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Arbitrarily Varying Channels with 
Constrained Inputs and States 

IMRE CSISZAR AND PRAKASH NARAYAN, MEMBER, IEEE 

Abstract-Random coding theorems are proved for discrete memory- 
less arbitrarily varying channels (AVCs) with constraints on the trans- 
mitted codewords and channel state sequences. We consider two types of 
constraints peak (i.e., required for eacb n-length sequence almost d y )  
and average (over the message set or over an ensemble). For peak 
constraints on the c o d e d  and on the channel state sequences, the AVC 
is shown to have a (strong) random coding capacity. If the oodewords 
and/or the channel state sequences are constrained in the average sense, 
the AVCs do not possess (strong) Capacities; only r-cap&tk are shown 
to exist. 

I. INTRODUCTION 

DISCRETE memoryless arbitrarily varying channel A (AVC) is a model for a communication channel with 
unknown parameters that may vary with time in an arbi- 
trary and unknown manner during the transmission of a 
codeword. The encoder transmits over the channel, once in 
each unit of time i ,  a symbol x, from a finite alphabet I. 
The transmitted symbol is received at the output of the 
channel as a symbol y, taking values in a finite alphabet 
@Y. The use of the channel through n units of time, i.e., "n 
uses of the channel" can be modeled by a stochastic matrix 
W": 3" -, I", where Wn( &-, s) is the probability that a 
transmitted sequence x = ( x  - -, x n )  is received as the 
sequence y = ( y, ,  - - , y,) given that the channel resided in 
the sequence of states s = ( -, sa). Here, the state s,, at 
each time unit i, belongs finite set 9 of states, and 
may vary with i in an a rary manner. The transmitter 
and receiver strive to constfiuct codes for reliably transmit- 
ting information across Such a channel. 

n e r e  is a large variet) of coding problems for the AVC, 
depending on the nature of the error criteria used (average 
or maximum error), on the permissible coding strategies 
(correlated randomization in encoding and decoding, 
randomization in encoding only, or no randomization), 
and on whether or not the codeword and state sequences 
are selected with a knowledge of each other. 
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Since the introduction of the AVC by Blackwell, 
Breiman, and Thomasian [ll], considerable progress has 
been made in the study of these problems. Much of the 
work is summarized in Csiszk and Korner [12, Ch. 2, Sect. 
61 (see also Wolfowitz [24]); we cite only a few results here. 
The pioneering work of Blackwell, Breiman, and 
Thomasian [l'] used random codes, that is, the encoder 
and decoder vdxe chosen by a random experiment whose 
outcome had tt> be available to both the encoder and the 
decoder. The evident practical drawbacks of such a scheme 
led to a s t d y  of deterministic codes for AVC's 1221 with a 
maximal e r o r  probability criterion. Ahlswede and 
Wolfowitz [7] determined the corresponding capacity for 
AVC's with a binary output alphabet. For general outputs, 
the problem is still unsolved and includes Shannon's fa- 
mous zero-error capacity problem [2], [23] as a special case. 
In a major breakthrough, Ahlswede [5]  determined the 
capacity of a fairly large class of AVC's for the maximal 
probability of error criterion. The best results yet on this 
problem are due to Csiszk and Korner [13]. For the 
average probability of error criterion, the basic AVC cod- 
ing theorem is due to Ahlswede [4], who proved that the 
capacity for deterministic codes, if positive, is always equal 
to that for random codes. However, the random coding 
capacity may be positive when the deterministic capacity is 
zero; a necessary and sufficient condition for the positivity 
of the latter will be given in Csiszk and Narayan [14]. 

All the results mentioned above are for the case when 
the transmitted and state sequences are chosen without 
any knowledge of each other. Since this case is being 
considered in the present paper, from among results for 
other cases, we cite only a remarkable paper of Ahlswede 
[6] in which, using previous results of Gel'fand and Pinsker 
[18], the capacity problem is completely solved for the case 
when the state sequence is known to the encoder. 

Continuous alphabet AVC's are less understood than 
their discrete counterparts, and all the available results 
refer to the Gaussian case [3], [9], [lo], [20]. Of particular 
interest to us-in fact, a strong motivation for the present 
paper-were the Gaussian AVC's of [20]. A Gaussian 
AVC (GAVC) in the sense of [20] is a discrete-time mem- 
oryless Gaussian channel with input power constraint P, 
and noise power Ne. This is further corrupted by an 
additive "jamming signal" whose statistics may be arbi- 
trary and unknown, subject only to a (known) power 
constraint PJ. Considering two types of power constraints, 
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viz., peak and average, it was shown for peak power 
constraints on both the input (Le., codeword) and jamming 
sequences that the GAVC had a random coding strong 
capacity. For the remaining combinations of peak and 
average power constraints on the input and jamming se- 
quences, the GAVC's were shown in [20] not to possess 
strong capacities. 

