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INFORMATION THEORY

CAPACITY OF THE ARBITRARILY VARYING CHANNEL
UNDER LIST DECODING

V. M. Blinovsky!, P. Narayan, and M. S. Pinsker’ UDC 621.391.15

We find necessary and sufficient conditions under which the capacity C1 of an arbitrarily varying channel
(AVC), for deterministic codes with decoding into a list of size L and for the average error probability
criterion, equals the capacity Cr of the AVC for random codes. For binary AVCs, we prove the existence of
a finite L* < oo such that Cy = C; for all L > L*.

1. Introduction

An interesting property of an arbitrarily varying channel (AVC) is the following. The deterministic code
capacity for the average probability of error criterion can equal zero while the random code capacity can be
positive (see [1]). This fact suggests that one investigate necessary and sufficient conditions for the equality
of these capacities under various restrictions on input signals. It also suggests that one investigate whether
or not list decoding can change this situation.

List decoding for ordinary channels was first considered in the papers of Elias [2] and Wozencraft [3].
List decoding for such channels does not change their capacities although it can change other properties of
the transmission.

In this paper, we study problems of AVC capacity under fixed size-L list decoding. In doing so, we
restrict ourselves to the study of a discrete memoryless AVC with finite input and output alphabets and
finite state space for the channel under the average probability of error criterion.

2. Basic notation and formulation of results

First we recall the definition of the discrete memoryless AVC and introduce some quantities that reflect
its specific behavior. .

Let X,)Y, and S be finite sets representing the input, output, and state alphabet, respectively. The
AVC is determined by a family of conditional distributions w(y|z,s) on Y(y € V), defined by an input
signal £ € X and a state s € S. The absence of memory means that the transition probability function
w(y|x,s), x = (z(1),...,z(n)) € X", y = (y(1),...,y(n)) €V", s = (s(1),...,s(n)) € 8", satisfies

w(y|x,s) = H w(y(5) | =(5), s(4))- (1)

We denote such a channel as G = (w, X,Y,S). A deterministic code K" of length n and cardinality M is
the set K™ £ {(xi, 4;), i=1,..., M}, where x; € X", and {A;, i=1,...,M} is a partition of the space
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Y". A message m;, i € {1,..., M}, is encoded into the codeword x; which is transmitted over the AVC.
At the output of the channel in state s, we observe the sequence y € Y™ with probability w™(y | x;,s).
The received sequence y is decoded into a message mj, j € {1,..., M}. The decoding rule is given by the
function ®: ®(y) = j if y € A;. The average error probability p(s) of the code K™ when the AVC is in the

state s € 8™ equals
M
AMTIY Y w'(ylx,s). ' (2)
i=1 yey=: d(y)#i
We are interested in the quantity

eR)=limsup _ min  maxp(s) (3)

for R > 0. The capacity of the AVC with deterministic codes under the average error probability criterion
is defined as -
C2 sup R (4)
e(R)=0
Ahlswede [1] has shown that the capacity C equals either 0 or the random code capacity C,, where C; is
equal to

C, = max mm Z E we(y | z)p(z) log wy(y | 2) , (5)

/ 7
PO 10 3 & éfqu(ylx)p(r)

where p(-), ¢(*) are probability distributions on X, S respectively, and wy(y|z) = > w(y|=z,s) q(s).
SES

In [4], a sufficient condition on the distributions w(y|x,s) for which C > 0 was given. However, later
it became clear that this condition is not necessary, and, in particular, in [2], an example was given where
C = C, > 0 but the condition in [4] is not satisfied. In [5], Ericson formulated a weaker condition that
implies C = 0. Later Csiszar and Narayan [6] proved that the condition described in [5] is also necessary
for C = 0.

In the present paper, we consider list decoding of fixed size L; the results of [1-7] then correspond to the

special case L = = 1. Suppose that the collection {4;, i =1, M} satlsﬁes NAi=@forallJ C {1,...,M},
ieJ

|J] > L+ 1, U A; = Y™. The set of pairs {(x;,4;), i = 1, M} £ K" is called the deterministic code
i=1

decoded into a list of size L. The set K} = {x;, i = 1, M} is also called a code. A received sequence
y is decoded into a list of L' < L messages m;,,...,m;,,, {#1,...,ir} C {1,..., M}. The decoding rule
Y {1, M) s

' ®u(y)={i: A2y, i=1,M}.

The average error probability of decoding into a list of size L for transmission over the AVC in the state
s € 8" is defined as

M
PL(s) =P, KN =M"1Y Y w'(ylx,s). . (6)
i=1 yeYn: & (y)Fi

Define the list-of-L size capacity Cr, of the AVC for deterministic codes under the average error probability
criterion as

CrL2 sup R, (7)
eL(R)=0
where
€r(R) = limsup min max P (s).

n-—oo K™:logM>Rn ses®

In (8], transmission with list decoding was considered. In that paper, it was pfoved that for any
R < C,, £ > 0, there exists an encoding and decoding scheme with list size L(e, |X|,|Y]) such that for all

100



sufficiently large n, p;(s) < ¢, s € 8. It was conjectured that L(e, |X|,|V|) depends only on |X], |¥| (but
not on ¢).

In the present paper, we find a necessary and sufficient condition for € = C, to be valid. In the case
|X] = |¥| = |S| = 2 (the binary AVC), we prove the existence of a number L(G) < oo such that Cp = C;
for L > L(G). We also show that for any N > 0, there exists a binary AVC with L(G) > N.

