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Sampling Rate Distortion
Vinay Praneeth Boda, Student Member, IEEE, and Prakash Narayan, Fellow, IEEE

Abstract— Consider a discrete memoryless multiple source
with m components of which k ≤ m possibly different sources
are sampled at each time instant and jointly compressed in
order to reconstruct all the m sources under a given distortion
criterion. A new notion of sampling rate distortion function is
introduced, and is characterized first for the case of fixed-set
sampling. Next, for independent random sampling performed
without knowledge of the source outputs, it is shown that the
sampling rate distortion function is the same regardless of
whether or not the decoder is informed of the sequence of
sampled sets. Furthermore, memoryless random sampling is
considered with the sampler depending on the source outputs
and with an informed decoder. It is shown that deterministic
sampling, characterized by a conditional point-mass, is optimal
and suffices to achieve the sampling rate distortion function.
For memoryless random sampling with an uninformed decoder,
an upper bound for the sampling rate distortion function is
seen to possess a similar property of conditional point-mass
optimality. It is shown by example that memoryless sampling with
an informed decoder can outperform strictly any independent
random sampler, and that memoryless sampling can do strictly
better with an informed decoder than without.

Index Terms— Discrete memoryless multiple source, indepen-
dent random sampler, memoryless random sampler, random
sampling, rate distortion, sampling rate distortion function.

I. INTRODUCTION

CONSIDER a set M of m discrete memoryless sources
with a known joint probability mass function. Subsets of

k ≤ m sources are sampled “spatially” at each time instant,
and jointly processed with the objective of reconstructing
all the m sources as compressed representations, within a
specified level of distortion. How should the sampler optimally
sample the sources in a causal manner to yield the best
compression rate for a given distortion level? What are the
tradeoffs – under optimal processing – among the sampling
procedure, compression rate and distortion level? This paper
is our preliminary attempt at answering these questions.

Such questions are motivated by various applications.
An instance is in “dynamic thermal management,” which is
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the process of controlling surges in the operating temper-
ature of a multicore processor chip during runtime, based
on measurements by a limited number of on-chip ther-
mal sensors. Strategic sensor placement and processing are
needed to estimate temperatures at grid points over the entire
chip [20], [34]. Another typical application involves
“in-network computation” [12], [11] in which a subset of a
network of collocated sensors use only their own measure-
ments to estimate an aggregate function of the entirety of
distributed and correlated measurements, e.g., overall average
parameter values in environmental monitoring. In such
settings, the mechanisms for (spatial) sampling, compression
and estimation are collocated, with the latter two being aware
of the sampler realizations.

The study of problems of combined sampling and com-
pression has a rich and varied history in diverse contexts.
Highlights include: classical sampling and processing, rate
distortion theory, multiterminal source coding, wavelet-based
compression, and compressed sensing, among others. Rate
distortion theory [1] rules the compression of a given sampled
signal and its reconstruction within a specified distortion level.
On the other hand, compressed sensing [10] provides a random
linear encoding of nonprobabilistic analog sources marked
by a sparse support, with lossless recovery as measured by
a block error probability (with respect to the distribution of
the encoder). Upon placing the problem of lossless source
coding of analog sources in an information theoretic setting,
with a probabilistic model for the source that need not be
encoded linearly, Rényi dimension is known to determine
fundamental performance limits [32] (see also [16], [31]).
Several recent studies consider the compressed sensing of a
signal with an allowed detection error rate or quantization
distortion [25], [30]; of multiple signals followed by distrib-
uted quantization [26], including a study of scaling laws [14];
or of sub-Nyquist rate sampled signals followed by lossy
reconstruction [17].

Closer to the line of our work, the rate distortion function
has been characterized when multiple Gaussian signals from
a random field are sampled and quantized (centralized or
distributed) in [21]–[23]. Also, in a series [27]–[29] (see
also [6], [13], [24]), various aspects of random field-sampling
and reconstruction for special models are considered. In a
setting of distributed acoustic sensing and reconstruction,
centralized as well as distributed coding schemes and sampling
lattices are studied, and their performance is compared with
corresponding rate distortion bounds [18]. In [15], considering
a Gaussian random field on the interval [0, 1] and i.i.d.
in time, reconstruction of the entire field from compressed
versions of k sampled sequences under the mean-squared
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error distortion criterion is studied. In a different formula-
tion, for the case of m = 2 sources, each of which is
sampled for a fixed proportion of time, the rate distortion
function and associated sampling mechanism are characterized
in [19].

Our work differs materially from the approaches above.
Sampling is spatial rather than temporal, unlike in most of
the settings above. Furthermore, we introduce new forms
of randomized sampling that can depend on the observed
source values. Such randomized samplings, albeit of increased
complexity, are shown to yield clear gains in performance.
It bears emphasizing that we deal with centralized – and not
distributed – processing of the sources. Moreover, no sparsity
assumption is made on the sources.

Our contributions are as follows. We consider a new formu-
lation involving a sampling rate distortion1 function (SRDf),
which combines a sampling of sources and lossy compression,
to address the questions posed at the outset. As a basic ingre-
dient, the sampling rate distortion function is characterized
for a fixed sampling set of size k ≤ m. This characterization
is a consequence of prior work by Dobrushin-Tsybakov [9]
(see also Berger [1], [2] and Yamamoto and Itoh [33]) on the
rate distortion function for a “remote” source-receiver model
in which the encoder and receiver lack direct access to the
source and decoder outputs, respectively. For the special case
of the probability of error distortion criterion, we show that the
optimal procedure can be simplified to a rate distortion code
for the sampled sources followed by maximum a posteriori
estimation of the remaining sources.

Best fixed-set sampling can be strictly inferior to random
sampling. Considering an independent random sampler, in
which the sampling does not depend on the source outputs
and is independent (but not necessarily identically distributed)
in time, we show that the corresponding SRDf remains the
same regardless of whether or not the decoder is provided
information regarding the sequence of sampled sets. This
surprising property does not hold for any causal sampler,
in general. Next, we consider a generalization, namely a
memoryless random sampler whose output can depend on the
source values at each time instant. The associated formula for
SRDf is used now to study the structural characteristics of
the optimal sampler. Specifically, we show when the decoder
too is aware of the sequence of sampled sets that the optimal
sampler is characterized by a conditional point-mass; this has
the obvious benefit of a reduction in the search space for
an optimal sampler. We also show that such a memoryless
sampler can outperform strictly a random sampler that lacks
access to source values. Finally, in a setting in which the
decoder is unaware of the sampled sequence, an upper bound
for the SRDf is seen to have an optimal conditional point-mass
sampler.

Our models are described in Section II. The main results,
along with examples, are stated in Section III. Section IV
contains the proofs. Presented first are the achievability proofs
that are built successively in the order of increasing complexity

1This apt terminology has been used also in an earlier work on compressed
sensing with error tolerance [25].

of the samplers. The converse proofs follow in reverse order
in a unified manner.