This paper considers problems analogous to those in [20] 
for a general class of discrete AVC's with peak and average 
constraints (defined in Section 11) on the input and state 
sequences. Preliminary results are available in [19]. As in 
[20], it turns out that the random coding strong capacity 
exists only in the case of peak constraints on both the 
input and state sequences, while otherwise the €-capacities 
do depend on E .  This is explained by the fact that AVC's 
with average state constraints are similar to ordinary 
"averaged channels," for which a strong capacity does not 
exist (cf. Ahlswede [l]). Under average input constraints 
not even a discrete memoryless channel has a strong 
capacity. 

The capacity problem for the AVC under constraints 
using deterministic codes will be addressed in a forthcom- 
ing paper [14]. Here we only mention that the proof 
technique of Ahlswede [4] may not work in the constrained 
case and, in fact, the deterministic average error capacity 
may be positive and strictly less than the random code 
capacity. 

In the remainder of t h s  paper, we introduce the 
terminology and definitions in Section 11, and prove our 
results in Section 111. Section IV is devoted to a discussion 
of these results. 

11. TERMINOLOGY AND DEFINITIONS 

We have adopted much of our terminology and defini- 
tions from [12]. 

In particular, X, Y, and Y denote finite sets, and X ,  Y,  
and S random variables taking values in these sets. The 
distributions (resp. joint distributions) of such random 
variables are denoted by P,, P,, P,,, etc., while condi- 
tional distributions are denoted by P,,,, P,,,, etc. A 
channel W: X -+ Y is given by a transition probability 
matrix { W(y1x): x E 3, y E Y }. A discrete memoryless 
channel (DMC) { W }  defined by W is a sequence of 
channels { W":  3" -, Yn}  where 

n 

W"( V I 4  A n W(Y1lXl), (2.1) 
I =1 

with x = (x1; - ., x , )  and y = ( y 1 ; .  e ,  yn). 
Let W =  { W ( . l - , s ) , s ~ Y }  be a family of channels 

W: X +CY, where X and Y represent the input and 
output alphabets; s E Y denotes the state of the channel 
and can be interpreted as an index identifying a particular 
W E W .  For n-length sequences, the transition probabili- 
ties corresponding to a sequence of states s = (s1; . -, s,) 
are assumed to be given by 

n 

W"( Y k  4 n W(YllX1, S I > .  (2.2) 
1 = 1  

The family of channels W n ( .  1.  , s): X + Y ', s E Y will 
be denoted by W n .  

A (discrete memoryless) arbitrarily varying channel 
(AVC) with input alphabet X, output alphabet Y, and set 
of states Y is a sequence { W"}F=p=l as above; henceforth, 
we shall denote it simply by { W }. 

A code of blocklength n is a pair of mappings 
f :  A+%", cp: 9Yn+&, and has rate (l/n)loglMl, 
where IAl denotes the cardinality of the message set A. 
The performance of the code (f, cp) on any channel W("):  
3" + Y" is evaluated in terms of its rate and the decod- 
ing error probabilities. The probability of error for the 
message m E & is given by 

e ,  = e,(W("),f,cp) Al-W(")(cp-'(rn)lf(m)). (2.3) 

The corresponding average error probability is 
1 

2 = e( WW, f , c p ) A -  e, .  (2.4) Id1 m E d  

In particular, for W(")  = Wn( * I., s), the dependence of the 
error probabilities on the state sequence s E Y "  will be 
indicated by writing 

e&) =e,(s,f,cp) Ae,(wn(- l . , s ) , f ,cp) ;  (2.5) 

~ ( s )  = e ( s , f , c p )  A - e,(s). (2.6) 
141 rnsd 

1 

A random code ( F ,  @) is a random variable taking values 
in the family of all codes (f, $I) with the same blocklength 
n and the same message set A. 

We now impose constraints on the input (transmitted 
codeword) sequences and define random codes that satisfy 
these constraints. Let g be a nonnegative-valued function 
on 3, and let 

1 "  
g(.) A ; c d x , )  (2.7) 

I = 1  

for x = ( x l , - .  a ,  x n )  in X". A random code ( F ,  @) is said 
to satisfy a peak input constraint I?, if for all m E A, 

g ( F ( m ) )  I r almost surely (as . ) .  

It satisfies a message average (m-average) input constraint 
rn-I?, if g ( F )  I I' as., where 

1 
E(F) c g ( F ( m ) ) ,  (2.8) 

m E d  

and a code-ensemble/message average (cm-average) input 
constraint cm-F, if E g ( F )  I r. Clearly, the peak input 
constraint I? is stronger than the rn-average input con- 
straint m-I? which, in turn, is stronger than the cm-average 
input constraint cm-r. 