Now, we give an exact formulation of the main results to be proved below. We commence with a theorem
which extends the statement of Ahlswede [1] from L =1 to the case L > 1.

Theorem 1. Cy, equals either C, or 0.

THE PROOF of Theorem 1 follows the deviation in [1]. When C, > 0, we use a prefix code with list-of-L
decoding at a nonzero rate.

A sufficient condition for Cr, = 0 is formulated in the next lemma as an extension of the “symmetriz-
ability” condition in [6].

Lemma 1. Suppose that there exist conditional probability distributions
Q(Slxz,---,rLfl)r SES’ x?""yzll‘l'lex

such that for any set zy,...,zr41 € X, any permutation © = (7, ..., nry1) of the sequence (1,...,L+1),
and any y € Y the following equalities hold: ' :

Z w(y|z1,s)q(s|z2,-. -, TL41) = Z w(y|zr,,8)q(S | Tags ooy Trpyy)- 8)
SES SES
Then Cr = 0.
Remark. Clearly, condition (8) is equivalent to the equality
min  max Z[w(y|z1,s)q(s|:c2,...,xL+1)—w(y|:t,,l,s)q(s|:c,r2,...,:c,,Hl)] =0. (9)

.1 veEY, =,
q( I) Ty,-nTL41€X SES

We say that the distribution w(y|z,s) (or the AVC) is L-symmetrizable if relation (8) holds and is L-
nonsymmetrizable otherwise. Obviously, if the AVC is L-symmetrizable, then it is L’-symmetrizable, where
L' < L; in this case, it is sufficient to assume q(s|z2,--.,zr41) = a(s|z2,.-.,TLrg1, -+, TL+1), Where
TLig2,-- -, L1 18 fixed.

A distribution w(y | z, s) for which there exists g(s) such that

> w(ylz,s)q(s) = we(ylz) = V()

3€ES

does not depend on z is symmetrizable for any L > 1. To verify this, we can put g(s|z2,...,2L41) =
q(s), s € S. It follows from (5) that for such channels C; = 0. The largest L £ L(G) for which the AVC is
L-symmetrizable will be called the order of symmetrizability.

A necessary condition for Cp = 0 is given in the following lemma.

Lemma 2. If Cr, = 0, then (8) holds for a certain g(s|z2, .. Sy TL41)-

As a corollary of Lemmas 1 and 2 we have

Theorem 2. Cy = 0 iff the distribution w(y|z,s) is L-symmetrizable.

We get from Theorems 1 and 2

Corollary 1. If the distribution w(y|z,s) is L-symmetrizable then Cp = 0.
Corollary 2. If the distribution w(y|z,s) is L-nonsymmetrizable then Cr = Cy > 0.

Theorem 3. For the binary AVC, (|X] = |V| = |S| = 2) with C; > 0, we have L(G) < co. Moreover, -
for any N > 0, there ezists a binary AVC with L(G) > N.
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3. Proof of Theorem 2

ProOF OF LEMMA 1. Let K% = {x1,...,xm} be a set of codewords. We show that if (8) holds, then
there exists a vector s € 8™, for which

Pr(s) > (L +1)7'(1 + o(1)), : (10)

where 0o(1) — 0 when M — oco. Lemma 1 follows from this inequality.
Let xi,,...,Xi,, € K%, @1,...,iL41 € {1,..., M}. Consider an n-dimensional random variable

Sig...iL+1 - (Sig_..iz,+1 (1)) ey Sf;...ib+1 (n))

with independent components Si,..i,,,(5), 7 =1,...,n, and distributions

Pr (Sig...iL.H (J) = 3) = q(s]zi,(5),-- -, :Ct'z.+1(j))

that satisfy (8).
According to (1), we have

Ewn(y lxiusiz---il.+1) = Ew(y(]) l Iin(j)) Si2-~«iL+1(j))

Il
ji=1
I 3 w@i) 12:.G), 9)als | 26, ), - - 7 (5)-
i=1

Let # = (my,...,mr+1) be an arbitrary permutation of the elements of the sequence (i1, - yip41). It
follows from (8) that

Ew"(y l Xrys Sn..n+1) - Ewn(y l Xiys Siz-~-i!_+1)' (11)

Let
7;’1..41'1,.,.1 é Z Z Ew"(y Ix'll’l)s‘l’z...‘lrl,.*.l)- (12)

. T y:mgd(y)
Since we are considering list-of-L decoding, it holds that

ZEwn(yleusn---ﬂ'L+1) =1
y
implies for {i1;...,iL41} C {1,..., M} that

L+1

. Z Z Z Ew™(y |Xx,,Srymppn) 2 Z Z Ew™(y | Xx,, Sry.mpqa) = (L + 1)L (13)
i=1 y

Ty mige(y) T
Combining (11) with (13) yields the estimate
Yiy..dir4 Z L') 1] # ikv ]# k. (14)
It follows from (11)—(13) that

M

Z Z Bw"(y | Xi,, Sis..ijineings)

it ikt L 41T yiiy @@(y)

ijRiy, Jek
. M .
> (L +1)] Z Viy.odjoinedpgr- (15)
aemigraigiaip g1 0
ij#ix, J2k
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Next, observe that

