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|. Introduction

The purpose of thistext isto give you an idea of how a bipolar junction transistor (BJT)
works. In order to do thiswe will first explain how a solid state diode works, since BJTs and
diodes operate on the same basic principles. The operation of afield effect transistor (FET) isa
great deal more complicated than that of a BJT, but to begin to understand its operation it is aso
necessary to understand the concepts we introduce here.

We will explain the BJT in terms of the materialsit is made of and how electric currents
flow through these materials. To do this we need to first understand: (1) the materials (mainly
silicon (S); (2) what the carriers of the electric current are; (3) what the equations are that govern
the behavior of the carriers. These will lead usto an understanding of how current flowsin a
diode or BJT. We will find that the current-voltage relationship is exponentia rather than the
simple linear relationship of Ohm’s Law, | = V/R, and thisis responsible for the interesting and

useful properties of diodes and transistors.

[I. Materials

We are used to thinking of electric currents flowing through metal wires or resistors (or in
the case of AC currents, through capacitors). The equations describing this are not terribly
complicated because for the most part the relationship between current and voltage is essentialy
linear. Diodes and transistors are not made of metal (except for the leads used to connect them
to other circuit elements and for certain metal-semiconductor devices) but of Si or other similar
materials. S has very different electric properties than metals and is known as a semiconductor.
Conduction is due not just to electrons, asin a metal, but also to another charged particle which is
called ahole (Holed) (Siconduction). A holeisthe absence of an electron, but it can be
characterized as a positively charged particle and calculations can be made based on that

assumption that are extremely useful and reliable.



One of the things that makes Si such a useful material for electronicsisthat its
conductivity can be changed by many orders of magnitude by changing its chemica composition
dightly. Thisprocessis called doping and consists of adding a small quantity of an impurity to
the Si in amounts ranging from about 1 part in 10° to about 1 part in 10°. The impurities add
electrons or holesto the Si. (Electrons are denoted by the symbol e and holes are denoted by the
symbol h). The density of free electrons - electrons that can move through the Si crystal lattice as
opposed to being attached to an atom - is called n, and the density of holesis called p, (Holed).
The unitsare cm™®. In pure Si n, = p,, because to create a free electron you remove an electron
from the chemical bond between the atoms, and that automatically leaves a hole behind. At room
temperature (about 293K) the density of holes p, and the density of electronsn,isequa: n,=p, =

n = 10" cm®. The subscript “i” stands for intrinsic, the name given to pure Si. Si that has been

doped with impurity atomsis called extrinsic. n; isafunction of the temperature: n, = n(T) (the

higher the temperature, the larger the number of pairs). The values of n, and p, can be varied

over awiderange. (ETectron-hole pairs)

[11. S “impurities’ : Donors and Acceptors

Si has four valence electrons (See Figures 1 and 2 below). If an atom that has five valence
electronsinstead of four is put into the S crystal lattice, it will bind to its four nearest neighbors
and have one eectron left over (see Figure 3a, below). In the case of the elements arsenic (As)
and phosphorous (P), which both have five valence e ectrons, the fifth electron is extremely
weakly bound to the atom when the atom is part of the crystal lattice. Near room temperature the
probability for the 5™ electron to leave the atom is close to unity. In this case there will be a
positively charged Asor Pion fixed in the lattice (it doesn’t move) and an “extra’, donated,
electron. Now, if one Asor P donor atom is added per million S atoms, there will be roughly an
extra5 x 10™ electrons cm®, which is some 10° more electrons than there would be if the Si were
pure. If the density of donor atomsis N, cm™ the density of donated electrons will be almost
exactly equal to N, also, since virtually al the donor atoms are ionized (for the dopants commonly

used to make transistors (As, P) thisis avery good assumption). If N,>> n, then the number of
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electrons will be n, = N, amost exactly. Asyou can imagine, this “doping” of the Si with an Asor
P “impurity” will have a significant effect on the conductivity of the Si.

Figure 1. The diamond-lattice structure of Si. Note each Si atom (represented by a black sphere)
is connected to its four nearest neighbors. The overall structure is a face-centered cube - note

that each face of the cube has an atom centered in it (arrows point to some of these).

It is easier to see what is happening in the lattice if it is represented in atwo dimensional form, as

shown in Figure 2.
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Figure 2. A schematic representation of the Si lattice. Each double line represents a valence bond

between two Si atoms (Single crystals).




If instead of Asor P we were to add boron (B), which has only 3 valence electrons, then
there will be only 3 full valence bonds established between the B atom and its nearest S neighbors
(see Figure 3b, below). In this case the absence of one electron is equivalent to the B bringing a
hole into the crystal. Thereisavery high probability that the B will “accept” an electron and
“donate’ its hole to the Si lattice, creating a negatively charged B ion. The density of acceptor
atomsis N, cm® and, as with the doors, if N, >> n, the density of holes will be p, = N, amost
exactly, since essentially al the donor atoms are ionized. As with a donor such as P, a B acceptor
will greatly affect the S conductivity even when the B is added in proportions as small as one part

per million.
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Figure3. &) S lattice with an As atom (dark circle) replacing one S atom. The diagonal line
represents the fifth valence electron that is very weakly bound: essentialy all As atoms are
positive ions at room temperature. b) Si lattice with a B atom (dark circle) replacing one Si atom.
Note that there are only three B valence electrons here. B easily accepts a free electron from
elsewhere in the lattice and becomes negatively ionized. Essentialy all B atoms are ionized at

room temperature.



If both donors and acceptors are put into the Si, the net concentration, or density of

impurity atoms, is

N, =N,- N, or N, =N, - N, (1)

(Npand N, are positive quantities). If we put both donors and acceptors into the Si, electrical

neutrality of the silicon requires

no+Na:po+Nd (2)

since all the donor and acceptor atoms are ionized. This last equation tells us that the number of
electrons plus the number of negatively ionized acceptors must equal the number of holes plus the

number of positively ionized acceptors. Another way of writing thisis

no'po:Nd'Na:ND or po'no:Na'Nd:NA (ZI)

Since the conductivity of S depends on the number of electrical carriers, we must find a
way of calculating the number of carriers when donors or acceptors are added. That is, if we start
with pure Si and add As atoms in the amount N, per cm?, then n, will almost exactly equal to N,
since, in general, N, will be much larger than the number of free electrons produced due to the
breaking of Si bonds, n, = n, = 1.1 x 10" cm™® at room temperature. But, what will be the value of
p,? Thisisnot asmple question. N, and N, are under our control - we can control the doping
levels. But we have only one equation for the two unknowns n, and p,. We need a second
equation in order to find both n, and p,.