Remarks: Even what we term a peak input constraint is, 
in a sense, an average constraint, as the constraining 
function g is defined by averaging over n time units (cf. 
(2.7)). We feel that the term "peak" is justified in compari- 
son with the other types of constraints, and will not lead to 
ambiguity. It would also be possible to consider a fourth 
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type of input constraint, namely, 
Eg( F( m)) I r for all m E A. 

This, however, would not lead to a new problem because 
for any random code ( F ,  (a) there exists another random 
code (F' ,  (a') with the same message set such that for every 
m E A! and every channel W("):  3'' + Y", 

Eg(F'(m)) = E g ( F ) ,  

Ee,( W'") ,  F', (a') = EF( W'"), F ,  (a). (2.9) 
To obtain this (F',(a') we may suppose that A= 
{ 1,. M } .  Then, denoting by Z a random variable inde- 
pendent of ( F , ( a )  and uniformly distributed over A, we 
set 

F'( m) A F( m + Z(mod M ) )  

(a ' (y)  =(a (y ) -Z(modM) .  
This fact also shows that for random codes it does not 
matter whether we adopt the average or maximum prob- 
ability of error performance criterion. 

Constraints can also be imposed on the sequence of 
channel states as follows. Let I be a nonnegative-valued 
function on 9, and let 

(2.10) 

for s = (s1; . ., s,) in 5"". We also consider random state 
sequences S = (SI,. . . , Sn). Throughout this paper, it will 
be assumed that the transmitted and state sequences are 
chosen without any knowledge of each other. Mathemati- 
cally, this is reflected by the assumption that the random 
variables ( F ,  (a) and S are statistically independent. We 
say that S satisfies a peak-state constraint A if 

/ ( S )  I A as., 

E / ( S )  I A .  
and satisfies an average-state constraint a-A if 

Clearly, the latter constraint is the weaker one. 
For convenience, we shall assume that 

min g ( x )  = min l ( s )  = O ,  
X €% S €.Y 

m-average resp. cm-average) input constraint r (resp. m-T, 
resp. cm-r) and peak state constraint A if for every 6 > 0 
and every sufficiently large n there exist ( n ,  A, €)-random 
codes with rates 2 R - 6 and satisfying the corresponding 
input constraint. The 6-achevable rates under peak (resp. 
m-average or cm-average) input constraint and average 
state constraint are defined similarly but with ( n ,  a-A, e )  
random codes. Finally, R is an achievable rate under any 
pair of input and state constraints if it is c-achievable for 
every 0 < E  <1. 

Definition 2.3: The maximum of all c-achievable rates 
under a pair of input and state constraints is called the 
(random coding) €-capacity of the AVC under these con- 
straints. If it does not depend on €, its value is called the 
strong capacity. Otherwise, the limit of the e-capacity as 
c -+ 0 or, equivalently, the maximum of all achievable 
rates, is called the (weak) capacity. 

The +capacity under input constraint A and state con- 
straint B will be denoted by C J A ,  B ) ,  where A stands for 
either r (peak) or m-r (m-average) or cm-r (cm-average) 
and B stands for A (peak) or a-A (average). 

111. RANDOM CODING THEOREMS 
Our main results are random coding theorems determin- 

ing the €-capacities Cc(r, A),  C,(T, a-A),  C,(m-T, A), and 
C,(cm-r, A )  of the AVC { W }  under one of the three 
kinds of input constraints with peak state constraint, and 
under the peak input constraint with average state con- 
straint. First we introduce some notation and prove two 
technical lemmas. 

Given an AVC { W } and random variable S with values 
in 9, we denote by W, the channel .% -+ Y defined by 

w,( - 1 . )  = EW( . I * ,  s) .  (3.1) 
For any DMC { W }, we denote by C( W, r) its capacity 
under (peak) input constraint r, that is, 

c( w, r)  A max I (  x A Y), (3.2) 
x: Eg( x) 5 r ,  P , , ~  = w 

and define for the AVC { W }  

c(r,A)& min c(w,,r). (3.3) 
S :  E I ( S )  5 A 

and all input and state constraints will be considered with Lemma 3.1: For even r > 0. A > 0. n o ,  A > O .  
Definition 2.1: For 0 < E <1, A > 0, an ( n ,  A, €)-random 

code for the AVC{ W }  is a random code ( F ,  (a) of block- 
length n satisfying 

EF(s,  F , (a )  I c for s in 9'" with I ( s )  I A .  (2.11) 
Further, an ( n ,  a-A, €)-random code for the AVC { W } is 
a random code ( F ,  (a) satisfying 

EiqS,F,(a)I€ (2.12) 
for all random state sequences S = ( S , ,  * . . , S,) meeting 
the a-A constraint EI(S)  I A. Clearly, every ( n ,  a-A, 6)- 
code is also an ( n ,  A, €)-code. 