M
M..l Z Z Ewn(ylx,'l,sig...iz.+1)

i1=1y:1;,¢3(y)
M
= MY Y Y w1, 8) (s Xy Xinys)
i1=1 y:i; gP(y) s€eS™

Z -ﬁL(S) q"(S le'zx .- -;xiL.H)-

SES™

The last expression is the error probability pr(s) averaged over

qn(s | Xiz, - - "xiL+1) = H q(s(k) l :L‘,',(k), cey xit.+1(k))'
k=1

In accordance with (14)-(16) we have

M .
M-t Z ZﬁL(s)q"(slx,-z,...,x,-j,...,x;,‘,...,x,-,_“)
240000 ‘.jA";"""J',;:‘L*":l’ SES"
ijE,
M
> M-I+ 1y Z Yiy..dj. ix-dipg
£)aeees -'J- ..... ik,...,iL+l=1,
‘ iRk, JEk

> M LM-1)M=2)...(M =L +D] > (L+1)"H(1+0(1)), M — oo

From the last expression we deduce the existence of a collection {iz,...,iL41} such that
Z pr(s)q"(s|xiy, - - -, xiL-H) z(L+ 1)-1(1 +o(1)).

sSES™

(16)

Hence, there exists a vector s € S” for which (10) holds, thereby completing the proof of Lemma 1.

Before the proof of the necessity of condition (8) we introduce some standard definitions.

. Let X1, ..., X be finite sets and let X;,...Xm be random variables with probability distribution

P(zl, .. .,Im) = le...Xm(xly .. '_)xm)) I; € Xi; 1= lxm'

Suppose that .
H(X1,...,Xm)=— Z p(z1,...,zm)logp(z1,...,2m)

x; €X;,

i=1i,m

is the entropy of the distribution p(zy,...,Zm) of the random variable (X1, ..., Xm),

p(z1,- .., Tm)
Xy;..;Xm) = Ti,...,Tm)log —"7——+—=,
(X1 ) :;i'l’( 1 ) gp(:cl)...p(:z:m)

i=1,m

and
I(Xk;XI:n-*-l)r ISk<m,

is the amount of information between the random variables X* = (X1, ..., X¢) and X[} = (Xk41,---

Obviously, we have
m
(X153 Xm) = Y HX)—-H(X1,..., Xm),
i=1

I(X*; XP4) H(X*) + H(X{y) — H(X™).
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3. Proof of Theorem 2

ProoF OoF LEMMA 1. Let K% = {x1,...,xm} be a set of codewords. We show that if (8) holds, then
there exists a vector s € S™, for which

Br(s) 2 (L +1)7'(1 +o(1)), : (10)

where o(1) — 0 when M — oco. Lemma 1 follows from this inequality.
Let xi,,...,Xi,,, € K%, i1,...,iL41 € {1,..., M}. Consider an n-dimensional random variable

i2..0iL41 — (Si2-~-iz.+x(1)x sy Sia.~-iz.+1 ("’))

with independent components Si,..i,,(j), J =1,...,n, and distributions

Pr (Sig...il,+;(j) = 5) - Q(s I Ii:(j)) s 1IiL+1(j))

S

that satisfy (8).
According to (1), we have

n

Ewn(ylxinsiz---iL+x) = H w(y(])lzu(]) Siz 1L+x(]))

II > w2 (), 9)als | 26, (3), - - -, zir s (4))-

i=1 seS

Let # = (my,...,7r+1) be an arbitrary permutation of the elements of the sequence (31, yip41)- It
follows from (8) that

Ewn(y I Xy Sﬂ‘zmﬂ'Lu) = Ewn(y I Xips Si2-~<iL+1)' (11)
Let ’
Yir.irp £ Z Z Ew® (y ! Xrys Sﬂz.--ﬂ'L+x)' (12)
T y:mge(y)

Since we are considering list-of-L decoding, it holds that
: Z Ewn(y l Xy S1r2---7ft,+x) =1
y
implies for {#;;...,i4+1} C {1,. ,M} that

L+1

| Z E Z Ew (y |x7|'u 2. 7I'L+x) 2 Z ZEw"(ylxﬂ'n 72.. 7"L+1) - (L + 1)’ (13)

T y:mige(y)
Combining (11) with (13) yields the estimate
Viroivg 2 LY G F i, JFEE (14)
It follows from (11)-(13) that

M

Z Z Ew™(y | Xi,, Siy.ijoineings)

TN TS P L41=h i gO(y)

ij#ip, JRk
1 o '
> [(L+1)Y Z Yiyoodjoindngr- (15)
SLaeenaigaeensinsnip 41 =1,
ijRix, 2k
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Next, observe that

M
M-l Z E Ewn(y |Xi1,si;...ix,+1)

1=1y:i,¢2(y)
M
= M_lz Z Zw"(yIxil,s)q"(s|x,-,,...,x,~L+‘1)
i1=1 y: i, gP(y) s€S™

Z ﬁL(S) q"(SIX;z, i rxiL+x)'

sES"

The last expression is the error probability pz(s) averaged over

qn(s I Xigy -y xiL+1) = H Q(s(k) lIiz(k)v EERE) xiL+1(k))'
k=1

In accordance with (14)-(16) we have

M
ML Z Z5L(s)q"(s|x,-,,...,x,-J.,...,x;,‘,...,x,-Hl)
:3....,:']- ,,,,, g seres iL+1=1- SES™ .
ik, g2k

, [

> M-I+ Z Yiy.oijoiningr

£14-00 l'J- ..... Thseeoy iL+1=l,

) iR, itk ‘

> M EM-1)(M-2)...(M=L)INLZ+D] ' > (L+1)"'(1+0(1)), M- oo,

From the last expression we deduce the existence of a collection {i3,...,4ir41} such that
Z pL(s) qn(s | %is, - - "xil,-u) 2 (L + 1)_1(1 + o(1)).