II. PRELIMINARIES

Let M = {1, . . . , m} and XM = (X1, . . . , Xm) be a

XM = m×
i=1

Xi -valued rv where each Xi is a finite set. It will

be convenient to use the following compact notation. For a
nonempty set A ⊆ M, we denote by X A the rv (Xi , i ∈ A)
with values in ×

i∈A
Xi , and denote n repetitions of X A by

Xn
A = (Xn

i , i ∈ A) with values in X n
A = ×

i∈A
X n

i , where

Xn
i = (Xi1, . . . , Xin) takes values in the n-fold product space

X n
i = Xi × · · · × Xi . For 1 ≤ k ≤ m, let Ak = {A : A ⊆

M, |A| = k} be the set of all k-sized subsets of M and let
Ac = M \ A. All logarithms and exponentiations are with
respect to the base 2.

Consider a discrete memoryless multiple source (DMMS)
{XMt }∞t=1 consisting of i.i.d. repetitions of the rv XM with
given pmf PXM of assumed full support XM. Let YM =
m×

i=1
Yi , where Yi is a finite reproduction alphabet for Xi .

Definition 1: A k-random sampler (k-RS), 1 ≤ k ≤ m,
collects causally at each t = 1, . . . , n, random samples†

X St from XMt , where St is a rv with values in Ak with
(conditional) pmf PSt |Xt

MSt−1 , with Xt
M = (XM1, . . . , XMt )

and St−1 = (S1, . . . , St−1). Such a k-RS is specified by a
(conditional) pmf PSn|Xn

M with the requirement

PSn|Xn
M =

n∏

t=1

PSt |Xt
MSt−1 . (1)

The output of a k-RS is (Sn, Xn
S) where Xn

S = (X S1, . . . , X Sn).
Successively restrictive choices of a k-RS in (1) correspond-
ing to

PSt |Xt
MSt−1 = PSt |XMt , t = 1, . . . , n (2)

and

PSt |Xt
MSt−1 = PSt , t = 1, . . . , n (3)

will be termed the k-memoryless and the k-independent ran-
dom samplers and denoted by k-MRS and k-IRS, respectively.

Definition 2: An n-length block code with k-RS for a
DMMS {XMt }∞t=1 with alphabet XM and reproduction alpha-
bet YM is a triple (PSn|Xn

M , fn, ϕn) where PSn|Xn
M is a

k-RS as in (1), and ( fn, ϕn) are a pair of mappings where the
encoder fn maps the k-RS output (Sn, Xn

S) into some finite
set J = {1, . . . , J } and the decoder ϕn maps J into Yn

M.
We shall use the compact notation (PS|XM, f, ϕ), suppress-

ing n. The rate of the code with k-RS (PS|XM, f, ϕ) is
1

n
log J .

Remark: An encoder that uses a deterministic estimate
of Xn

Sc from (Sn, Xn
S) in its operation is subsumed by the

definition above.
For a given (single-letter) finite-valued distortion measure

d : XM × YM → R
+ ∪ {0}, an n-length block code with

k-RS (PS|XM, f, ϕ) will be required to satisfy the expected

†With an abuse of notation, we write XSt t simply as XSt .



BODA AND NARAYAN: SAMPLING RATE DISTORTION 565

fidelity criterion (d , �), i.e.,

E

[
d

(
Xn
M, ϕ

(
f (Sn, Xn

S)
))]

� E

[
1

n

n∑

t=1

d

(
XMt ,

(
ϕ
(

f (Sn, Xn
S)
))

t

)]
≤ �. (4)

We shall consider also the case where the decoder is
informed of the sequence of sampled sets Sn . Denoting
such an informed decoder by ϕS , the expected fidelity
criterion (4) will use the augmented ϕS

(
Sn, f (Sn, Xn

S)
)

instead of ϕ
(

f (Sn, Xn
S)
)
. The earlier decoder (that is not

informed) will be termed an uninformed decoder.
Definition 3: A number R ≥ 0 is an achievable k-sample

coding rate at average distortion level � if for every ε > 0
and sufficiently large n, there exist n-length block codes with
k-RS of rate less than R + ε and satisfying the expected
fidelity criterion (d,� + ε); and (R,�) will be termed an
achievable k-sample rate distortion pair. The infimum of such
achievable rates is denoted by RI (�) for an informed decoder,
and by RU (�) for an uninformed decoder. We shall refer
to RI (�) as well as RU (�) as the sampling rate distortion
function (SRDf), suppressing the dependence on k.

Remarks: (i) In the setting of an informed decoder, the
sampling mechanism has two means of conveying information
regarding Xn

M to the decoder: via the encoder output as well
as by embedding it implicitly in Sn .

(ii) Clearly, RI (�) ≤ RU (�), and both are nonincreasing
in k.

(iii) For a DMMS {XMt }∞t=1, the requirement (2)
on the sampler renders {(XMt , St )}∞t=1 and thereby also{
(X St , St )

}∞
t=1 to be memoryless sequences.

III. RESULTS

We state our results in the order of increasing complexity
of the sampling mechanism. Concomitant improvements in
performance thereby become evident.

Single-letter characterizations of the SRDfs in this paper
involve, as an ingredient, a characterization of RI (�) with
St = A, t = 1, . . . , n, where A ⊆ M is a fixed set
with |A| = k. Denote the corresponding RI (�) by RA(�)
(with an abuse of notation). The fixed-set SRDf RA(�), in
effect, is the (standard) rate distortion function for the DMMS
{X At }∞t=1 using a modified distortion measure dA : XA ×
YM → �

+ ∪ {0} defined by

dA(x A, yM) = �[d(XM, yM)|X A = x A]. (5)

Proposition 1: For a DMMS {XMt }∞t=1, the fixed-set SRDf
for A ⊆ M is

RA(�) = min
X Ac −◦− X A −◦− YM

E[d(XM,YM)]≤�

I
(
X A ∧ YM

)
(6)

for �min,A ≤ � ≤ �max, and equals 0 for � ≥ �max, where

�min,A = �

[
min

yM∈YM
dA(X A, yM)

]
,

�max = min
yM∈YM

E
[
d(XM, yM)

]

= min
yM∈YM

�[dA(X A, yM)]. (7)

Corollary 1: With XM = YM, for the probability of error
distortion measure

d(xM, yM) = �(xM �= yM)

= 1 −
m∏

i=1

�(xi = yi), xM, yM ∈ XM (8)

we have

RA(�) =
{

min I
(
X A ∧ YA

)
, �min ≤ � ≤ �max

0, � ≥ �max,
(9)

where the minimum in (9) is subject to

�[α(X A)�(X A �= YA)] ≤ � − (1 −�[α(X A)]) (10)

with

α(x A) = max
x̃ Ac ∈XAc

PX Ac |X A (x̃ Ac |x A)

and

�min = 1 −�[α(X A)], �max = 1 − max
xM∈XM

PXM(xM).

Remarks: (i) The minimum in (6) exists by virtue of the
continuity in PXMYM of I (X A ∧ YM) over the compact set
{PXMYM : X Ac −◦− X A −◦− YM, �[d(XM, YM)] ≤ �}.