Definition 2.2: Given 0 < c < 1, a nonnegative number R 
is an c-achievable rate on the AVC { W } under peak (resp. 

- - max min ~ ( X A  Y,,,) (3.4) 

where X and S denote independent random variables and 
Y is a random variable such that Pr { Y = yl X = x ,  S = s } 
= W(yJx ,  s), or, P,,, = W,. Furthermore, C(r, A )  is a 
nondecreasing continuous concave function of I', and a 
nonincreasing continuous convex function of A. 

Proof I(  X A Y,,,) is convex in P, because Z is con- 
vex in P,,, = W, which, in turn, is linear in P, (by (3.1)); 
also I (  X A Yx,,) is concave in Px Since { P,: EZ(S) I A }  
and { P,: E g ( X )  I r} are compact convex sets, the 

x: Eg(x)  I r s: E I ( S )  s A 
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equality in (3.4) follows from the Minimax theorem (cf., 
e.g., Karlin [21]). 

The convexity of Z( X A Yx, ,) in Px implies in a stan- 
dard manner that min,: E , ( S )  *Z( X A Yx,,) is a convex 
function of A. Thus C(r, A )  is the maximum of a family 
of convex functions of A and, hence, is itself convex. The 
concavity of C(T, A )  as a function of r follows similarly. 
The nondecreasing (resp. nonincreasing) property is trivial, 
and the continuity follows from the concavity (resp. con- 
vexity) property. 

Lemma 3.2: For any S with E f ( S )  < A, and any E' > c 
> 0, every (n, A, €)-random code for the AVC { W }  satis- 
fies 

EF( w;, F ,  (a) < E' (3.5) 

for the DMC { W,} defined by (3.1), if n is large enough. 

Proof: Let S = (SI,- . -, S,) be n independent and 
identically distributed repetitions of a random variable S 
with E f ( S )  < A. Then, for every x in T", y in ?Pn, by 
(2.2) and (3.1), we have 

n 

w;( A x )  = n EW(YrlXr, S I )  
r = l  

n 

= E""( ylx ,  S ) .  ( 3 4  

Any code (f, +) when used on the memoryless channel 
{ W,} defined by (3.1) gives 

e( w; , f 9 +) 
1 

= - c [ I -  W ; ( + - Y m ) I f ( 4 ) 1  IAI m t s d  

= E q S ,  f, $4 
I E [ F ( S , f , + ) l f ( S )  s A ] + P r { f ( S )  > A } ,  

which implies that any random code ( F ,  (a) used on the 
DMC { W,} satisfies 

Ee(W;,F,(a) s E [ e ( S , F , ( a ) ) I f ( S )  S A ]  

+ P r { f ( S ) > A } .  (3.7) 

If ( F , ( a )  is an (n, A,€)-random code for the AVC { W } ,  
the first term on the right side of (3.7) is clearly no larger 
than e. Also, for n large enough, using the independent 
and identically distributed property of the S, and the weak 
law of large numbers, the second term on the right side of 
(3.7) will be less than (e' - E). Thus (3.7) gives (3.5). 

We now state the random coding theorem for the case of 
peak constraints on the input and state sequences. Theo- 

rems 3.1 and 3.2 below (without the input constraints) 
were announced in [19] without proofs. The proofs pre- 
sented here are new. 

Theorem 3.1: For the AVC { W }  with peak input/peak 
state constraints, the strong capacity (for random codes) 
exists and equals C(r, A )  defined by (3.3). 

Proof: The proof is similar to the case of the AVC 
without constraints (cf., e.g., [12, ch. 2, sect. 61). The 
forward part of the proof is relegated to the Appendix; the 
(strong) converse part is proved below. 

We first observe that 

C( r, A )  = inf c( w,, r). (3.8) S :  E I ( S )  < A 

In fact, the right side can be written as a double infimum, 
the inner one for S with E f ( S )  I A' and the outer one for 
A'< A. The inner infimum equals C(r, A') by definition, 
and (3.8) follows by the monotonicity and continuity of 
C(T, A )  as a function of A. 