If Siis pure we know that the number of holes and electrons per cm?® will be the same, for
every time an electron breaks loose from a valence bond it leaves behind ahole. How does this
happen? To break abond requires about 1.1 eV (eV = electron-volt. 1 eV = 1.6 x 10-19 joules)
of energy. This energy can be supplied in many ways. heat, light (photons), radio waves (rf),

acoustical waves (phonons) etc. Thus there are many generation mechanisms for electron-hole



pairs. In addition, there may be “ cross-talk”: an incoming light photon might not have sufficient
energy to break abond, but if thermal jostling adds some energy at the same time, then the bond
can be broken. Thus the generation mechanisms will depend on temperature. If the rate of

generation of electron-hole pairs per cm?® at temperature T is called g(T), then we can write

g = Zihermal (T) + Blight (T) + &+ (T) + Ei g; (T) ©)

where the sum over i represents all the processes that can produce electron-hole pairs. The units
of g are sec* cm® (rate per cmd).

Now, if the Si crystal isin equilibrium, the number of electron-hole pairs remains constant
(Equilibrium]. Thisimpliesthe rate of recombination is equal to the rate of generation. If the
rate of recombination iscalledr, thenr =g. Since gisafunction of temperature, r must be also
be afunction of temperature, since equilibrium can be established at any temperature below the
melting point, and so we have r(T) = g(T). Recombination means a hole and an electron meet so
the electron drops back into a bond: the free electron and the free hole disappear. It iscertainly
plausible that recombination can be influenced by the different means of delivering energy to the

crystal, so, aswe did for generation we write

I(T) = Typmar (D) + Ty (T + 1 (T) + I, 1; (T) 4

The question of importance, is, as we shall soon see, doesr(T) = g(T) for every process? For the
crystal as awhole we must have, in equilibrium, that the rate of generation of electron-hole pairs
isequal to the rate of recombination of electron-hole pairs (equilibrium means, at least, no net
current flow). It turns out that the rates of generation and recombination must be equal for each
process - thisis called the Principle of Detailed Balance. The reason isthat if there were not a
detailed balance the S crystal could absorb energy from the outside, a process that creates

electron-hole pairs. If this was not balanced by arecombination of eectron hole pairs, a process



that gives up energy the crystal would heat up indefinitely, which would be a violation of the
Second Law of thermodynamics.

If the generation rate is not too large it will be independent of p, and n,, because the
number of atoms that can provide electron-hole pairs will be vastly larger than the number of
electron-hole pairs and g = g(T). On the other hand, the recombination rate depends on n, and p,,
for if recombination isto take place there must be at least one hole or one electron available.
Therefore, if the crystal isin thermal equilibrium with an electron density n, and a hole density p,,
the recombination rate must depend on n, and p, aswell asT: r = r(T,n,,p,). Tofind the
dependence we use essentially the method given in “Microelectronic Devices and Circuits’, C.
Fonstad, McGraw Hill (1994). Assume that n, and p, are always small compared to the density of

atoms N, and expand r(T,n,,p,) in aTaylor's seriesin n, and p,:

n, P, n, p: n,p,
r(T,n,p)=Cl+C2—+C3 —+C4 + C5 + C6 +
o 2 2 2
N N N N N 5
n3 p3 1,12p np2
C7 — + C8 — + (C9 — + C10 =— + ...
N3 N3 N3 N3

Now, since there must always be at least one n, and one p, in each term of Equation 5 for
recombination to make any sense, we see that C1, C2, C3, C4, C5, C7 and C8 must vanish, and

2
n, o

o o

n
. The next non-vanishing termis C9 . Since

so the first non-vanishing term is C6
N? N3

N ~ 10? and n, or p, will never be much larger than 10" in any realistic semiconductor device, we
see that the only significant term is the one in which n p, appears to the first power; this term will
be at least 10° times larger than the next term. Therefore we find that to an excellent

approximation
ri(T1n01po) = C(T) nopo (6)

where al the constants have been absorbed into the function of temperature C(T).



Consider the case of intrinsic Si where the breaking of bonds leads to n, electrons and p,
holes. The process of electron hole creation/recombination can be analyzed asif it were a
chemical reaction using the Law of Mass Action. The Law of Mass Action is derived from
thermodynamics and relates the number of constituents and products of chemical reactions, such
as2H,0 - 2H,+ O,. TheLaw of Mass Action shows that for the situation of [bonds] «
[electron-hole pairs], the process depends only on temperature. Thisisvery important and so a
detailed argument to justify it may be found at the following link (Mass action).

Suppose that there is a chemical reaction in which v; molecules of reactants combine (or
disassociate) to produce a product. The number of reactants will change as molecules are used up
or created. The concentration of any chemical is n/n, where n; is the number of moles of material

iandn = X n,. The Law of Mass Action says that

1

= (D (7)

n.
the product of the concentrations — raised to the power v, is dependent only on the
n

temperature if the pressure is constant (which is certainly the casein a S crystal, for example).