SES™

(16)

Hence, there exists a vector s € S™ for which (10) holds, thereby completing the proof of Lemma 1.

Before the proof of the necessity of condition (8) we introduce some standard definitions.

. Let Xi,...,Xn be finite sets and let X3, ... X, be random variables with probability distribution

P(Ily ...,Im) = PXI,..X,..(II,---.;Im), z; € Xix i= lym'

Suppose that . _
H(X1, ..., Xm)=— Z p(z1,..-,Zm)logp(z1,. .., Zm)

z; €X,,

i=l,m

is the entropy of the distribution p(z,, ..., Zm) of the random variable (X1, ..., Xm),

p(z1,...,Zm)
KXy1;..5Xm) = z1,...,Tm)log 77—,
(X1 ) :'Z_;hp( 1 ) e S P

i=1l,m

and
I(Xk;Xlrcn-l-l)) 15k<m:

is the amount of information between the random variables X* = (X1, ..., Xx) and X% | = (Xk41, ...

Obviously, we have
m
I(Xy;..5Xm) = ZH(Xi)—H(Xlr""Xm)»
i=1

X5 XE,) = H(XH)+ H(XEa) - HX™).
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Furthermore, for m > 2 we have

PX,|X; = PXiXa,
PX,
H(X1|X2) paned H(Xl,Xz)—H(Xz);
I(X1;X2|X3) = H(X1|Xz)+ H(Xz2| X3) — H(X1,X2| X3).

Let p(-) and q(-) be distributions on X'. Then

D(pllg) = ) p(z)log =— p(z) (17)

T€X ( )

is the (Kullback-Leibler) divergence between the distributions p(-) and ¢(-), and

lp—all = |p(z) — q(=)] (18)

TeX

is the variational distance between p(-) and ¢(-). It holds (see [9]) that ‘
allp—q||* < D(p|lg), a= const>0. (19)

We also use the concept of the type of a sequence x = (z(1),...,z(n)) € X™. The type of a sequence x
is the distribution px on X given by the formula px(z) = n./n, where n; is the number of elements in the
sequence x that are equal to z.

Similarly we define the type pxys of the sequence (x,y,s) as a distribution on the product X x Y x §.
This distribution is defined by the formula pxy<(z,y,5) = nzy,/n, where ngy, is the number of triples
(z(7), y(3), 5(3)), i = 1,n, that are equal to (z,y, s).

With the types px, pxys, we associate random variables X, (X,Y,S) with distributions px = Px,
PXYS = Pxys. We use the following quantities:

x = {x € X" : px = px},

XY = {(x:y) EX" x YT Pxy :pXY}:

Txys = {(x,y,8) € X" x Y" x 8" : pxys = pxys}
v x(x)={y: (x,¥) € 7xv},

1v1xs(x,8) = {y: (x,y,s) € Txvs}.

The following relations are valid (see [10]):

(n+1)"WIrH®) <y | < "B if 1y £ (20)
(n+1)7IXIVIREXIX) <y y (x)] < 27HX) iy x(x) # 2, (21)
Yo w(ylx,s) < 27nPlxvslirxsxw) (22)

YETY | xs(x,s)
where '
pxs x w(z,y,s) = pxs(z, s)w(y|z,s).
Lemma 2 obviously follows from the next lemma. ‘
Lemma 3. Let L > L(G). Then there ezists ¥ > 0 such that for all R € (0, 7),

‘ VL(R) > 0,
where
_ —n-1!
ve(R) =liminf D max (—n""logpr(s)).
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ProoF. Consider a set of codewords K7 = {xi,...,xp} of the same type px (z) = px(z) that coincides
with the type of the fixed word x € X™. Denote by A7 the ensemble of all such codes for which codewords
are chosen independently and with equal probabilities. Next, we construct a decoding algorithm that we
use with such codes. The algorithm consists of two steps.

1. Compose the list of vectors

= {x.-l,...,xiN} C ’C:

such that for every x; € T, there exists a vector s; € 8™ for which

D(Px.-s.'y “Pxi X qs; X 'U)) S 511 61 > 01 (23)

where py, X gs, X w(z,5,y) = px.(2)gs;(s)w(y |z, 5).
2. Put ®(y) =iif x; E T and if, for some s; satisfying (23) and for any set of vectors {x,l, ..ox,}CTr
not containing x;, the following relation holds:

I((Xi’Y);(ijr'"lXjL)ISi)S‘Sl; (24)

where X;, X;,,...,Xj,,Si, Y are random variables on XLtl . S x Y with joint distribution equal to the
joint type of px, x;, ... x;, ,s:,y- We set ®(y) = 1if no vector satisfies these conditions. We say that the code
K2 can be decoded into a list of size L if the function ®(-) takes no more than L values for any y € Y".
The natural character of the above algorithm is revealed by the following lemma. Put M = 2"E.
Lemma 4. Let L > L(G), and A7 be the ensemble of codes K} with px(z) = px(z) >0, z € X. Then
for sufficiently small R,6; > 0, the probability that the code from A} is list-of-L decodable tends to 1 as
n — 00.
To prove this lemma, we use the next lemma.