Now, for any given R > C( r, A )  and 0 < E < 1, pick an 
E' with E < E' < 1 and a random variable S with E f ( S )  < A 
such that 

R > C(W,, r), 
which is possible by (3.8). Then, by the strong converse to 
the coding theorem for the DMC { W,} with (peak) input 
constraint r, every code (f, +) of rate > R satisfying the 
input constraint g ( f ( m ) )  I I' for all m E A has an aver- 
age probability of error F(W,", f, +) > E' if n > n o .  Thus, 
for every random code ( F , @ )  of rate > R such that 
g (  f'( m ) )  I r a.s., for all m E A, we have 

Et?( W;, F ,  (a) > e'. 

T h s  implies, by Lemma 3.2, that no such ( F ,  (a) can be an 
(n, A, €)-code for the AVC { W } ,  if n is sufficiently large. 
This proves that no rate above C( I-, A )  is €-achievable, for 
any 0 < E < 1. 

For the remaining combinations of peak and average 
constraints on the input and state sequences, the c-capaci- 
ties do depend on E .  

Theorem 3.2: For the AVC { W }  with peak input/aver- 
age state constraints, the €-capacity C,( I', a-A) equals 
C( r, A/€), defined by (3.3). In particular, the (weak) 
capacity equals C(r, f,,) where I,, = max,,,f(s). 

Proof: 1) C,(T, a-A) 2 C(r, A/€) (forward part): To 
show that C(r, A/€) is c-achievable, on account of the 
continuity of C(r,A)  in A, it sufficies to show that any 
R < C(r, A/€') is c-achievable whenever 0 < 6' < E .  

Theorem 3.1 implies that if R < C(r, A/€'), for n large 
enough, there exists a random code ( F ,  (a) of rate R with 
g (  f'( m ) )  I r as.  for all m in Jl that satisfies 

R 
€' 

E?( s, F ,  (a) I c - e' for all s with f ( s )  I -. 

Hence, for any random state sequence S with E f ( S )  I A ,  
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we have Now consider the subcode of (f,+) with message set AI 
and satisfying the (peak) input constraint r. The rate of 
this subcode is R + ( l / n )  log a > R + ( l / n )  log 6 > 
C( W, r)+ 6/2 if n 2 no. Hence, by the strong converse to 
the coding theorem for a DMC (specifically by [12, p. 104, 
corollary 1.4]), the average error probability of this sub- 

E F ( S ,  F , @ )  

F ( S ,  F,(D)/f(S) 5 

+ E [ e(S, F , ( D ) , , l ( S )  least (1- 6)  if n 2 no (depending only on 

F(S,  F , ( D ) / f ( S )  I 

I ( c - c ' ) + c ' = c  

This means that ( F ,  @) is an ( n ,  a-A, €)-random code, and 
part 1) is proved. 

2) C,(T, a-A) I C(T, A/€) (converse part): To show 
that no R > C(r,  A /€) is €-achievable, it suffices to show 
this for R > C(r ,  A/€'), whenever E ' >  6 .  Pick R > 
C( r, A/€') and let ( F ,  (D) be any random code of rate R 
satisfying the peak input constraint r. Theorem 3.1 implies 
that for sufficiently large n ,  the average error probability 
under peak state constraint A/€' cannot be smaller than 
any fixed q < 1. This means that 

E?($ ,  F ,  (D) 2 q 

for some s = (sl; . ., s,) with f ( s )  < A/€'. Now, let S = 
(SI; . ., S,)  be a random state sequence such that S = s 
with probability c' and l ( S )  = 0 with probability (1 - 6 ' ) .  

Then, E I ( S )  I A, and 
Ee ( S ,  F ,  0) 2 € 'E [e( s, F ,  @ ) IS = s ] 

= c'E2(s ,  P,  a) 2 6'7. 

Choosing q = e / €', it follows that no random code of rate 
R > C(T, A/€'), satisfying the peak input constraint r, 
can be an ( n ,  a-A, <)-random code. This proves part 2). 

The last assertion follows as limc+oC(I', A/€) = 

Next, we prove a lemma and its corollary for a DMC 
with m-average and cm-average input constraints. These 
will be used in establishng the converse parts of Theorem 
3.3. 

c(r> l,,). 

Lemma 3.3: For any DMC { W } ,  any 6 > 0, and 
R 2 C ( W ,  r )+  6, (3.9) 

(cf. (3.2)), every code (f, +) of blocklength n 2 n o  and rate 
R has average error probability 

where n o  depends only on 6 and the alphabet sizes 1x1, /?-VI. 