Consider the case of water (steam) disassociating to form hydrogen and oxygen, 2H,0O - 2H, +

O,. If the reaction takes place in a chamber under constant pressure, n/n isthe concentration of

each product (H, and O,) or reactant (H,O) and the v, are +2 for hydrogen, +1 for oxygen and -

2 for water, respectively. The negative signsindicate that the reactants (the H,O molecules) are
used up to form the products (Mass actior]). Now, for the case of Si where a Si bond breaks and
forms an electron-hole pair, [bond] - [ electron-hole pair] the v, =-1for [Si bond] and +1 for

n
the electrons and for the holes. The concentration of e ectrons and holesis E" and % , Where N

is the number density of eectrons plus holes plus Si bonds. respectively. The Law of Mass Action
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1 1
n -1
says the product of ( ﬁ"] by( %J by( number I?If bonds] isafunction of temperature only,

or n,p, = f(T) = constant when T = constant. Therefore, we have found that the product np,isa
constant at constant temperature. Since the generation rate must equal the recombination

rate,g = r = C(T) np, and since n,p, isaconstant at constant temperature, we have found a

second equation relating n, and p,. Now, if we have some doped Si, then the product n.p, is

constant independent of the doping level (within the approximation made following Equation 5),
so if we know n,p, for any case at al, we know it for all cases. In fact thereis avery ssmple case
where n p, is known: if the S isundoped n, = p, = n.. Therefore we find that the number we are

looking for isnp,= n? = 1.21 x 10%° cm™ (at room temperature). This enables usto find n, and

p, when the S is doped: when the net doping is donor- like, i.e.,

Ny > N,, n, - p, =N, and with n,p,= n*we have

(8)

(9)

Often Si is doped only with either donors or acceptors. In these cases N, can be replaced by N,

in Equation (8) or N, by N, in Equation (9). Asan example, suppose Si is doped with acceptors

=16x 10" is

4n»2 20
(B) a adensity N, = 5x 107 3, Then p,=5x 107 em® (- = 4 X 10
N, 25x10*

ni2 10%°

negligible). The corresponding value of n,isvery smal: n, = — = ——— = 200. The
P, 5 x 107
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larger of n, and p,is caled the majority carrier, while the other is called the minority carrier.
When doped with adonor impurity Si is called n-type and el ectrons are the mgority carriers.
When doped with an acceptor impurity Si is called p-type and holes are the mgjority carriers.

V. The motion of Electronsand Holesin S

In order to find the relation between voltage and current in Si it is necessary to understand
how the electrons and holes behave when avoltage is placed across the Si crystal, resulting in an
electric field in the crystal, and aso how they behave if the spatial distribution of electrons and
holesisn’t uniform. Thisis actually avery interesting and important situation: electric current
flows not only because of an impressed electric field but also by the diffusion of charge carrying
particles from regions of high density to regions of low density. Diffusion iscritically important
for the operation of diodes and transistors.

First we consider what happens when a Si crystal with a uniform distribution of electrons
and holes has a voltage placed on it and then consider the problem of motion when the

distribution is not uniform.

IV A. Uniform Distribution.

When a charged particle with mass mis placed in an electric field E it feelsaforce gE and
undergoes an acceleration a= qE/m. An electron in free spacein afield E = 1 VM, considered
asaclassical particle with massm = 9 x 10* kg, would accelerate at the rate of 1.6 x 10%° =+
9x 10* = 1.78 x 10" M sec. It would attain a speed of 1500 M sec™ in about 8 nsec and in this
time it would travel adistance of about 6 micrometers. However, inasolid suchasa S crystal an
electron (or ahole, for that matter) is constantly colliding with the atoms in the crystal and
changing velocity. Experiments show that the speed attained by an electron or aholein Si is
proportional to the electric field accordingto v, = p £ andv, = u E, respectively, at least

until afairly high velocity is reached where the rate of collisions limits the velocities. v, and v,, are

called drift velocities of the particles. The constants p, and p, are called the mobilities of the

electron and the hole, respectively (Mobility]). Their valuesin Si are
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W, =-1500 cm?* V* sect and p, = 600 cm* V™ sec’. The negative value for p, reflects the fact

that because of its negative charge the electron moves in a direction opposite to the direction of
the E field (Drift velocity)).

If the average velocity v = p E of charged particles is multiplied by the charge density of
the particles (which has units C cm®) the result is the current density J (units A cm™®) (Curreni]
density).

Current density is amore useful quantity than current for describing the properties of
semiconductors. Its meaning is asfollows. The usual way Ohm’'s Law iswrittenis| = V/R (the
unit of resistance is the ohm, whose symbol is Q). Thisisall right for wires and resistors, but
when dealing with Si there is a problem in that the size and shape of the crystal may vary.
Therefore it is more convenient to write Ohm’s Law in aform that is independent of the shape
and size of the crystal, and we use the concept of resistivity (also symbolized by p - the meaning
of p depends on the context) which is defined as the resistance of a piece of material multiplied
by its cross sectionda area and divided by its length: the unitsare p ~ Q -cm. The utility iseasily
seen by calculating the resistance of apiece of S with p = 1 Q -cmthat isL = 100 micrometers
long, W = 5 micrometers wide and T = 2 micrometers thick. Since 1 micrometer = 10* cm, we

pxL _ 1x100 x 1074
WxT 5x10*%x 2x10°*

have R =

= 1x10° Q. Sinceresistivity has unitsof Q -cmits

inverse has units of (Q -cm)™, which is called the conductivity 6. Writing Ohm’'sLaw as| = GV

oxWxT

where G is the conductance, we easily seethat G = Then
I-= ”TWXT x Vor, dividing by the area W x T to get the current density J, we have

o
1l

o X %or J= o E, where the eectric field is the voltage across the crystal divided by its

length. Since we have seen that the current density is equal to the charge density multiplied by the

average velocity of the charges, we find the current density for holes and electrons to be
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J. " = gp,p, E and 3" = gn,p. E. Note that both current densities have the same sign; that is
because the negative sign of the electron charge cancels the negative sense of the mobility p. .

The superscript “drift” signifies this current density is due to the motion of the chargesin an

eectric field (Resistivity of 5.