Lemma 5. The probability that for all collections of L +1 vectors {x;,,...,%Xi,,, } C K} the inequality
I(X,'l;X,',;...;X;L+1)<3L52, R<52, 52>0, : (25)

is valid tends to 1 as n — oo.

ProOOF. We construct the code K? by choosing codewords independently from the set 7x of vectors of
type px with a uniform distribution on it.
. Next we estimate the probability p of picking a collection {x;,,...,%i,,,} C K} of type pz,,, . »,, for
which we have

I(Zu; PR ZI(L+1)) Z 3L62

It is easy to see that for any 63 > 0 and for all sufficiently large n, the quantity p can be estimated using
(20), (21) as follows:

|720| |72121 22a (211)] - -- 172,041 Zu..za (211, - - 21L)| /|72, |L+1

P
‘ 9=nlI(Z11;-iZ1(L41)) 3] ) : - (26)

IN

We used here (20), (21).

Let A; be the number of subsets of K2 of cardinality L + 1 and of type Pzus..ziza) = PZuiZyany- We

estimate their average number A;. Since M = 2"Rthe number of all the sets of L+ 1 vectors equals C’,{‘,,“,

and
CL+1 < 2n[R(L+1) I(Z11;-- 2y (L 41y)H6a)

A similar relation holds for another distribution pz,,...z,., .y, 2nd so on. We examine all the distributions

for which I(Z,l, -5 Zi(L41)) 2 3Lé2, j=1,...m (the set {Z;1, ..., Zj(z+1)} which repeats the distribution
already used is not consxdered in later steps) We obtain '
3= Z X; < 22"[R(L+1) I(Zj1;--52 (L 41))+63) < manR(L+1)-3L53+83] (27
i i
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Here J; is the mathematical expectation of the quantity A;j for the jth distribution, X is the mathematical
expectation of the number of collections {x;,,...,X;,,,} C K% for which I(Xi,5.. .3 Xip,,) > 3L6y, m'is
the number of elements in the sum (27), '

m < en®,

where ¢ and « are constants. .

According to Chebyshev’s inequality, Pr (A > -Xn) < n~l. Hence, if An < 1, then with probability not
less than 1 —n~! for any collection {x;,,...,%i,,,} C K2, inequality (25) holds. According to (27), for
inequality An < 1 to be valid, it is sufficient that R(L+1)~3Lé+63 <0.

Since 63 > 0 is arbitrary, the latter inequality is true if R < §,, thus establishing Lemma 5.

PRroOF oF LEMMA 4. Consider a code K} that satisfies (25). Now it suffices to show that for sufficiently
small 6,82 > 0 the decoding result is a set that contains no more than L codewords.

Let us assume the contrary, i.e., that for any 6;, 82 > 0 there exists a vector y, a collection of L-+1 different
codewords {xg,,...,X¢,,,} C K%, and corresponding vectors {sg,,. .+ySky 4.} such that the conditions 1
and 2 of the decoding algorithm are fulfilled. We show that in this case (9) holds.

For simplicity of calculations, we assume that k; = i. According to the definitions of divergence and
mutual information, conditions 1 and 2 of the decoding algorithm imply

26 2 Dlpxisiy llpx, x gs, x w) + I((Xi,Y); (X1, .., Xic1, Xigr, -, Xp41) | S0)

= E le...XL+1S.'Y(Ily"')IL+1’syy)
:l,...,tL+IEfY,
$€ES, yEY

PXI...XL+,S;Y($1, - TL41, S, y)
le...X,‘_IX".“...XL+1S,'(1:1) ey i1, Ti41,y -, TL41, S)PX.(xi)w(y I T, S) '

x log

The last expression is the divergence of two distributions defined on the space XYL+! x Y x S. Restricting
these distributions to the space XYZ+! x J and taking into account that this does not increase divergence,
we obtain ‘

D(px,.. XY 1 PXy Xi Xigro X4 X Px, X wi) < 26, (28)
Here .
wi(y|z1,...,2041) = Zw(y {zi,s)qi(s |z, . ., i1, Tig1, - - -, Trg1),
s€S
with ¢i(s|z1,...,2i_1,%it1,...,2L4+1) being the conditional distribution defined by the random variable

(Xla .- -)Xi—lrxi-f-l) .- -)XL+1)S)'
Comparing (19) and (28), we obtain the following inequality:
”Px,...x,,+ly = PX1.. Xic1 Xigr.. X1 X Px; X wil| < /26, /a. (29)

On the other hand, (25) and (19) together imply

lpx, X ..o X Pxpyr X Wi = PXy. Xioy Xiga. Xpgn X DX, X Wil

= lpx, X ... X pxp 4, ~ PX1.. Xic1 Xigr.. Xo g1 X PXl] ‘ (30)
S ”pxl X "'prL+1 _pxl...XL+1” S \/3[/62/(1.

Under the assumption that §; < &2, we derive from (29) and (30) the following inequality:

lPx:.. X4y = Px, X oo X Pxpyy X will <24/3L62/a (31)
and hence,
b4
- X wi(y l Ti,-- -)IL+1) - w'(y | T1,-- 'rrL-+1) S—F5 (32)
NG | 1 ‘ rr;mpﬁ}“(:c)
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where 84 = 4,/3Lb6s/a; i, =1,L + 1.
We introduce the following conditional probability:

L+1

: -1
g(s12a, - mem) = [(L+ D7 D0 D ails)2n, oo Zrp), (33)
i=1 w*
where the inner sum is taken over all permutations 7* = (w2, ..., 7L+1) of the sequence (2,...,L +1).