Proof: We assume that g(f) < (1 - 6)r in order to 
avoid a trivial assertion. Partition the message set A as 
A = A, U A2 with &Il = { m: g ( f ( m ) )  I r} and M ,  = 
{ m: g ( f ( m ) )  > r}. If lA1l = a l A l  and 1A21 = (1 - 
a)IMI, 0 < a < 1, then clearly (1 - a)T I g(f), i.e., 

(3.11) 

2 a(1- 6 )  2 (1- T)(l- E(f 1 8) 

Corollary: For a DMC { W }, any random code ( F ,  a) 
of rate R > C(W, r)+ 6 and blocklength n 2 no  (as in 
Lemma 3.3) has 

Proof: First observe that Lemma 3.3 immediately im- 
plies (3.12) for random codes ( F ,  (D) for which g( F )  is 
constant. In fact, were (3.12) not to hold in this case, there 
would exist a realization (f, +) (a deterministic code) of 
the random code ( F ,  (D) violating (3.10). It follows then for 
an arbitrary ( F ,  a) of rate satisfying (3.9) that 

E [ e( W " ,  F ,  a)1g( F ) ]  21 - 6 - - r '  
and hence 

as claimed. 

Theorem 3.3: For the AVC { W }  with m-average or 
cm-average input constraints and peak state constraint, the 
c-capacities C,(m-T, A )  and C,(cm-T, A )  are the same and 
equal to C(T/(l- e ) ,  A), defined by (3.3). In particular, 
the (weak) capacity for both cases equals C( r, A). 

Proof: In order to prove the theorem, we need only 
prove: 1) the forward part for the m-average input con- 
straint; and 2) the converse part for the cm-average input 
constraint . 

1) We show that any R < C(r/( l -  e'), A )  is c-achiev- 
able under m-average input/peak state constraints 
whenever c'  < c. Partition the message set &I as M = M l  
u M 2  such that ~ & I , ~ / ~ A ~  =1- e , ,  with c, -+ e'. If R < 
C(T/(l- c'), A), by Theorem 3.1 there exists, for n suffi- 
ciently large, an ( n ,  A , (€ - c ' ) / 2 )  random code ( F ,  0) with 
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message set dl  and satisfying the input constraint 
g( F( m)) 5 r/(l- e’)  as., i.e., 

E - em(s,F,(a)  ] I- I ’  lJ11 m s d l  

for all s E 9’“ with f ( s )  I A .  
Let (F‘,(a’) be a random code which equals (F , (a )  
whenever m E J l ,  and maps each m in d2  into a 
constant sequence (x0; -, xo) with g(xo) = 0. Then 
( l / ~ d ~ ) ~ m E A g ( F ( m ) ) I ~  as., and for any s in Y “  
with Z(s) I A ,  we have 

+ c em(s,F’,@.’) 
m s d 2  

€ - € ’ 
<- + € n I € . 
- 2  

This proves part 1). 
2) It suffices to show that no R > C(r/(l-c’), A)  is 

€-achievable under the cm-average input/peak state con- 
straints whenever € ’ > c. Given any R > C(r/(l- €’), A), 
there exists by (3.8) a random variable S with E I ( S )  < A 
such that 

R > C (  W,, r/(l- 6 ’ ) )  + S 
for some 6 > 0; we may assume that 6 < e’ - c. Now, by 
the Corollary to Lemma 3.3, any random code ( F ,  (a) 
of rate 2 R satisfying the cm-average input constraint 
E g ( F )  5 has for the DMC { W,} 

if n 2 no. Since e’ - 6 > e ,  this implies by Lemma 3.2, for n 
sufficiently large, that this ( F ,  (a) cannot be an ( n ,  A, e ) -  
random code for the AVC { W } ,  as claimed. 

For the remaining case of average input/average peak 
constraints, we have not been able to determine the e- 
capacity. However, the (weak) capacity is easily obtained 
from the previous results. 

Theorem 3.4: For m-average (resp. cm-average) input 
constraint m-r (resp. cm-T) and average state constraint 
a-A, the (weak) capacity of the AVC { W }  equals 

Proof: The forward part immediately follows from 
Theorem 3.2, as C(r, fma) is an achievable rate even 
under the peak input constraint r. The converse part 
follows from Theorem 3.3 as the peak state constraint with 
A = I,, is always fulfilled. 

IV. DISCUSSION 

Random coding techniques serve as useful mathematical 
tools for proving coding theorems for a conventional (fixed) 
channel. Their use is justified by the fact that if the 

expected value of the decoding error probability over an 
ensemble of randomly selected codes is small, then there 
must exist a specific (deterministic) code leading to an 
error probability just as small. Thus, for a fixed channel, 
the deterministic code capacity equals the random code 
capacity. 