IV-B. Currents due to non-uniformity in carrier densities: diffusion currents
If there is a non-uniform distribution of chargesin the Si crystal, then the charges will tend

to redistribute themselves through diffusion (Diffusion).
The flux of holes or electrons away from aregion of higher than average density will be

given by
d
F, = -D, ap°
X
an (20
F = -D, —°
ox

respectively. The corresponding current densities are found by multiplying the fluxes by *q:

. on
10T = gD, 8°
2 (11)
diff apo
Jh = _th
ox

where the superscript “diff” indicates the current density is due to the diffusion of particles
(partial derivatives are used because p, and n,may be functions of time as well as position). Note
that unlike drift current, diffusion currents have opposite sign for holes and electrons because the

driving force - the gradient of the density - is independent of the sign of the particles.
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IV-C. The Total Current Densities and Gauss Law

The total current densities are given by the sum of the drift and diffusion current densities:
J tot — J drift + J diff Jhtot - Jhdrift + Jhdiff (12)

These expressions contain the carrier densities, their derivatives and the electric field, which are
all functions of position and possibly time.

Two other relationships are be needed, to find the current densities, Gauss' Law and the
equation of continuity. Gauss Law links the electric field to the charge density p(x) = p and, in

one dimension, it is given by

e oL _ 13
™ p (13)

where € isthe dielectric constant, in this case the dielectric constant of Si (€, - we are assuming
the dielectric constant € for Si is constant when extra carriers are introduced;e; = 11.8 €
where € = 8.85x10™"* F/M, or farads per meter is the dielectric constant of vacuum). The other

physical law that appliesto diffusing particles that we must take into account is the equation of
continuity. The equation of continuity tells us that matter is conserved: the net flux of particles
out of avolume in space must equal the change in time of the density in that region. Thisis

expressed in one dimension by

prb , &Y _ (14)
ot ox

V. Recapitulation

The point of thisisto understand how a BJT works, by which we mean understanding the

current-voltage relationships of the transistor. We begin by studying a p-n junction, often called
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adiode, which is an abrupt juntion between p and n doped Si. To understand how the diode
works we need to understand how the current is carried in the Si material.

So far we have discussed the types of carriers (electrons and holes) and some of their
properties, and the two kinds of currents (drift and diffusion). We next have to learn about what
happens when (1) Si is doped either p or n and (2) electrons or holes, are “injected” into these
materials (a p-n junction is made from two kinds of Si (p-type and n-type) in intimate contact and
for current to flow in ap-n junction it first has to be gotten into the junction; this processis called
injection). After we study this we will consider what happens when n-type and p-type S are
brought into contact to form what is called the p-n junction: it is of very great importance in

modern electronics and is the heart of the diode and the transistor.

VI. The Lifetime of Minority Carriers

It isimportant to understand the concept of carrier lifetimesin order to understand how
the p-n junction works. The basic idea of lifetime can be understood as follows. Suppose Si isn-
type and is doped with donors so N, = 10*. Since essentialy all the donors are ionized the

density of ectronswill ben, = N, = 10", The density of the positive carriers, the holes, is given

2
n. 10 \2
by p, = — = (1.08x107 ) ~100cm? (at room temperature). This small number isthe

no 1018

equilibrium value of the hole density. If more holes are generated, for example by shining light on
the Si to create additional electron-hole pairs, or by injecting holes across a boundary from p-type
Si as happens when current flows through a p-n junction, then these new holes will rapidly
recombine with the large number of electrons aready present. If light is shone on the Si then
additional electron-hole pairs are created and if the creation, or generation rate is small (small is
defined below, see page 16) then the additional €lectrons generated make little difference, but the
excess holes generated may easily outnumber the equilibrium value of the hole density, possibly
by avery large amount. When the light is turned off the excess holes disappear as they recombine
with their more populous neighbors, the electrons. This process causes the hole number density

to decay with time while the number density of the electronsis hardly affected since it is so much
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larger. The decay timeis of great importance because it can be related to how far the holes move
before their number decays from itsinitial value to a smaller value.

In equilibrium the generation rate g, of electron-hole pairs equals the recombination rate
r, , where the subscript o indicates the equilibrium rate. Aswe saw earlier, r, = C(T) n,p,. If
additional electron-hole pairs are created then the generation rate will exceed the recombination
rate.
(Note on notation: if we cal the total number of electrons and holes n and p, respectively, then n
> n, and p > p, when extra electron-hole pairs are being generated. The difference between n and
n, or p and p, is the number of excess particles, indicated by aprime:n’ =n-n_ ;p' =p-p,)-

on(x,t) _ dp(xt)
ot

In equilibrium, obvioudy = 0 andn=n, p=p,. When electron-hole

pairs are being generated then

on(x,t) _ dp(xt)

™ 2 BxD - O (15

Since the equilibrium rate of generationisg,, g =g, + g, where g may be afunction of time and
position (if it is dueto light, the light intensity may change with time, etc.,, sog = g(x, t)). The
recombination rate dependson nand p, sor = C(T) n(t)p(t). Since g, = r,in equilibrium and since

I, = C(T)np,. 9(t) = C(T) n,p, + 9(x,t). Then the rate of change of the density of carriersis

given by
on(x,t) _ dp(xt) _ N ~
e 2 gx,t) + C(T) np, - C(T) n(®p(t) (16)

= g(x,t) - C(T) (n(t)p(t) - nop0)

This equation can be smplified by defining n’ (x,t) = n(x,t) - n, and p’ (x,t) = p(x,t) - p,. As
defined above, n" and p’ are functions of position and time; recall that they are the number

densities of the excess electrons and holes created by the generation process. Since an electron-

dn, dp,

hole pair creates afree hole for every free electron, i’ =p’. Since = 0 Equation
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(15) becomes
ol - LD - gy - oD | @, + 290, + P) - 0, ) an

Multiplying out the terms in the square bracket we end up with

on'(xt) _ dp'(x.t)

™ ™ = g(xt) - C(T) ( (m, + pon’ + n” ) (17)

A problem isimmediately evident - for the general case we have a non-linear partia differential

equation. However, the equation can be linearized if n’ << (n, + p,), for then we have

on'(x) _ dp'(xt)
ot ot

gxt) -C(T) (n, + p,) n’. Suppose that g(x,t) is non-zero for timet

<O0andthat g(x,t) =0 for t>0. Thenfor t>0 we have

% = -C(T) (n, + p, ) n'(x,t) (18)

which is easily solved: let n/(x,t) = N(x) v(t). Equation 18 becomes

YD = — o) o, + p, ) N v
at g (184)
N®) % = —C(T) (n, + p, ) N(x) v()
which becomes
dv

v +
™ C(D (n, + p,) V()

The quantity C(T) (n, +p,) has units of sec so we replace it by 1 and also replace v(t) by n'(t)
T

to obtain
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/
dn” _ & ad 0/ - n/0) et (19)
n’ T

This tells us the number density of the excess carriers falls exponentialy with time, with atime

constant t (which istypically of the order of afraction of a micro-second). This gives usthe

meaning of a“small” rate of generation of electron-hole pairs referred to above - the excess

number density must be << n, + p, (Non-Tinear equatiory).