Now we shall prove the inequality

. )
S (wyle1,s)a(s ]2, zr41) — WY | 2ry8) A5 | Trsy - Trpi))| €~ (34)
. minpy ()
We remark that, according to (33), Y. w(y|=z1,s)¢(s|z2,...,2L41) can be represented as the sum of
SES
(L + 1)! terms '
[+ wilylzny, . o2m,,), =10, 041,
such that every permutation n’ = («},...,7%,,) of (1,..., L + 1) occurs. Likewise, the expression
Zw(ylxﬂ'ns) q(slz"l’zv' ')xﬂ'l.-l—l)
SES ’
can be represented as the sum of terms [(L + 1)!]_1wj (Ylzn,-. .,x,2+l). Then it follows that the sum in

the left-hand side of (34) can be represented as the sum of (L + 1)! differences

[(L + 1)!]—1(wi(ylxﬂ.;, . ..,:c,,;‘“) - w,-(yl:c,,;,.. .,1:,,2_“)). ‘

Thus, the left-hand side of (34) is not greater than the sum of the absolute values of these differences. From
(32) and (33) we obtain that the sum of the absolute values of these differences is not greater than

(L + 1)' N _ b4
(L+D)'minpiti(z)  minpx™(z)

The estimate (34) is established.

Since 64 > 0 can be chosen arbitrarily small, relation (9) follows from (34) and, thus, relation (8) is also
valid. This contradicts the condition L > L(G) in the assumption of Lemma 4. This completes the proof
of Lemma 4.

Now we complete the proof of Lemma 3. It remains to show that in the ensemble of codes considered, for
sufficiently small R there exist codes such that the above decoding algorithm leads to an error probability
which decreases exponentially uniformly over the states s € S™.

Here we use two auxiliary lemmas. Suppose again that A} is the ensemble of codes K3 = {x1,...,xpm}
of cardinality M = 2"F and codeword type px(z) = px(z), T € X.

Let |a|* denote a if a > 0,and 0 if a < 0.

Lemma 6. For all §5 > 0, the inequality

|{i L x; € TX|S(S)}| < 2n(|R—I(X;s)|++65) | (35)

holds for alls € S™ with probability tending to 1 as n — oo.
This lemma is a simple corollary of the Chernoff estimate (see, e.g., [6, Eq. (A.8)}).

Lemma 7. With probability tending to 1 as n — oo for all s € S™ and all types px,. z,s = PxZ,..2,5,
X,%,...,2L € Tx, such that
I(X;(Z1,...,21,5)) 2 R(L+1), , (36)
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the following inequalities hold:

(i (%0 Xnr oo X51,8) € Tz, 2055 Gt # Jk Jor V£ ks dn,oojr # i} S 2. (37)

PRrOOF. The proof is based on the following auxiliary result (see [4; 6, Lemma A.1]).

Suppose that (i,...,(u are random variables taking values in X™ and 0 < fi(u1,...,u;) < 1, i =
1,..., M, are functions of arguments uy,...,u; € Xn. If the conditions
E{(fi(C1,-- &) 6, Gm)} < e as, i=1,. .., M, (38)
hold, then »
M
Prd{> filc,16) 2 Mt} < 9 Mtelon ), (39)
i=1
Suppose now that the ¢; are independent random variables uniformly distributed on 7x. Let x; be
understood as a value of the random variable ¢;. Further, let fi(G1,-.-,¢) = 1 if among the set of
vectors {xXi,...,Xi—1} there exists a collection {x;j,,...,X;,} such that px;x; .x; s = Pxz,.2.5, and
fi(C1,-..,¢) = 0 otherwise, l.e., fi(¢1, - - -,G) is the characteristic function of the following event: In the
set of vectors {X,...,X;~1} there exists a subset {Xj,s---,Xj. } such that

Px;le .. Xj, 8 =PXZ,..2.5-

In accordance with (20), (21), for n sufficiently large, we have

E{(fi(Gr 1) 1 Gy nn Gimn)} 4,
= PI‘{C;‘E U . Tx|zlmZL5(le,...,XjL,S)|C1,...,C,-_1)}

J1s-endp <t
(X5 s Xj YETZ, . Z) | S(8)
nRLonH(X|Z1,..Z1,5)+Rn/4
gnRLgnH(X|2s,...21,S)+ R/ :2n[RL—I(X;(Z;,...,ZL,S))+R/4] 2y

S 2nH(X)

A comparison of these expressions with (36) shows that b < 2-3nR/4_ Using (39), we obtain

. . . . 1
- Pr {I{z : (xi)xjn .. -1ij)s) €TXZ2,..2.5, J1,--»JL < I}I Z ;EQHR/3}
< 2_:172n}?/3+2nR/4 logy < 2_2nn/4 (40)
Under the assumption that ji,. ..,jL < i, this implies Lemma 7. To eliminate this latter restriction,
we use the following procedure. We form n? sequences by rewriting n? times the sequence of M messages
mi,...,my and numbering messages in all the sequences independently and with uniform distribution.
Then the probability 7 that in all these sequences the number i, k= 1,...,n%, of the message m; does not
exceed the numbers j,, ..., jr, of the messages m;,,...,m;, can be estimated by the following expression:

5= (L/(L+1)" <e ™ I+,

The probability p* that this happensr with at least one message m; and at least one of CE _, collections
{mj,,...,mj_}, is estimated by the following formula:

P‘ S M(M — l)Le—"Q/(L‘*'l) S e—nz/(z([,.{,.l))'

Let us fix the set of n? numberings {1, ...,n?} such that for arbitrary m; and an arbitrary sequence of
messages m;j,, -..,Mm;, , there exists a numbering k of this set such that ix > j1,, .. Sy ILx-
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Applying the union bound for the probability of the sum of events and using inequalities (40), we obtain

Pl'{l{l (xiyxjn"'ale,)s)e TXZ:,...218) jly---)jL ;é i) jl #jm, I# m}l >2nR/3}

Pr |{ U ik : (x;,le,...,XjL,S)G TXZ,..2L5; jlk)"')ij < lk}' .>_ 2nR/3

over all n2 numberings
k=1,..., n

2

n .
. . . . 1
< ZPX’{'{I}C : (xi)xju"'rsz,ys)ETXZ;...ZLS; ]1k1"‘!]Lk<zk}|Z ;2_2’13/3}
k=1
< n22—2"}m.

The last inequalities imply Lemma 7.

Now we consider a code K7 that satisfies the conditions of Lemmas 4, 5, 6, and 7. We shall prove
that for such a code and for some R > 0, the average probability of the list-of-L decoding error tends to 0
exponentially and uniformly over the choice of the state s € S”. This completes the proof of Lemma 3.

According to (35), for R > 2¢ > 0, we have

{i: x€ U Tx|5(s)}|-

I(X;S)>¢

- R Y |{isx e mx s}

1(X:8)2e

S mn= "¢ S 2—ne/2’

IA

where m is the number of types pxs with I(X;S) > €. Thus, the contribution to the error probability of
the list-of-L decoding of the codewords x; € 7x|s(s) for which I(X;S) > ¢ is exponentially small when
n — 00, and it suffices to consider only those x; for which

I(X;S) <e. (a1)

The error will occur if the set of codewords X;,,...,X;,, k < L, that forms the decoding result does not
contain the transmitted word x;. This event occurs if condition 1 or 2 of the decoding algorithm does not
hold for the transmitted codeword x;.

First, we estimate the probability that condition 1, i.e., inequality (23), does not hold. For the trans-
mitted word x; and the state s, this probability can be written as follows:

P2 Y Y wyixs),

Pxsy y€ty | xs(xi,8)
where the outer sum is taken over all the types with
D(pxsyllpx x gs x w) > 6

and m < n®, a > 0, is the number of such types.
For §; > 2¢, (41) implies that

D(pxsy|lpxs x w) = D(pxsy || px x g5 x w) — I(X; ) > ¢,
and according to (22) and (23), the value p(})(i, s) can be estimated as follows:
p(l)(i,s) <m2 " < 2—ns/2,

i.e., the probability that condition 1 does not hold for the transmitted codeword x; exponentially decreases
in n uniformly over the choice of the state s € S™.
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Now let us estimate the contribution to the average error probability of the situation where condition 2
of the decoding algorithm does not hold for the transmitted codeword x; and the state s. This contribution
can be estimated as follows:

p(z)(i,s) = Z BXZ,...ZLSY(i,S),

PX2y..2;SY

where the sum is taken over all the types pxz,...z, sy for which
I(X,Y);(Z1,...,2L)|S) > & (42)

and

€xz,..2,5v(i,s) = > > w™(y | xi,s).

Jrendri(Xi Xy 0 X5, 8)ETXZy..2 s YETY | X2y...27 s{Xi,Xjy 000X, ,8)

Since w"(y | x;,s) is a constant for y € 7y | x5(x;,s) and this constant is at most lTy |X5(x,-,s)|_l, the
inner sum is bounded from above by the quantity

-1
Iy 1 x2,..205(%i, X5y, - -, X5, 8)| |7y xs(xi,8) |,

which in turn, according to (20) and (21), is not greater than 2~ "/(Y3(Z1,.20)1 X,5)=#] for any 3¢ > 0 and
sufficiently large n. From this we obtain

ele...ZLsY(iy S) S 2n[RL—I(Y;(Z;,...,ZL)|X,S)-{-x]. (43)
Thus,
M M
MY p®i,s)= MY > exz,..zusv(is), (44)
i=1 i=1 pxz,..2;SY

where the inner sum in the last expression is taken over all the types that satisfy inequality (42). According
to (37), the sum of the terms in (44) with

I(X;(24,...,21,5)) > R(L+1)

does not exceed 2"7/2 and hence the contribution of these terms to the expression (44) is at most 2~ /2,
Now let us estimate the contribution of the terms with '

I(X;(Zy,...,2L,5)) < R(L+1). (45)
From (43) and (44), it follows that this contribution can be bounded from above by the quantity

t}

i

M
M—-IZ Z 2n[RL—-I(Y;(Z|,...,ZL)IX,S)-i—x), (46)

i=l pxz,...z; s
where the inner sum is taken over the distributions that satisfy (42) and (45). Next, we have
I(Y;(Zy,...,21)| X, S) I(X,Y);(Z1,---,20)|S) ~ I(X;(Z:,...,2L)|S)
61 '—I(X)(ZI))ZL)IS) 2 61 _I(X;(Z1:~‘-:ZL)S))
6y — R(L+1). :

vV IV

Therefore, for R < é;/4(L + 1) and n sufficiently large, expression (44) can be bounded from above by the
quantity
2"[61/4—6]+61/4+X] + 2—ﬂR/2 - 2—"[61/2—)‘] + 2—”3/2.