(ii) The corollary relies on showing that the minimum in (6)
is attained in this particular instance by a pmf PXMYM under
a longer Markov chain

X Ac −◦− X A −◦− YA −◦− YAc .

Interestingly, the achievability proof entails in a first step a
mapping of xn

A in X n
A into its codeword yn

A, from which in
a second step a reconstruction yn

Ac of xn
Ac is obtained as a

maximum a posteriori (MAP) estimate.
The k-IRS affords a more capable mechanism than the

fixed-set sampler of Proposition 1, with the sampling sets
possibly varying in time. Surprisingly, our next result shows
that the SRDf for a k-IRS, displayed as Ri (�), remains the
same regardless of whether or not the decoder is provided
information regarding the sequence of sampled sets. As seen
from its proof in Section IV, this is enabled by the lack
of dependence of the sampling sequence on the DMMS
realization.

Theorem 2: For a k-IRS,

RI
i (�) = RU

i (�) = Ri (�) = min I
(
X S ∧ YM|S) (11)

for �min ≤ � ≤ �max, where the minimum is with respect
to PXMSYM = PXM PS PYM|S X S and �[d(XM, YM)] ≤ �,
with

�min = min
A∈Ak

�

[
min

yM∈YM
dA(X A, yM)

]

and �max as in (7).
A convenient equivalent expression for Ri (�) in (11) is

given by
Proposition 3: For a k-IRS,

Ri (�) = min
∑

A∈Ak

PS(A)RA(�A), �min ≤ � ≤ �max,

(12)
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where the minimum is with respect to

PS ,
{
�A ≥ �min,A, A ∈ Ak :

∑

A∈Ak

PS(A)�A ≤ �
}
. (13)

Proof: For every �min ≤ � ≤ �max, in (11),

min
PXM PS PYM|S X S
�[d(XM,YM)]≤�

I (X S ∧ YM|S)

= min
PXM PS PYM|S X S
�[d(XM,YM)]≤�

∑

A∈Ak

PS(A)I (X A ∧ YM|S = A)

= min
PS ,�A :∑

A∈Ak

PS (A)�A≤�

∑

A∈Ak

PS(A)

× min
PYM|S=A,X A

�[d(XM,YM)|S=A]=�A

I (X A ∧ YM|S = A)

= min
PS ,�A :∑

A∈Ak

PS (A)�A≤�

∑

A∈Ak

PS(A)RA(�A), (14)

where PYM|S=A,X A is used to denote PYM|S,X S(·|A, ·) for
compactness. The validity of (14) follows by the introduction
of the �As and observing that the order of the minimization
does not alter the value of the minimum. The last step obtains
upon noting that the value of the inner minimum in (14) is
the same upon replacing the equality in �[d(XM, YM)|S =
A] = �A with “≤”. �

Remark: By Proposition 3, the SRDf for a k-IRS is the
lower convex envelope of the set of SRDfs {RA(�), A ∈ Ak}
and thus is convex in � ≥ �min. Furthermore,

Ri (�) ≤ min
A∈Ak

RA(�).

Additionally, a k-IRS can outperform strictly the best fixed-
set sampler. For instance, if there is no fixed-set SRDf for any
A ∈ Ak that is uniformly best for all �, then the previous
inequality can be strict. This is illustrated by the following
example.

Example 1: With M = {1, 2}, X1 = X2 = Y2 = {0, 1},
and Y1 = {0, 1, e}, let X1, X2 be i.i.d. Bernoulli(0.5) rvs, and

d
(
(x1, x2), (y1, y2)

) = d1(x1, y1) + d2(x2, y2)

with

d1(x1, y1) =

⎧
⎪⎨

⎪⎩

0, if x1 = y1 = 0; x1 = y1 = 1

1, if x1 = 0, 1, y1 = e

∞, if x1 = 0, y1 = 1; x1 = 1, y1 = 0,

d2(x2, y2) = �(x2 �= y2).

For k = 1,

R{1}(�) = 1.5 − �, 0.5 ≤ � ≤ 1.5,

R{2}(�) = 1 − h(� − 1), 1 ≤ � ≤ 1.5

whereas

Ri (�) =
{

1.5515 − 1.103�, 0.5 ≤ � ≤ 1.318,

1 − h(� − 1), 1.318 ≤ � ≤ 1.5,

where h(·) is the binary entropy function. Clearly,
Ri (�) is strictly smaller than min

{
R{1}(�), R{2}(�)

}
for

Fig. 1. SRDfs for k-IRS vs. fixed-set sampler.

0.5 < � < 1.318; see Fig. 1. Note that while the distortion
measure d in Definition 2 is taken to be finite-valued, the
event {d(X1, Y1) = ∞} above is accommodated by assigning
(optimally) zero probability to it.

�
A k-MRS is more powerful than a k-IRS in that sampling

with the former at each time instant can depend on the current
DMMS realization. The SRDf for a k-MRS can improve with
an informed decoder unlike for a k-IRS.

Theorem 4: For a k-MRS with informed decoder, the
SRDf is

RI
m(�) = min I

(
X S ∧ YM|S, U

)
(15)

for �min ≤ � ≤ �max, where the minimum is with
respect to PU XMSYM = PU PXM PS|XMU PYM|S X SU and
E[d(XM, YM)] ≤ �, with

�min = min
PS|XM

�

[
min

PYM|S X S

�[d(XM, YM)|S, X S ]
]

, (16)

�max = min
PS|XM

�

[
min
yM

E[d(XM, yM)|S]
]

, (17)

and U being a U-valued rv with |U | ≤ 3.
Remark: Analogously as in Proposition 3, the SRDf RI

m(�)
can be expressed as

RI
m(�) = min

PU , �u :∑
u

PU (u)�u≤�

∑

u

PU (u)

× min
PS|XM,U=u ,PYM |S X S ,U=u
�[d(XM,YM)|U=u]=�u

I (X S ∧ YM|S, U = u)

(18)

and thereby equals a lower convex envelope of functions of �.
The optimal sampler that attains the SRDf in Theorem 4 has

a simple structure. It is easy to see that each of �min and �max
in (16) and (17), respectively, is attained by a sampler for
which PS|XM takes the form of a conditional point-mass.
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Such samplers, in fact, are optimal for every distortion level
�min ≤ � ≤ �max and will depend on �, in general.

Definition 4: Given a mapping h : XM × U → Ak , the
(conditional point-mass) mapping δh(·) : Ak → {0, 1} is
defined by

δh(xM,u)(s) �
{

1, s = h(xM, u)

0, otherwise,
(19)

for (xM, u) ∈ XM × U, s ∈ Ak .
The following reduction of Theorem 4 shows the optimality

of conditional point-mass samplers for a k-MRS which will
be seen to play a material role in the achievability proof of
Theorem 4.

Theorem 5: For a k-MRS with informed decoder,

RI
m(�) = min I

(
X S ∧ YM|S, U

)
(20)

for �min ≤ � ≤ �max, with �min and �max as
in (16) and (17), respectively, where the minimum is with
respect to PU XMSYM of the form PU PXMδh(·) PYM|S X SU with
E[d(XM, YM)] ≤ �, where the (time-sharing) rv U takes
values in U with |U | ≤ 3.