In genera we can evaluate the behavior of the p-n junction quite satisfactorily by using the
assumption of asmall generation rate of electron-hole pairs. Since what we will be interested in is
primarily the flow of electrons and holes across the boundary of the junction, a process called
injection, we will be looking at the case of low-level injection (the exact meaning of this will be
defined below).

VII. The Equations for the Motion of Electrons and Holes

We can now give a complete description of the behavior of the electrons and holesin
doped Si in one dimension. We have the following numbered equations , where p = p(x,t),
n = n(x,t), J=J(x,t) and E = E(x,t): first, the two equations giving the total electron and hole
current dengities in terms of the drift and diffusion currents,

) Ji"t(x,t)=qnueE+qDe@
ox

)
) 1" xt) = qpp, E- gD, 22
ox
Then we have Gauss' Law and the Continuity Equations,

my € £ - qp + N® - n - N®J
ox

aJe(X’t) _ on
x Vo

V)
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amED _ ap

v
) 1%

(The charge for electronsis -q, remember). Finaly, we have the two equations giving us the rate

of change of n" and p’ due to creation of (excess) electron-hole pairs, VI ) and VII)

/ /
S - %P - gxt) - O [(m, + pn’ + 0"
/ /
(The equations for aait and aait are the same). Note that the generating function g has been

written as a function of position and time, g = g(x,t), to be general. These last two equations for

the time variation of n and p can be combined with the continuity equations to give

/ aJ

V") aait = g(x,t) - C(T) [(n, + p)n’ + n”?] + éa—; and
/ aJ
L - gx) - C(D) [, + pn’ + 07 - éa—;‘

Here, whenever a derivative with respect to time is taken we can replacep by p and nby n'.
These five coupled, non-linear, partia differential equations cannot be solved in general. But, for
the conditions that exist in practical bi-polar transistors and in diodes, s mplifying assumptions can

be applied that result in equations that can be solved and that give useful information.

VIII. The behavior of Electrons and Holes in Typical p-n Junctions and BJTs.

By “typical” we mean the sort of semiconducting materials and devices you would
ordinarily run into when building circuits: signal diodes and BJTs. For these devices the equations
| - V can be greatly smplified. The simplifications come from the way the devices are actually
made: the p and n regions are uniformly doped and there are sharp boundaries between the n and
p doped regions. In addition, and very importantly, under ordinary operation the number density
of excess holes and electrons is small compared to the density of the mgority carriers, which can

be expressed as{n’, p'} << n, + p..
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We will now find ways of simplifying our equations, but it is useful to put thingsin
perspective at this point. We find that in working devices the minority drift currents can be
ignored. This simply means that, for example, in p-type Si where p, >> n,, J.4M >> J 4
(essentialy by the factor p/n,). Itisaso found that minority diffusion currents are much larger
than minority drift currents, and cannot be ignored. In fact the minority diffusion currents are
extremely important for calculating the current flowing through a p-n junction.

In these p-n devices we find that the doping is essentially uniform throughout the p and n

regions of Si (obvioudy the doping isn’t uniform everywhere or there would be no p-n junction).

0 d

This means that Po _ T _ 0. Sncen=n,+n" andp=p,+p itfollowsthat
ox dx

/ / /
on. _ on and 9’ _ @ In addition, the doping is time independent so that on’ _ on
ox ox ox ox at ot
/
ot ot

In Gauss' Law, € Z—E = q[p + N(x) - n - N,(x)], where the net charge density p
X

is written in terms of the doping concentrations N, and N, because the sum of the holes and the
positive ions created when donor atoms give up their electrons to the crystal must be equal to the
number of electrons plus the number of negatively ionized acceptors created when the acceptors
give up their holes: p, + Ny =n, + N,. If the doping was not uniform N, and N,would be

functions of position. Sincen, = N, and p, = N, to a high degree of accuracy, we can simplify

where the net charge density isnow only a

= p €xcess

Gauss Law e @= qp’ - n]
X

function of the excess charges.
Another approximation that greatly ssimplifies the equations has to do with the time
variation of the charge density. It turns out that charges redistribute themselves very quickly ina

semiconductor, and if you look at any volume greater than a few thousand nanometers cubed (~
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10 nm radius), on the average it is eectricaly neutral. This allows us to ignore the time

derivatives in the equations above (Relaxation time). If thereisaregionin the S wherethereis

an imbalance of excess charge, the resulting charge density will create an electric field that will
tend to move the charges to reduce the charge imbalance - to smooth out the charge density
distribution. We aready have seen how the current density is related to the electric field and the

charge density variation in equation number I) above (for electrons, assumed to be the majority

/
cariers): JI* = 6 E + q D, aai,whereweset o = qnu,. We can use equation IV') from
X
an/ _ / /2 ]_aJe . . . .
above, e gxt) - C(T) [(n, + p)n’ + n™] + e to find the time variation of n. To
q ox

do this we take advantage of the fact that n' << (n, + p,) to linearize the equation by dropping
theterm in n'2. Wetake the derivative of Jand divide by q to get
d’n’ _ on’

_ on + + /
o = 3 (xt) + C(T)(n, + p) n (20a)