In sharp contrast, an AVC exhibits the characteristic 
that the capacity for random codes generally exceeds that 
for deterministic codes. Consequently, as Ericson [16] re- 
marks, in addition to helping to prove coding theorems, 
random codes become significant as models of practical 
engineering devices. In fact, commonly used techniques 
such as “direct sequence’’ and “frequency hopping” can be 
interpreted as practical implementations of random codes 
[17], employing synchronized random number generators 
at the transmitter and receiver. The practical feasibility of 
random codes for AVC‘s is greatly enhanced by Ahlswede’s 
[4] discovery that the random code capacity of an AVC 
can be achieved by codes restricted to random selections 
from no more than n 2  determini,stic codes. This results in a 
desirably drastic reduction in the amount of additional 
information needed to convey the result of the random 
experiment of code selection from the encoder to the 
decoder across a special channel; in the terminology of 
Ericson [15], the “key rate” may be arbitrarily small. 

In this paper we have determined the c-capacities of the 
AVC for random codes under various, though not all, 
possible combinations of input and state constraints. The 
strong capacity turned out to exist only in the case of peak 
input, peak state constraints. The weak capacity was de- 
termined for all possible combinations of input and state 
constraints. It is interesting to note that even the discrete 
memoryless channel does not have a strong converse under 
the m-average input constraint, and that the bound given 
in Lemma 3.3 is actually tight (up to replacing - S by 
+ 8 ) ;  this simple fact has apparently not been pointed out 
before in the literature. 

We did not consider the problem of whether, and under 
what conditions, deterministic codes can achieve the same 
capacities as random codes. The elimination technique of 
Ahlswede [4] gives that Theorem 3.1 remains valid for 
random codes restricted to random selections out of no 
more than n2 deterministic codes. However, the final step 
of the elimination of randomness in [4], which intuitively 
means using a small fraction of the codeword to inform 
the decoder of which of the n 2  codes was actually used, 
cannot be performed unless the capacity (for deterministic 
codes) is positive even without a state constraint. Hence 
the capacity problem for deterministic codes has remained 
open for many practically interesting models. In a forth- 
coming paper [14], we will determine the deterministic 
code capacity of the AVC with (peak) constraints on the 
transmitted codewords as well as on the state sequences, 
and demonstrate that it may be positive but less than the 
corresponding random code capacity. 

The c-capacities (resp. weak capacity) of the AVC given 
by Theorems 3.1-3.3 (resp. Theorem 3.4) remain un- 
changed if the input (resp. state) constraints are imposed 
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on each individual symbol of a sequence of length n, 
rather than on the sequence itself. Under the stronger 
symbol constraints, this holds by virtue of the choice of 
codeword (resp. state) sequences used in the proofs of the 
forward (resp. converse) parts of Theorems 3.1-3.3. Fur- 
thermore, the results in this paper can be easily extended 
to the case of several constraints imposed simultaneously 
on the input (resp. state) sequence. For example, suppose 
that the random state sequence S is required to satisfy 
both the average constraint EI(S)  I A and the peak con- 
straint I (S )  I A' as., with A'> A.  It then follows, just as 
in Theorem 3.2, that the €-capacity under the peak input 
constraint r equals C(r,min{ A', A/€}). 

Our results do not depend in an essential way on the 
assumption 19'1 < 00. Most of the arguments hold also for 
infinite channel input and output alphabets, and in par- 
ticular for the Gaussian AVC's considered in [20]. We 
believe that the approach in this paper makes the results in 
[20] more transparent. One difficulty in the general nondis- 
Crete alphabet case appears to be with Lemma A.2, where 
the analog of L , ( X ,  Y )  may not have a finite variance. Of 
course, our results cannot be expected to hold, without 
additional hypotheses, for AVC's with infinite alphabets 
because not even the strong converse for a memoryless 
channel does (cf. [SI). 

A~PENDIX 
FORWARD P A R T  OF THEOREM 3.1 

Following the proof in Csiszk and Korner [12, pp. 211-2141, 
we establish the E-achievability of C( I?, A), for each 0 < c < 1, by 
the following two lemmas and their corollaries. 

Lernrnn A.1: Let X be a random variable satisfying g(X) I r 
as., and let d be a nonnegative-valued function on S X % such 
that 

E d ( x , y ) i l ,  forally€%. (1) 
Then there exists a random code (F,@) of blocklength 1 with 
g( F( m)) I r a.s. for all rn E A such that for every channel W: 
55- + %, every rn E A, and E > 0 arbitrary, 

where Y is connected with X by the channel W ,  that is, PYlx  = W. 
The proof is identical to that of Lemma 6.9 in [12, p. 2111. 
Corollary: If X and d are as in Lemma A.1 but X does not 

necessarily satisfy g(X) I r ax,  there exists a random code 
(F, @) of blocklength 1 with g( F( rn))  I r as. for all rn E A, 
such that for every channel W: S + %, every rn E A, and E > 0 
arbitrary, 