The structure of the optimal sampler in Theorem 5 implies
that the search space for minimization now can be reduced
to the corner points of the simplexes of the conditional pmfs
PS|XMU (·|xM, u), (xM, u) ∈ XM ×U . The SRDf in (20) is
thus the lower convex envelope of the SRDfs for conditional
point-mass samplers. In general, time-sharing between such
samplers will be seen to achieve the best compression rate for
a given distortion level.

Finally, for a k-MRS with uninformed decoder, we provide
an upper bound for the SRDf RU

m (�).
Theorem 6: For a k-MRS with uninformed decoder,

RU
m (�) ≤ min I

(
S, X S ∧ YM

)
(21)

for �min ≤ � ≤ �max, where the minimum is with respect to
PXMSYM = PXM PS|XM PYM|S X S and
�[d(XM, YM)] ≤ �, with �min and �max being as in (16)
and (7).

Remark: Clearly, when (S, X S) in (21) determines XM, we
have RU

m (�) = R(�) = the (standard) rate distortion function
for the DMMS {XMt }∞t=1.

The (achievability) proof of Theorem 6 is along the lines of
Proposition 1. The lack of a converse is due to the inability
to prove or disprove the convexity of the right-side of (21)
in �. (Convexity would imply equality in (21).) The optimal
sampler, however, can be shown to be a conditional point-mass
sampler (19) along the lines of Theorem 5. Note that the same
conditional point-mass sampler need not be the best in (15)
and (21).

Strong forms of the k-MRS and k-IRS are obtained
by allowing time-dependence in sampling. Specifically, (2)
and (3) can be strengthened, respectively, to

PSt |Xt
MSt−1 = PSt |XMt St−1 (22)

and

PSt |Xt
MSt−1 = PSt |St−1 . (23)

Fig. 2. BSC (q).

Surprisingly, this does not improve SRDf for the k-MRS
(with decoder informed) or the k-IRS.

Proposition 7: For a strong k-MRS in (22) and a strong
k-IRS in (23), the corresponding SRDfs RI

ms(�) and Ris (�)
equal the right-sides of (15) and (11), respectively.

Finally, standard properties of the SRDf for the fixed-
set sampler, k-IRS and k-MRS with informed decoder are
summarized in the following

Lemma 8: For a fixed PXM , the right-sides of (6), (11)
and (15) are finite-valued, nonincreasing, convex, continuous
functions of �.

We close this section with an example showing that (i) the
SRDf for a k-MRS with informed decoder can be strictly
smaller than that of a k-IRS; and (ii) furthermore, unlike for a
k-IRS, a k-MRS with informed decoder can outperform strictly
that with an uninformed decoder, uniformly for all feasible
distortion values.

Example 2: With M = {1, 2} and X1 = X2 = {0, 1},
consider a DMMS with PX1 X2 represented by a virtual binary
symmetric channel (BSC) shown in Figure 2. Fix p ≤ 0.5 and
q = 0.5, i.e., X1 and X2 are independent. Let d correspond
to the probability of error criterion, i.e., d(xM, yM) =
�(xM �= yM).

(i) Considering a k-MRS, k = 1, with informed decoder,
we obtain by Theorem 5 that �min = 0, �max = p, and the
(conditional point-mass) sampler

PS|XM(s|xM) =

⎧
⎪⎨

⎪⎩

1, s = 1, xM = 00 or 11

1, s = 2, xM = 01 or 10

0, otherwise

(24)

is uniformly optimal for all 0 ≤ � ≤ p, and

RI
m(�) = h(p) − h(�), 0 ≤ � ≤ p.

To obtain Ri (�), the SRDfs for fixed-set samplers (6) are

R{1}(�) = h(p) − h (2� − 1) , 1
2 ≤ � ≤ 1 + p

2
,

and

R{2}(�) = h

(
1

2

)
− h

(
� − p

1 − p

)
, p ≤ � ≤ 1 + p

2
.

Since R{2}(�) ≤ R{1}(�) for all �, it is a simple exercise to
show that

Ri (�) = R{2}(�).

Clearly, RI
m(�) ≤ Ri (�), with �max for the former being

�min for the latter, as shown in Figure 3.
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Fig. 3. SRDf for k-MRS vs. k-IRS.

Fig. 4. SRDf for k-MRS.

(ii) The conditional pmf PS|XM in (24) represents a
1-1 map between the values of XM and (S, X S), and can
be seen also to be the optimal choice in the right-side of (21)
for all 0 ≤ � ≤ 1+p

2 . The remaining minimization in (21),
with respect to PYM|S X S , renders the right-side to be convex
in �. Consequently, as observed in the passage following
Theorem 6, the bound in (21) is tight. For p = 0.1, the
resulting values of RI

m(�) and RU
m (�) are plotted in Figure 4,

and of RU
m (�) and Ri (�) in Figure 5. Figure 4 illustrates the

benefit of decoder information for a k-MRS, while Figure 5
shows the compression gain achieved by providing source
knowledge to the sampler.

IV. PROOFS

A. Achievability Proofs

Our achievability proofs successively build upon each other
in the order: fixed-set sampler, k-IRS and k-MRS. The achiev-
ability proof of Proposition 1 for a fixed-set sampler forms a
basic building block for subsequent application. Relying on
this, the SRDf for a k-IRS is shown to be achieved in The-
orem 2 without the decoder being informed of the sequence
of sampled sets. Next, for a k-MRS with informed decoder,
we prove first Theorem 5 which shows that the optimal
sampler is deterministic in that the corresponding PS|XM is a

Fig. 5. RU
m (�) and Ri (�).

point-mass. This structure enables an achievability proof of
Theorem 4 which builds on that of Proposition 1. Lastly, for
a k-MRS with uninformed decoder, the achievability proof of
Theorem 6 rests on the preceding proofs.

Proposition 1: The achievability proof below can be
obtained directly from [9], but is given here for completeness.
Observe first that

�min,A = min
X Ac −◦− X A −◦− YM

�[d(XM, YM)]
= min

X Ac −◦− X A −◦− YM
�
[
�[d(XM, YM)|X A]]

= min
PX AYM

�[dA(X A, YM)]
by (5) and since X Ac −◦− X A −◦− YM

= �

[
min

yM∈YM
dA(X A, yM)

]

and

�max = min
X Ac −◦− X A −◦− YM
PX AYM=PX A

PYM

�[d(XM, YM)]

= min
PXM PYM

�[d(XM, YM)]
= min

yM∈YM
�[d(XM, yM)].

Next, note that for every �min,A ≤ � ≤ �max,

min
X Ac −◦− X A −◦− YM
�[d(XM,YM)]≤�

I (X A ∧ YM)

= min
�[dA(X A,YM)]≤�

I (X A ∧ YM).

Clearly every feasible PXMYM = PX Ac X AYM on the
left-side above gives a feasible PX AYM on the right-side.
Similarly every feasible PX AYM on the right-side leads to
a feasible PXMYM on the left-side of the form PXMYM =
PX Ac |X A PX AYM .