Sp’ - n'] + D,
€

!/ _ /
wheren = 2 and % = u Theterm C(T)(n,+p,) in the equation multiplying n’" has
q €

units of sec™ and from beforewe cal it t1; dso set & = T, (Reaxation time). Thissimplifies
o

the equation somewhat to

/ 2./ !/ _ / /
O _p 9 P o0y - (20b)
at € 6)(2 T

The equation for p’ issimilar:

/ 2./ !/ _ / /
o) R i I e o i (200)
ot ¢ ax? T T

€

We can now show why time variations of n” and p’ are unimportant. Take asimple case asan

example. Supposethat " and p’ don’'t depend on position and that g(t) = 0. If we subtract
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Equation 20b from Equation 20c weget% =P ™0 _ P70 5P T gnce

‘I:e T ‘I:e

1 55 1 (2 ~10% sec). The solution to the differential equation for (p' - '),
T

Te

2t

(p/' -n') = (p’— n’ )|t=0 e " ,saystha p - n fallsexponentialy with atime constant t_,

which we know (Réfaxation time) to be ~ 10" sec. This doesn’t mean that the charge

imbalances are reduced through recombination, but rather that the charges move in such away

that, on the average, there is no net charge density. If the charges are not mobile, as with the

ions, then there can be a charge imbalance that is static, but if the charges are mobile, then

imbalances cancel out in short time periods or over short distances of the order of ,/Dt_ = Lpgye
where D is the diffusion constant (L, is caled the Debye length, after Pieter Debye). Since t,

~ 10" sec and D ~ 50 cm, the distance L p,,, ~ 10° cm = 10 nm (roughly 20 - 30 times the
diameter of a Si atom).
Thisis an important result because, since the time constant is so short, we can ignore time

variationsinn’ and p’ caused by outside influences whose variation rate is long compared to this
time constant. That is, we can ignore the effect of electric fields E(t) = E_ et onn and p’

when o < 1 . Therefore we need only concern ourselves with the spatially varying parts of the

TE

equations governing " and p’: for electrons we deal only with the second order differential
eguation

d’n’
[ dx2

LW (21a)

and for holes we have
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d2 / /
D, ~L - p? = - g(® (21b)

The product of the diffusion constant D,, or D, with t has units of cm® In the case of holes

D,t = L; andin the case of dectrons Dt = L2, Thelengths L are the distances minority

carriers (nin p-type S or p in n-type Si) will diffuse before their density has declined by the
factor 1/e. L,and L, are of the order of micrometers (1 micrometer = 10 cm). Thisiseasily
seen for the case g = 0, for then Equations 21a and 21b have solutions of the form

XMy

h

n/(x) = Aexp’= + Bexp "eand p’(x) = Aexp ™ + Bexp .

In doped Si only the majority carrier drift current and the minority carrier diffusion
currents are important. The reason is that minority drift currents are many orders of magnitude
less than magjority drift currents, and since the density of the majority carriersis essentially
constant, only the minority carriers will have significant (and often quite large) diffusion currents.
The minority carrier density will change because the carriers are injected at one point and, as they
move around and recombine with mgority carriers and their numbers drop, their density
decreases. We solve the differential equation for the minority carrier density and find the minority
diffusion current by taking the spatial derivative of the carrier density. If we assume the total
current density J™°" is known, a reasonable assumption since we presumably know the current

flowing through the Si and the dimensions of the Si, then we can find the majority current density

TOT
Jmaj

by subtracting the minority diffusion current density J,:';f from the total current density - we
ignore the minority drift current, remember. We can then find mgority drift current Jﬁg} by

subtracting the mgjority diffusion current nglg from the total majority current. How do we find

Jr‘::g ? We assume that the gradients of the minority excess charge density and the majority

excess charge density are roughly equal because the S crystal as a whole has no net charge over

distances large compared to the Debye length. If the charge density evensitself out, then the
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currents of the two carriers should be roughly equal. The mgority diffusion current is found by
using the minority carrier gradient instead of the majority carrier gradient. To see this, suppose

for definiteness that the majority particles are holes and the minority particles are electrons. Then

. : / , , /
e Ly % and 75T = 34 _ g %. With what iss called the quasi-static
.. 9p’ _ on’ s Dy aie
approximation — = — wehavel] , = -— J .. Thedectricfieldin the crystal can
ox  ox ? D,
drift

then be found by using J. ok.

majority
To obtain numerical solutions to the differential equations we need to impose boundary
conditions. What are the boundary conditions we might impose on differential equations1) and
[1)? In considering current flow through the p-n junction we have to worry about where the
current comes from and where it goesto. The p-n junction diode or a BJT will have metallic
contacts to the outside world and we assume that the excess carrier densities vanish at these
contacts (thisis certainly reasonable for holes, since the electron density in ametal is~ 10% cm'®,
it is reasonable for electrons too because the excess electrons will rapidly be removed through the
low resistance metal contact). If electrons or holes are being injected into the Si crystal across a
p-n junction, then we must find away of specifying the density of carriers at the boundary. Thus,
in general we will be specifying the minority carrier densities n(x) or p(x) at specific locations x.
Since we are interested in finding the minority carrier densities and since the diffusion currents are
proportional to the gradients of these densities, if there is no current flow (i.e., the Si isn’t

connected to anything) then another boundary condition would be that the gradient % or %: is

zero at the end of the Si. We have provided some examples (Density distribution)

IX. The p-n junction and some of its properties

Now that we have a set of equations to determine the flow of current through a

semiconductor, we are in a position to determine the characteristics of ap-n junction. A p-n
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junction consists of silicon that has been doped differently in two regions that have afairly sharp
boundary. In athought experiment you can think of a piece of n-type Si and a piece of p-type S
joined together to make a single crystal, the p-n junction being their common border. Since this
isn't possible in redl life, we can instead think of asingle piece of Si that has been doped
differently on either side of a sharp boundary. Thisispossibleto doinred lifeandinfact, it's
how semiconductor devices are actually made.