Thus we have shown that for R, $; > 0 sufficiently small, there exists a list-of-L decoding code whose
average error probability Py (s) tends to zero exponentially as n — oo and uniformly over the choice of the
state s € S™.

Lemma 3.is proved, and so are Lemma 2 and Theorem 2.
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Fig. 1

4. Proof of Theorem 3

For a binary AVC, relations (8) can be reduced to the system of L equations

3 w(yl1,s)q(s]0,...,0) Y w(y|0,s)q(s11,...,0)

- = ... = iw(le,s)q(le,...,l), (1)
s=0,1
Z w(y'| 1,5)q(s11,...,0) = = Z w(y|1,s)q(s]0,...,1)
s=0,1 s=0,1 -
= Y w(y|0,5)q(s|1,1,0,...,0) = = Y. w(y|0,5)q(s]0,...,0,1,1), (i2)
s=0,1 5=0,1
2w(yll,s)q(s|1,1,...,1,0) = ... = Zw(y|l;s)q(s|0,1,..;,ﬂl)
| = z:, w(y|0,s)q(sl1,...,1). (ir)
$=0,1

We need to show that for fixed w(y|z,s), y,z,s € {0,1}, these equations are inconsistent starting from
some L.

Toward this end, let us consider Fig. 1. On the plane R2, there are two pairs of points (a;, b;) and
(az,bz), where '

a; = (w(0]1,0),w(1]1,0)),  az = (w(0]1,1),w(1]1,1)),
by = (w(0]0,0),w(1]0,0)),  bz= (w(0]0,1),w(1]0,1)),

with nonnegative coordinates that lie on the straight line u + v = 1. Consider the segments A = [a;, a9,
B = [by, b]. Evidently, the sums

z w(yl-’c,s)Q(s'-’Cz,-~-,1’L+1), y=071,

s=0,1
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are the coordinates of some point a on the segment A if z = 1, and of some point b on segment B if
z = 0. The quantities ¢(s|z2,...,ZL+1), s = 0,1, are the barycentric coordinates of the points a and b,
respectively.

Each of the conditions (i1)—(i1) implies the existence of a common point on the segments A and B, i.e.,
AN B # @. If at least one of the segments A or B degenerates into the point and AN B # &, then clearly
the expression for C, implies C; = 0. .

Thus, it remains to consider the situation where segments A and B do not degenerate into points, i.e.,
a, # ag and by # by. In this case, it follows from conditions (i) that the probability g(s|1,...,0) does
not change under any permutation of the indices 0 and 1. Similarly, the conditions (i), k = 1, L, imply
that the probabilities ¢(s|1,...,1,0,...,0) do not change after any permutation of indices 0 and 1.

Let

ar=q(0]1,...,1,0,...,0); k=T,L+1
N’
k-1

The condition (i¢), k = 1, L, yields the equation
ajax + az(l — ax) = biagsr + ba(1 — ax41),
which we rewrite in the form
(a1 — az)ax + az = (by — ba)ar 41 + ba. (47

Next, we introduce some notation. Suppose that e = (u,v); e; = u and ez = v are the first and second
coordinates of the vector e € R?. Let

L2 (a; —a;)1/(bi—bz)1; m2(az- b2)1 /(b1 — b2)s.

Clearly (a; — az)1(b; — b2)1 # 0, £ # 0, since the points a;,az, by, b; lie on the lineu +v = 1. In
addition, we can suppose that |£| > 1; otherwise we exchange segments A and B.
From the recursion equations (47) we obtain

opyr =flag+m; k=1L (48)
‘Hence
: L
app1=afl +my £ (49)
k=1

Here, we:distinguish among three cases.
1. |£] > 1; in this case expression (49) can be reduced to the form

ar41 = (o + m/(£—1)) —m/(£—-1). (50)

If —m(f — 1) > 0, then a; = —m/(£ — 1) is a fixed point of transformation (48) and for

q(8)={ o =0

l-e;, s=1,

we have

wy(y0) 2 Y- w(yl0,8)als) = w(y|1,5) a(s) 2 wly|1).

s=0,1 s=0,1

This means that C, = 0.

If m(€£ — 1) > 0, as seen from (50), for any a; € [0, 1], there exists an interval §(c1) which contains e
such that starting from a sufficiently large L, we have |aj ;| > 1 for o] € §(a1), ie.,, af,, cannot be a
probability. :
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From such a covering of the segment [0, 1], according to the Heine-Borel lemma, we can choose a finite
number of intervals that cover the segment [0, 1]. We take the maximum number Lynax among the quantities
L that correspond to these intervals and find that for any a; € [0, 1], the quantity L cannot exceed Lmax

2. £ =1. In this case, expression (48) leads to the following equation:

ap+1 = ay +mL.

If m = 0, then A = B and every a; € [0,1] is a fixed point of transformation (47). This means that
C, = 0. If m # 0, then for all a; € [0, 1] starting from some L we have |ar41| > 1, i.e., ar41 cannot be a
probability.

3. £ = —1. In this case, oy = m/2 is a fixed point of transformation (48). This means that, in this case,
Cr=0."

Remark. It is not difficult to see that if | = 1 and m is small, then L(G) can be arbitrarily large.
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