Given ε > 0, consider a (standard) rate distortion
code ( f, ϕ) for the DMMS {X At }∞t=1 with distortion measure
dA, of rate 1

n log || f || ≤ RA(�) + ε and with expected
distortion �

[
dA
(
Xn

A, ϕ( f (Xn
A))
)] ≤ �+ε for all n ≥ NA(ε),

say.
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The code ( f, ϕ) also satisfies

�[d(Xn
M, Y n

M)]
= 1

n
�

[
n∑

t=1

�

[
d
(

XMt ,
(
ϕ( f (Xn

A))
)

t

)∣∣∣Xn
A

]]

= 1

n
�

[
n∑

t=1

�

[
d
(

XMt ,
(
ϕ( f (Xn

A))
)

t

)∣∣∣X At

]]

= �

[
dA

(
Xn

A, ϕ
(

f (Xn
A)
))]

≤ � + ε,

thereby yielding achievability in the proposition.
Turning to the corollary, for every PXMYM satisfying the

constraints in (6), consider the pmf QXMYM defined for
xM, yM ∈ XM

QXMYM(xM, yM)

� PXMYA (xM, yA)�
(
yAc = M AP (yA)

)
, (25)

where

M AP (yA) = arg max
ỹAc ∈YAc

PX Ac |X A(ỹAc |yA) (26)

is the maximum a posteriori estimate of yAc given yA accord-
ing to PX Ac |X A . Observe that QXMYM satisfies

QX Ac −◦− QX A −◦− QYA −◦− QYAc (27)

and

�P [d(XM, YM)]
= P(XM �= YM)

= P(X A �= YA)

+ P(X A = YA)P(X Ac �= YAc |X A = YA)

= Q(X A �= YA)

+ Q(X A = YA)P(X Ac �= YAc |X A = YA)

≥ Q(X A �= YA)

+ Q(X A = YA)Q(X Ac �= YAc |X A = YA)

= Q(XM �= YM) = �Q [d(XM, YM)],
where the inequality is by (25), (26) and the optimality of the
MAP estimator. Also, it is readily checked that

�Q [d(XM, YM)]
= 1 −�[α(X A)] +�[α(X A)�(X A �= YA)]. (28)

Furthermore,

IQ(X A ∧ YM) = IQ(X A ∧ YA)

= IP (X A ∧ YA) ≤ IP (X A ∧ YM). (29)

Putting together (25) - (29) and comparing with (6) establishes
the corollary.

It is interesting to note that the form of (6)

min
X Ac −◦− X A −◦− YM

P(XM �=YM)≤�

I (X A ∧ YM)

= min
�[α(X A)�(X A �=YA)]≤�−(1−�[α(X A)])

I (X A ∧ YA)

leads to a simpler and direct proof of achievability of the
corollary. Specifically, for a given �, first xn

A is mapped
into (only) its corresponding codeword yn

A but under a mod-
ified distortion measure d̃(xA, yA) � α(x A)�(x A �= yA)
and a corresponding reduced threshold as indicated by (10).
Next, the codewords yn

A serve as sufficient statistics from
which (the unsampled) xn

Ac is reconstructed as yn
Ac =

M AP (yn
A) under PXn

Ac |Xn
A
; the corresponding estimation error

coincides with the reduction in the threshold.
�

Theorem 2: The equivalent expression for Ri (�) given
by Proposition 3 suggests an achievability scheme using
a concatenation of fixed-set sampling rate distortion codes
from Proposition 1. Let PS and {�A, A ∈ Ak} yield the
minimum in Proposition 3. A sequence of sampling sets Sn are
constructed a priori with St = A repeatedly for approximately
n PS(A) time instants, for each A in Ak . Correspondingly,
sampling rate distortion codes of blocklength ∼= n PS(A) – with
distortion ∼= �A and of rate ∼= RA(�A) – are concatenated.
This predetermined selection of sampling sets does not require
the decoder to be additionally informed.

For a fixed �min ≤ � ≤ �max, let PS and {�A, A ∈ Ak}
attain the minimum in (12). Fix ε > 0 and 0 < ε′ < ε.
Order (in any manner) the elements of Ak as Ai , i ∈ Mk �
{1, . . . , Mk }, with Mk = (m

k

)
. For i ∈ Mk and n ≥ 1, define

the “time-sets” νAi for Ai ∈ Ak as

νAi =
{

t : �n
i−1∑

j=1

PS(A j )� + 1 ≤ t ≤ �n
i∑

j=1

PS(A j )�
}
.

The time-sets cover {1, . . . , n}, i.e.,
⋃

i∈Mk

νAi = {1, . . . , n}

and satisfy
∣∣∣∣
|νAi |

n
− PS(Ai )

∣∣∣∣ ≤
1

n
, i ∈ Mk .

Now, a k-IRS is chosen with a deterministic sampling
sequence Sn = sn according to

St = st = Ai , t ∈ νAi , Ai ∈ Ak .

By Proposition 1, for each Ai in Ak , there exists a
code ( fAi , ϕAi ), fAi : X νAi

Ai
→ {1, . . . , JAi } and ϕAi :

{1, . . . , JAi } → YνAi
M of rate

1

|νAi |
log JAi ≤ RAi (�Ai ) + ε′

2

and with

�

[
d
(

X
νAi
M , ϕAi

(
fAi (X

νAi
Ai

)
))]

= �

[
dAi

(
X

νAi
Ai

, ϕAi

(
fAi (X

νAi
Ai

)
))]

≤ �Ai + ε′

2

for all |νAi | ≥ NAi

(
ε′
2

)
(cf. proof of Proposition 1).

Consider a (composite) code ( f, ϕ) as follows. For the
deterministic sampling scheme defined above, the encoder f
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consists of a concatenation of encoders defined for xn ∈
Mk×
i=1

X νAi
Ai

by

f (Sn, xn) =
(

fA1

(
x

νA1
A1

)
, . . . , fAMk

(
x

νAMk
AMk

))
,

which maps the output of the k-IRS into the set J �
Mk×
i=1

{
1, . . . , JAi

}
. The decoder ϕ is given by

ϕ
(

j1, . . . , jMk

)
�
(
ϕA1 ( j1) , . . . , ϕAMk

(
jMk

))
,

for ( j1, . . . , jMk ) ∈ J , and is aware of the sampling sequence
without being informed additionally of it.