We will consider the simplest approximation of a p-n junction: an infinitely thin boundary
between p and n-type Si, but to begin we won’'t impose any conditions on the way the Si is doped.
A key feature of the way non-uniformly doped Si behaves is that the holes and electrons will tend
to diffuse away from the regions of high density. Asthis happens an electric field will begin to
develop as the positive and negative charges move around, leaving behind negative ions (atoms
with valence 3 that give up ahole) and positive ions (valence 5 atoms that give up an electron).
The electric field will tend to push the holes and electrons back to where they came from (in the
opposite direction of diffusion) and diffusion currents and drift currents balance each other. The
electric field implies there will be a spatially varying potentia inside the Si. To be specific,
suppose the Si is p-type and that N, = N, (x), as shown in Figure 4

Na(x)

Figure 4. The variation of acceptor impurity density with position in non-uniformly doped Si.
Consider our equations governing current flow and electric fields in the case of thermal

equilibrium, where there is generation or recombination taking place.



25

) i =J4 4+ 340 - qn p E + gD, —

e

) ;Y = L5+ 38 = q pp, E - th%
X

) e 9E _ qlp + Nyx) - n - N(x)]
ox

o)
vy Ze - g 9n
ox ot
aJ d
V) 2 = P
vl

Since the Si isin thermal equilibrium there can be no current flow, so J,* = 3* = 0. Also, in
equilibrium there can be no time variation of n or p, so the time derivatives in Equations 1V) and
V) must be zero and in fact IV) and V) are merely identities, and n=n_, p = p,. Thefirst three
eguations are then

dn(x)

I’ qnx p, £+ qD, 0

dp®) _

I q p,® py, £ - q D,

iy e L8 - g pp, + NG - n, - N,

where the partial derivatives have been replaced by total derivatives since thereisno time

dependence. A profitable way to proceed is to write the electric field as E(x) = - % so that

Equation I1') becomes

3,0 _
ox

-4 P9 By % - gD, 0 (22)
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or, on cancelling the charge q,

ab _ o e 3

po(x) Hh E - h dX

To simplify this we return to the diffusion equation (DPiffusion) where the diffusion constant D
/

<

was stated to beD = . where | isthe mean distance between collisions and v is the mean

“|

Speed.

The mobility is p = 35 where © is the mean time between collisions (Mobility). If we
m

vy
take the ratio of the diffusion constant to the mobility we have2 -3 .3 _mb :
R A A L
m m

Since the average speed is the average distance travel ed between collisions divided by the average

-
, we end up with b. MWV The kinetic theory of gases

time between collisions, v =
M 3q

t‘\lN

(M axwell-Boltzmann distribution)) tells us that the average (thermal) kinetic energy of a

particleis% mv’ = %kT, therefore D k—T Thisis caled the Einstein relationship; it is true
K q
D, D, kT . .

for holesand electrons. — = — = ——. Thuswe can re-write Equation (23),
p’h p’c q

D, dp,(®)
by dx

p.(X) % = -
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q dp = 1 dp®

- (24)
KT dx  p(x) dx

When thisis integrated we get an equation relating the internal potential of the Si to the density of

holes;

P.(®) _ . q ) -
1n( 5 )— E(d)() ¢,) (25)

o

or

9 i -
&6 - ¢

P.(X) = p, € (26)

¢ isthe potential reference point where p, (x) = p,. For convenience we take ¢(x) = 0 where
Po(X) =y, the intrinsic density of holes and electrons. Then p (x) = n, e ™ ® AT tis
straightforward to show that n (x) = n, e? ¢ &T with n,(x) = n, when $(x) = 0.

We now look at what happens when the p-n junction is abrupt, as shown in Figure 5,

below. The meaning of Figure5isthat N, = N, forx>0and N, = -N, forx <0. For

N
x<<0, p, = N, and, so the potential is ¢, = KTy [—“) For x >>0, n, = N, and the
q n

1

N
potential is ¢, = <L 1n [_“) |
q
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Nd

—Na

Figure 5. The doping profile of Si doped uniformly in the regionsx <0 and x > O.

If we imagine that the p-type and n-type S are instantaneously created at timet = 0, then
immediately afterward, just to theright of x=0at x = +8, n,>> p,, and just to the left of x =0

at x=-9, p, >>n, where 6 isavery smal distance. Because the electron density is much
higher for x =+ thanitisfor x = -9, eectronswould immediately begin diffusing towards the
left, as described previoudy. Similarly, holes would immediately begin diffusing towards the

right. The electrons would leave behind positively charged donor ions (the ions are fixed in the
crystal lattice and cannot move) while the holes would leave behind negatively charged acceptor
ions. Theresult isanet positive charge for x > 0 and a net negative charge for x < 0. This charge
imbalance will cause an electric field pointing to the left, and the field will tend to drive the
positively charged holes back to the left and the negatively charged electrons back to the right.
Eventualy an equilibrium will be established in which the diffusion and drift currents just cancel
each other.

The situation just described can be relatively easily analyzed using the depletion
approximation. This approximation assumes al the donors and acceptors within a small distance

of the p-n junction are ionized, and outside of these small distances none of them are ionized.
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Although smple, it is avery good approximation. If we graph the net charge density describing

this approximation we get the result shown in Figure 6.

++4+
+++
+++
+++

R

_______ ®h T

gMea

Figure 6. Schematic diagram of the charge distribution of an abrupt p-n junction in the depletion
approximation.

In reality, of course, there will not be a sharp cutoff of the charge density at -x, and +x,,,
but the approximation is very good. Free holes and electrons exist only for x < -x, and x > x, and
it is easy to find the fields and the potentialsin the Si. First, however, note that the S asawhole
is electrically neutra - the fabrication procedure involves implanting donor and acceptor atoms
into Si that is kept electrically grounded. Therefore the total negative charge must balance the
total positive charge. Since the cross sectiona area of the junction (the area perpendicular to the
x-axis) is constant, the volume is proportional to x. Thus the absolute value of the total negative
chargeisQ = q N, A X, while absolute value of the tota positive chargeisQ = q Ny A x_ .

When these expressions are equated we find an equation for x,and x,: N, x, = N, x,. The

charge density as a function of position is givenin Table 1 below.
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X p(X)
X < =X, 0
X%, <X <0 -ON,
0 < x <X, +gN4
X, < X 0

Table 1. The variation of charge density with position for the abrupt junction of Figure 6.