E%( W ,  F, 'p) 

(3) 

Proof: Apply Lemma A.l to a random variable X' in the 
role of X such that the distribution of X' equals the conditional 

Pr { g( X) I 1 in the role of d .  Then (1) holds since 

E&( X , y )  = Pr{ g( X) I I?} 

.E[d(X,y) lg(X)Sr]  I E d ( x , y )  51, 
and (2) gives (3) because 

=Pr d(X,Y)< /g(x)  I r) i EPr{g(X)II'} 

For any distribution P on 5, and any channel W: 5 + %, let 
us denote by I ( P ,  W )  the mutual information I ( X A  Y )  for 
random variables X and Y connected by the channel W such that 
Px = P. 

Lemma A.2: For any random variable with distribution Px = P 
such that Eg( X) < r, and any E > 0, for sufficiently large n there 
exist (n, A ,  €)-random codes ( F ,  @) for the AVC { W }, satisfy- 
ing g(F(rn)) I r a.s. for all m in A, and of rate at least 
I (  P, A )  - c where 

Z ( P , A ) A  min I ( P , W s ) .  
s: E I ( S )  5 A 

(4) 

Pro08 Let Ws, minimize I ( P ,  W,) subject to EI(S)  5 A.  
Then for every S such that E I ( S _ ) < A ,  and for O s a s l ,  we 
obtain by using the convexity of W { W': EI (S)  5 A }  that 

I (  P , a K  + ( l -  a )  W,,) 2 I (  P, Wso) = I (  P, A ) .  ( 5 )  
Hence, it follows as in [12, p. 2131 that P(x)W,(ylx) > 0 implies 
WSn(ylx) > 0, and that 

if E I ( S )  I A ,  where Q ( y )  ~C,P(X)Wso(ylx). 
Let X = (XI,. . . , X,,) be a sequence of independent and identi- 

cally distributed random variables with distribution P. We apply 
the Corollary to Lemma A.l to Sn and %" in the roles of 5 
and %, with this X, and d ( x ,  y )  defined by 

and set d ( x ,  y )  =1 if Q"( y )  = 0. Clearly, Ed(X, y )  =1 for all 
YE%". Then the said corollary guarantees the existence of a 
blocklength n random code ( F ,  @) such that for every rn E A, 
g( F( m)) I r as., and for every s E Y", 

w,.o(ylx) 2 1-4 < -  

Ee,,,(s,F,@) IT+ 
Pr{g(X) 

( 8) 

where Y =  (Y,;..,Y,) satisfies P y , x ( . l . )  = W " ( . I . , s ) .  
Defining the random variable L, (X, Y )  by 

distribution of X given that g( X) I r, and io d'( x, y )  = d( x, y )  -z. \ - I  
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we  observe tha t  < sign can be replaced by  I ,  and that the supremum equals 

Now,  if s E 9“ satisfies [(s) I A ,  then letting s denote a 
random variable whose distribution equals the type of s =  
(s1;..,s,,), we have 

n 
W ( y l x , s , )  =nW’(ylx) with E l ( % )  < A .  

I =1 

Thus b y  (6) we obtain from (10) that  

EL,(X,Y) > n Z ( P , A ) i f  [(s) S A .  (11) 
Furthermore,  since Wso(ylx) > 0 whenever P(x)W’.(ylx) > 0, i t  
can be seen as in [12, p. 2141 that 

v a r ~ , ( ~ , ~ )  ~ n [ l o g m ( e ~ ) ] ’ ,  (12) 

where m (  Wso) is the smallest positive entry in Ws,. 

r } > l - c . T h e n i f  
Since Eg( X )  < r, for  sufficiently large n we have Pr { g ( X )  I 

JAl= exp[ n{ I (  P ,  A )  - e } ] ,  (13) 

f rom (8)-(13), we obtain b y  Chebyshev’s inequality for every s in 
9“ satisfying [(s) I A that  

E e , , , ( s , F , Q )  

. , .  , 
4-+ 
- 2  (1 - 0 

€(l- € ) 
L,(X,Y) < n(Z( P, A )  - E )  -log---- 2 

It follows f rom (14) that  for n sufficiently large, 

E e , ( s , F , Q )  I c if [(s) I A 

fo r  all m in A; thus (F, Q) is a n  (n, A ,  e )  random code. This 
proves the assertion of the lemma. 

Corollary: C( r’, A )  is an achievable rate. 

Proof I t  follows from Lemma A.2 that  there exist ( n ,  A ,  c )  
r andom block codes (F, Q)  with g (F(m) )  I r as.  for all m in 
A, having rates arbitrarily close t o  

sup I ( P X > A ) .  
x: Eg(x) < r 
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