The rate of the code is

1

n
log ||J || = 1

n

Mk∑

i=1

log JAi

≤ 1

n

⎛

⎝
Mk∑

i=1

|νAi |
(

RAi (�Ai ) + ε′

2

)⎞

⎠

≤
Mk∑

i=1

((
PS(Ai ) + 1

n

)(
RAi (�Ai ) + ε′

2

))

≤
Mk∑

i=1

PS(Ai )RAi (�Ai ) + ε′ < Ri (�) + ε, (30)

where the previous inequality holds for all n large enough.
Denoting the decoder output by

Y n
M � ϕ

(
f (Sn, Xn

S)
)
,

we have that

�[d(Xn
M, Y n

M)]

= �

[
1

n

n∑

t=1

d(XMt , YMt )

]

= 1

n

Mk∑

i=1

|νAi |�
[
d
(

X
νAi
M , ϕAi

(
fAi (X

νAi
Ai

)
))]

≤
Mk∑

i=1

(
PS(Ai) + 1

n

)(
�Ai + ε′

2

)

=
Mk∑

i=1

PS(Ai)�Ai + Mk

n

(
ε′

2
+ �max

)
+ ε′

2

≤ � + ε (31)

by (13) and for all n large enough. The proof is completed by
noting that (30) and (31) hold simultaneously for all n large
enough. �

Next, we establish Theorem 5. The structure of the
conditional point-mass sampler therein will be used next in
the achievability proof of Theorem 4 to follow.

Theorem 5: Denoting the minima in (15) and (20) by q(�)
and r(�), respectively, clearly

q(�) ≤ r(�), �min ≤ � ≤ �max. (32)

In fact, equality will be shown to hold, thereby proving the
theorem. First, since q(�) and r(�) are convex in � by
Lemma 8, by [8, Lemma 8.1] they can be expressed in terms
of their Lagrangians as

q(�) = max
λ≥0

Gq(λ) − λ� and r(�) = max
λ≥0

Gr (λ) − λ�,

where Gq(λ) and Gr (λ) are the respective minima of

I (X S ∧ YM|S, U) + λ� [d(XM, YM)] (33)

over
(
PU , PS|XMU , PYM|S X SU

)
and

(
PU , δh(·), PYM|S X SU

)
.

By the conditional version of Topsøe’s identity
[8, Lemma 8.5], the expression in (33) equals

min
QYM|SU

D
(
PYM|S X SU

∣∣∣∣QYM|SU
∣∣PS X SU

)+ λ�[d(XM, YM)] .

(34)

In Gq(λ), the minimum of the expression in (34) also over(
PU , PS|XMU , PYM|S X SU

)
is not altered by changing the order

of minimization with PS|XMU being the innermost. Using this
fact, it is shown in Appendix that the minimizing PS|XMU is
of the form δh(·), whereby

Gq(λ) = Gr (λ). (35)

Hence, equality holds in (32).
�

Theorem 4: By (18), using the result of Theorem 5,

RI
m(�) = min

PU , �u :∑
u

PU (u)�u≤�

∑

u∈U
PU (u)R̃(�u) (36)

where

R̃(�u) = min
PXM δhu (·) PYM |S X S
�[d(XM,YM)]≤�u

I (X S ∧ YM|S) (37)

for �min ≤ �,�u ≤ �max, with the pmf PXMδhu (·) PYM|S X S

being understood as PXMδh(·,u) PYM|S X S,U=u . To simplify
notation, the conditioning on U = u will be suppressed
except when needed. It suffices to show the existence of a
code of rate ∼= R̃(�u) with distortion �[d(XM, YM)] ∼≤ �u .
A concatenation of such codes indexed by u ∈ U yields,
in effect, suitable time-sharing among them, leading to the
achievability of (36). By Theorem 5, in view of the optimality
of point-mass samplers, concatenating fixed-set sampling rate
distortion codes for conditional sources PXM|S=A, A ∈ Ak ,
will suffice.

Given any �min ≤ �u ≤ �max, for the minimizer in (37),
consider the corresponding

PS|XM = δhu (·), �Ai � �[d(XM, YM)|S = Ai ] and

I (X Ai ∧ YM|S = Ai ), i ∈ Mk .

The associated {(St , X St )}∞t=1 is an i.i.d. sequence
(cf. Remark (ii) following Definition 3). The sampling
sets characterized by the conditional point-mass sampler
above and the DMMS realizations xn

M, are denoted as
sn(xn

M) �
(
s(xM1), . . . , s(xMn)

)
, and hence Sn = sn(Xn

M).
The idea behind the remainder of the proof below for each

U = u is the following. We collect all those time instants at
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which a particular Ai in Ak is sampled, with the objective
of applying a fixed-set sampling rate distortion code. Since
the size of this time-set will vary according to xn

M in X n
M,

the rate of such a code, too, will vary accordingly. However,
since we seek fixed rate codes (rather than codes with a desired
average rate), we apply fixed-set sampling codes to subsets of
predetermined lengths from among typical sampling sequences
in An

k .
Fix ε > 0 and 0 < ε′ < ε. Ordering the elements of Ak

as in the proof of Theorem 2, for n ≥ 1, the sets τsn (Ai ) �
{t : 1 ≤ t ≤ n, st = Ai }, i ∈ Mk, cover {1, . . . , n}; denote
the set of the first max

{�n(PS(Ai ) − ε′)�, 0
}

time instants in
τsn (Ai ) by νAi . For the (typical) set

T (n)
ε′ �

{
sn ∈ An

k :
∣∣∣∣
|τsn(Ai )|

n
− PS(Ai)

∣∣∣∣ ≤ ε′, i ∈ Mk

}
,

P
(

Sn ∈ T (n)
ε′
)

≥ 1 − ε′
2 for all n ≥ N1(ε

′), say.

Along the lines of proof of Theorem 2, for each DMMS
with (conditional) pmf PXM|S=Ai , i ∈ Mk , there exists
a code ( fAi , ϕAi ), fAi : X νAi

Ai
→ {1, . . . , JAi } and ϕAi :

{1, . . . , JAi } → YνAi
M of rate 1

|νAi | log JAi ≤ I (X Ai ∧ YM|S =
Ai ) + ε′

2 and with

�

[
d
(

X
νAi
M , ϕAi

(
fAi (X

νAi
Ai

)
))∣∣∣SνAi = A

νAi
i

]
≤ �Ai + ε′

2

for all |νAi | ≥ NAi

(
ε′
2

)
.

A (composite) code ( f, ϕS), with f taking values in J �
Mk×
i=1

{
1, . . . , JAi

}
is constructed as follows. The encoder f

consists of a concatenation of encoders defined by

f
(
sn(xn

M); xs1, . . . , xsn

)

=
{(

fA1

(
x

νA1
A1

)
, . . . , fAMk

(
x

νAMk
AMk

))
, sn(xn

M) ∈ T (n)
ε′ ,

(1, . . . , 1), sn(xn
M) /∈ T (n)

ε′ .

