronger result can be proved, namely, that 

the equation F( A )  = 0 has a unique solution A* = 0.6086 in the 
interval (O,l), and F ( A )  > 0 if and only if A > A*. In fact, 
substituting r = 0 in (III.l), we get 

l - ( l - ~ I ) ~  

(1 - A)2 F( A )  (1 - A)lOg - h ( A )  

= ( l - A ) l 0 g [ ( 2 - A ) A ] - 2 ( 1 - A ) l 0 g ( l - A )  
+ (1 - A)  log(1- A )  + A log A 

2- A 
F log A + (1 - A )  log- 1-A 

whence 
1 2-A 1-A 

F‘( A )  = - A -log- 1-A -- 2-A +l.  

Now, F(0) = - 00, F(1) = 0, F( l )  = + 00, and F’(A) can be 
further written as 

2 
F ’ ( A )  =--log 1+- A(2- A )  ( 1:A) 

Thus F’(A) is a decreasing function in (0,l) and F ( A )  is 
concave. This proves that the equation F( A )  = 0 has a unique 
solution A* in (O,l), and F ( A )  > 0 if and only if A > A*. 
Numerical solution of the equation yields A* = 0.6086. 

Next, we prove (3.11) for the noiseless OR channel. For r = 0, 
(3.3) gives 

I (  p ,  A )  = h((1- P)(l- A)> -0- P ) h ( A )  
and 

Solving the equation ( 8 / 8 p ) l ( p ,  A )  = 0 for p ,  we obtain that 
I (  p ,  A )  is maximized for 

1 h ( A )  
p* =1- - [1 +exp -1 1- A 1-A 
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It follows, with the notation U = exp h(A)/(l - A), that 

1 U l + u  1 
l + u  l + u  U l + u  

= - log(l+ U) +  log- - - log U 

= log( 1 + U) -log U = log 1 + - ( :i 
Since l / u  = exp[- h(A) / ( l  - A)] = exp[log(l - A )  + ( A /  
(1 - A))log A] = (1 - A)A””-”,  this proves (3.11). 
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