For t = 1, . . . , n, and ( j1, . . . , jMk ) ∈ J , the informed
decoder ϕS is given by
(
ϕS
(
sn, ( j1, . . . , jMk )

))

t

=
{(

ϕAi

(
x

νAi
Ai

))

t
, sn ∈ T (n)

ε′ and t ∈ νAi , i ∈ Mk,

y1, otherwise,

where y1 is a fixed but arbitrary symbol in YM.
The rate of the code is

1

n
log ||J || = 1

n

Mk∑

i=1

log JAi

≤ 1

n

⎛

⎝
Mk∑

i=1

|νA|
(

I (X Ai ∧ YM|S = Ai ) + ε′

2

)⎞

⎠

≤
Mk∑

i=1

PS(Ai )

(
I (X Ai ∧ YM|S = Ai ) + ε′

2

)

=
Mk∑

i=1

PS(Ai )I
(
X Ai ∧ YM|S = Ai

)+ ε′

2

≤ I (X S ∧ YM|S) + ε. (38)

Defining dmax � max
(xM,yM)∈XM×YM

d(xM, yM), and with

Y n
M denoting the output of the decoder, we have

�[d(Xn
M, Y n

M)] = �
[
�
[
d(Xn

M, Y n
M)
∣∣Sn]]

=
∑

sn∈T (n)
ε′

PSn(sn)�
[
d(Xn

M, Y n
M)
∣∣Sn = sn]

+
∑

sn /∈T (n)
ε′

PSn (sn)�
[
d(Xn

M, Y n
M)
∣∣Sn = sn]

≤
∑

sn∈T (n)

ε′

PSn(sn)

×
Mk∑

i=1

|νAi |
n
�

[
d
(

X
νAi
M , ϕAi

(
fAi (X

νAi
Ai

)
))∣∣∣SνAi = A

νAi
i

]

+ 1

n

∑

sn∈T (n)
ε′

PSn(sn)

×
Mk∑

i=1

∑

t∈τsn (Ai )\νAi

�
[
d(XM, YMt )|Sn = sn]

+
∑

sn /∈T (n)
ε′

PSn (sn)dmax

≤
Mk∑

i=1

PS(Ai )

(
�Ai + ε′

2

)
+

⎛

⎜⎜⎜⎝1 −

Mk∑
i=1

|νAi |
n

⎞

⎟⎟⎟⎠ dmax

+ ε′

2
dmax

≤ �u + ε′

2
+ (2Mkε

′) dmax + ε′

2
dmax

< �u + ε (39)

for all n large enough. The proof is completed by noting that
for n large enough (38) and (39) hold simultaneously and time-
sharing between the codes corresponding to U = u, u ∈ U,
completes the proof. �

Theorem 6: The proof is similar to that of Proposi-
tion 1 with the i.i.d. sequence {X At }∞t=1 replaced by the
i.i.d. sequence {St , X St }∞t=1 with joint pmf PS X S obtained
from (21) and a modified distortion measure d̃ ((s, xs), yM) �
�
[
d(XM, yM)|S = s, X S = xs

]
. The details, identical

to those in the achievability proof of Proposition 1, are
omitted. �
B. Converse proofs

Separate converse proofs can be provided for Proposition 1
and Proposition 7. However, in order to highlight the under-
lying ideas economically, we develop the proofs in a unified
manner. Specifically, in contrast with the achievability proofs
above, our converse proofs are presented in the order of weak-
ening power of the sampler, viz., k-MRS, k-IRS and fixed-set
sampler. We begin with the proof of Lemma 8 followed by
pertinent technical results before turning to Proposition 1 and
Proposition 7.

Lemma 8: We need to prove only that the right-sides
of (6), (11) and (15) are convex and continuous, since they are
evidently finite-valued and nonincreasing in �. The convexity
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of the right-side of (6) on [�min,A,�max] is a standard
consequence of the convexity of

I (X A ∧ YM) = I
(
PX A , PYM|X A

)

in PYM|X A and the convexity of the constraint set in (6). The
convexity of the right-sides of (11) and (15) is immediate
by the remarks following Proposition 3 and Theorem 4, and
their continuity for � > �min is a consequence. Continuity
at � = �min in (6), (11) and (15) holds, for instance, as
in [8, Lemma 7.2]. �

Lemma 9: Let the finite-valued rvs An, Bn, Cn, Dn be such
that (At , Bt ), t = 1, . . . , n, are mutually independent and
satisfy

Bn −◦− An, Cn −◦− Dn (40)

and

Ct −◦− At , Bt , Ct−1 −◦− An\t , Bn\t , t = 1, . . . , n, (41)

where An\t = An \ At . Then, the following hold for t =
1, . . . , n:

I (At , Bt , Ct ∧ An
t+1, Bn

t+1) = 0; (42)

At , Bt −◦− Ct −◦− An\t , Bn\t , Cn
t+1; (43)

and

Bt −◦− At , Ct −◦− Dt . (44)
Proof: First, (42) is true by the following simple observation:

for t = 1, . . . , n,

I (At , Bt , Ct ∧ An
t+1, Bn

t+1)

= I (At , Bt ∧ An
t+1, Bn

t+1)

+ I (Ct ∧ An
t+1, Bn

t+1|At , Bt )

= 0 (45)

where the first term in the sum above is zero by the mutual
independence of (At , Bt ), t = 1, . . . , n, and the second term
equals zero by (41). Next, the claim (42) and the Markov
property (41) imply that for t = 1, . . . , n,

I (At , Bt , Ct ∧ At−1, Bt−1|Ct−1)

= I (At , Bt ∧ At−1, Bt−1|Ct−1)

+ I (Ct ∧ At−1, Bt−1|At , Bt , Ct−1)

= 0. (46)

The claim (43) now follows, since

I (At , Bt ∧ An\t , Bn\t , Cn
t+1|Ct )

= I (At , Bt ∧ At−1, Bt−1|Ct )

+ I (At , Bt ∧ An
t+1, Bn

t+1|At−1, Bt−1, Ct )

+ I (At , Bt ∧ Cn
t+1|An\t , Bn\t , Ct )

= 0

where the first term in the sum above is zero by (46), and the
latter two terms are zero by (45) and (41), respectively.

Now using (40),

0 = I (Bn ∧ Dt |An, Cn)

=
n∑

t=1

I (Bt ∧ Dt |Bt−1, An, Cn)

=
n∑

t=1

I (Bt ∧ Dt |Bt−1, At , An\t , Ct , Cn
t+1)

=
n∑

t=1

[
I (Bt ∧ Bt−1, An\t , Cn

t+1, Dt |At , Ct )

− I (Bt ∧ Bt−1, An\t , Cn
t+1|At , Ct )

]

=
n∑

t=1

I (Bt ∧ Bt−1, An\t , Cn
t+1, Dt |At , Ct ) by (43)

≥
n∑

t=1

I (Bt ∧ Dt |At , Ct ),

so that the claim (44) follows. �
We now prove Proposition 7 which, in effect, implies the

converse proofs for Theorem 4, Theorem 2 and Proposition 1.
Specifically, a converse is fashioned for RI

ms(�), with those
for Ris (�) and RA(�) emerging along the way.

Let
({PSt |XMt St−1}n

t=1, f, ϕS
)

be an n-length strong k-MRS
block code with decoder output

Y n
M = ϕS

(
Sn, f (Sn, Xn

S)
)

and satisfying
�
[
d
(
Xn
M, Y n

M
)] ≤ �. The hypothesis of Lemma 9

with An = Xn
S, Bn = Xn

Sc, Cn = Sn and Dn = Y n
M is met

since

Xn
Sc −◦− Sn, Xn

S −◦− Y n
M

and by (22),

PSt |Xn
MSt−1 = PSt |XMt St−1 .

Then by Lemma 9, for t = 1, . . . , n,

I (St−1 ∧ XMt ) = 0, (47)

XMt −◦− St −◦− Xn\t
M , Xn\t

S , Sn
t+1 (48)

and

X Sc
t

−◦− St , X St −◦− YMt . (49)

Denoting by || f || the cardinality of the range space of the
encoder f , the rate R of the code satisfies

n R = log || f || ≥ H
(

f (Sn, Xn
S)
)

≥ H
(
ϕS
(
Sn, f (Sn, Xn

S)
)|Sn

)
= H

(
Y n
M|Sn)

= H
(
Y n
M|Sn)− H

(
Y n
M|Sn, Xn

S

)

= I
(
Xn

S ∧ Y n
M|Sn)

=
n∑

t=1

(
H (X St |St , Sn

t+1, Xt−1
S )

− H (X St |St , Sn
t+1, Xt−1

S , Y n
M)
)

≥
n∑

t=1

(
H (X St |St ) − H (X St |St , YMt )

)
(50)

=
n∑

t=1

I (X St ∧ YMt |St ) (51)
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where (50) follows from (48). Denote �[d(XMt , YMt )]
by �t .

For the strong k-MRS code above, in (51) using (47)
and (49), we get

I (X St ∧ YMt |St )

≥ min I (X St ∧ YMt |St , St−1) (52)

≥ min
PUt PXMt

PSt |XMt Ut PYMt |St X St Ut
�[d(XMt ,YMt )]≤�t

I (X St ∧ YMt |St , Ut ), (53)

where the minimum in (52) is with respect to
PXMt St YMt = PSt−1 PXMt PSt |XMt St−1 PYMt |St X St St−1 and

�[d(XMt , YMt )] = �t , and where Ut is a rv taking values
in a set of cardinality |Ak |t−1. The existence of the minima
in (52) and (53) comes from the continuity of the conditional
mutual information terms over compact sets of pmfs.

By the Carathéodory theorem [7], every point in the convex
hull of the set

C =
{(
�[d(XM, YM)], I (X S ∧ YM|S)

) :
XM −◦− S, X S −◦− YM

}
⊂ �

2

can be represented as a convex combination of at most three
points in C. Hence, to describe every element in the set
{(
�[d(XMt , YMt )], I (X St ∧ YMt |St , Ut )

) :
PUt XMt St YMt = PUt PXMt PSt |XMt Ut PYMt |St X St Ut

}
,

it suffices to consider a rv Ut with support of size three.
(For t = 1, this assertion is straightforward.) Consequently,
the right-side of (53) equals RI

m(�t ) (cf. (15)). Using the
convexity of RI

m(�) in �, we get from (51) that

n R ≥
n∑

t=1

RI
m(�t )

≥ n RI
m

(
1

n

n∑

t=1

�t

)

≥ n RI
m(�), (54)

i.e., R ≥ RI
m(�), � ≥ �min, thereby completing the converse

proof for a strong k-MRS and Theorem 4.
Next, an n-length strong k-IRS code and fixed-set sampler

code can be viewed as restrictions of the strong k-MRS code
above. Specifically, the strong k-IRS and fixed-set sampler
respectively entail replacing PSt |XMt St−1 by PSt |St−1 and PSt =
�(St = A). Counterparts of (52) and (53) hold with the
mentioned replacements. For a strong k-IRS, upon replacing
PSt |XMt St−1 with PSt |St−1 , we observe that the right-side of
(53), viz.

min
PUt PXMt

PSt |Ut PYMt |St X St Ut
�[d(XMt ,YMt )]≤�t

I (X St ∧ YMt |St , Ut )

is now the lower convex envelope of the SRDf for a k-IRS,
already convex in distortion, and hence, equals Ri (�t ) itself.
Thus, (53) becomes

I (X St ∧ YMt |St ) ≥ min
PXMt

PSt PYMt |St X St
�[d(XMt ,YMt )]≤�t

I (X St ∧ YMt |St )

= Ri (�t ). (55)

Combining (51) and (55), we get along the lines of (54)
that R ≥ Ri (�), � ≥ �min, which gives the converse proof
for a strong k-IRS and Theorem 2.

In a manner analogous to a strong k-IRS, for a fixed-
set sampler the convexity of RA(�) in � implies that the
counterpart of the right-side of (53), with PSt |XMt Ut replaced
by �(St = A), simplifies to RA(�t ). As in (54), it follows
that R ≥ RA(�), � ≥ �min,A, which gives the converse for
Proposition 1.

�
V. CONCLUSION

Our new framework of sampling rate distortion describes
the centralized sampling of fixed-size subsets of the com-
ponents of a DMMS, followed by encoding and lossy
reconstruction of the full DMMS. Specifically, we examine
the tradeoffs between sampling strategy, optimal encoding
rate and distortion in reconstruction as characterized by a
sampling rate distortion function. Three sampling strategies are
considered: fixed-set sampling, independent random sampling
and memoryless random sampling; in the latter two settings,
the decoder may or may not be informed of the sampling
sequence.

Single-letter characterizations of the SRDf are provided for
the sampling strategies above but for a memoryless random
sampler with uninformed decoder. In the last case, an achiev-
ability proof yields an upper bound for the SRDf whose
tightness is unknown. This upper bound in Theorem 6 can
be convexified by means of a time-sharing random variable
whereupon the modified bound becomes tight. However, it
remains open whether such time-sharing is necessary for
convexification.

APPENDIX

PROOF OF (35)

We show that the minimum of (34) with respect to(
PU , PS|XMU , PYM|S X SU

)
is attained by PS|XMU of the form

δh(·). The Lagrangian is

Gq(λ) = min
PU ,PS|XMU ,

PYM |S X SU ,QYM |SU

D
(
PYM|S X SU

∣∣∣∣QYM|SU
∣∣PS X SU

)

+ λ�
[
d(XM, YM)

]

= min
PU ,QYM|SU ,

PYM |S X SU

∑

u,xM
PU XM(u, xM)

× min
PS|XMU

∑

s∈Ak

PS|XMU (s|xM, u)η(u, xM, s)

where

η(u, xM, s) = �

[
log

PYM|S X SU (YM|s, xs , u)

QYM|SU (YM|s, u)

+ λd(xM, YM)
∣∣∣S = s, X S = xs, U = u

]

with the expectation being over PYM|S=s,X S=xs ,U=u . Since η =
η(u, xM, s) we get

Gq(λ) = min
PU ,QYM|SU ,

PYM|S X SU

∑

u,xM
PU XM(u, xM)

min
s∈Ak

η(u, xM, s)



574 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

= min
PU ,QYM |SU ,

PYM|S X SU

∑

u,xM
PU XM(u, xM)

× min
δh(·)

∑

s∈Ak

δh(xM,u)(s)η(u, xM, s)

= min
PU ,δh(·),QYM |SU ,

PYM |S X SU

D
(
PYM|S X SU

∣∣∣∣QYM|SU
∣∣PS X SU

)

+ λ�
[
d(XM, YM)

]

= Gr (λ).
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