To find the potential we must first find the electric field distribution and integrate it. The
electric field isfound by using Gauss' Law and integrating the charge density with the boundary
condition that there should be no electric field for x < -x; and for x > x,, . We integrate

ediE = p(x), where the dielectric constant of Si € is assumed to be constant, and get the result
shown in Table 2:

X E(x)

X< =X, 0

X, <X<0 -ON, (X + X,)/ €

0<x<Xx, +gN, (X - X))/ €

X, <X 0

Table 2. The electric field for the abrupt junction of Figure 6.

The electric field distribution is shown in Figure 7 below.
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Figure7. Theelectric field distribution of an abrupt p-n junction based on the depletion

approximation. The field is directed towards the left, from the n-side of the junction towards the

p-side.

We now find the potential by integrating £ = - % , with the boundary conditions that

¢ = d)p for x <-x, and ¢ = ¢, for x >x,. Theresultisshownin Table 3 andin Figure 8

below.
X ¢ (x)
X< =X, ¢,
X, <x<0 ¢, +aN, (x +x)72¢
0<x<X, ¢ .- N, (X - x)%/2¢
Xy <X ¢,

Table 3. The electrostatic potential in the Si for the abrupt junction of Figure 6.
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*p

i W

Figure 8. Schematic representation of the electrostatic potential of an abrupt p-n junction based
on the depletion approximation.

The equations for the field E give no new information about x, and x,,, but the equations

for the potential do. If we match the two expressions for the potential for x <0 andfor x >0

(x,)? &) o
ax=0weget +qN, —— =¢, - qN, With N, x = N, x, wefind, witha
P 2e 2€ P
bit of algebra,
2ed, N,
Xn =
g N;y(N, + Ny

(27)

2ed,, N,
X =
q Na (Na + Nd)

where the “mean” value of ¢, ¢, isdefined as
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(28)

The width of the region which is depleted of free charges - the holes and electrons - is given by

| 2¢p_ N, + N,
W = X —(—xp)=x + X = (29)
n n P q N Nd

a

The region between -x, and X,, is sometimes called the space-charge region. The electric field in
this region is quite strong - at its peak the field can reach more than 10° VV/cm (10 volts per
micrometer). Thefield islarge enough that any hole or electron that wanders into the space-

charge region isimmediately swept out again.

X. The properties of a p-n junction when a voltage is applied across it

Before we begin this section, we address a couple of questions that might occur: can you
measure the potential cross the p-n junction; might the junction act like a battery? The answer is
no, and the reason is most easily seen by considering a circuit involving a p-n junction as shown in

Figure 9:

waltmeter

Figure 9. A p-njunction hooked up so asto be able to measure the potential acrossiit.



In Figure 9 the thick black lines at each end of the Si represent Al contacts that connect the
junction to the outside world. The regions marked p* and n* are Si that is heavily doped to make
agood electrical contact with the Al. Thereis a potential called a contact potential between the
metal of the Al leads and the Si relative to the zero or reference potential of pure (intrinsic) S
which is about -0.3 volts (that is, there is a 0.3 volt decrease in potential when going from Si to
Al. If we assume the voltmeter contributes nothing to the potential (no potential drop in the

meter), we can now draw a potential diagram for the whole system.

q; )

p+ region

n+ region
t£$ n+
leftend of n
junction
\ .

1 ! ! |
\ x
xn
right end of
Junctian
(1) Al

Figure 10. The potential around the p-n junction circuit shown in Figure 9.

As you might expect, since there are no perpetual motion machines, the potential
difference all the way around the circuit is zero, i.e., the p-n junction will not behave like a

battery. The potential starts out at ¢ ,,at the left end, dropsto ¢p+ at the connection between the
Al andthep® Si, risesto ¢pwhere the p* -Si meetsthe p-Si, beginsto rise again at x = -x, and
reaches ¢, at x = x,. The potential risesalittle moreto ¢_. at the point where the n-Si

becomes n* Si, and the drops back down to ¢, a the Si - Al interface. Incidentally, at ametal -
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Si interface there is a potential change that 1ooks rather like what happens across a p-n junction,
except that since there are so many free electrons in ametal there is no depletion in the metal.
Rather, for n-type Si thereis avery thin (~ 1 nm) sheet of negative charge aong the surface of the
metal. Inthe Si the depletion range is of normal dimension. For p-type Si the layer of positive
charges due to the holes is almost infinitely thin at the boundary. Thisis caled a Schottky barrier
and the phenomenon can be used to make a diode.

Next we consider what happens when a voltage is placed across the p-n junction, as

shown in Figure 11.

[+ 4] n n+

Va b

Figure 11. A p-njunction with a potentia V , applied acrossiit.

Since we are only interested in what happens at the junction itself, we will ignore the metal
leads and the heavily doped regions. When the additional potential V , is placed across the
junction the width of the depletion or space charge region changes. This has two effects: it affects
the current flowing through the junction and it affects the capacitance of the junction. The width

changes because the potential ¢_ - ¢_ - V,,and the width of the depletion region w behaves

as
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[2ed N + N 2 - V)N +N
W = Xn + Xp _ d)m a d - (d)m ab) a d (30)
q N, N,

a

which meansthat asV, increases, w decreases (the sense of V, isthat, as it increases the p-side

of the junction becomes more positive relative to the n-side).

X-A. Depletion capacitance of the p-n junction
Capacitance is defined as the amount of charge stored per unit voltage, or C = dQ/dV.

To consider the charge stored in the depletion region we repeat Figure 6:

+++
+++
+++
+++

77777777 —gNa

Figure 12 (Figure 6 repeated). Schematic diagram of the charge distribution of an abrupt p-n
junction in the depletion approximation.

The charge stored between x = 0 and x = x,, is Q = gN,AX, where N, is the density of
positiveions, A isthe cross sectional areaand q is the electronic charge (1.6 x 10*° C). With the

expression for x, (Equation 27) and replacing ¢_ by ¢ _ - V,, weget

. - \' 2ed,. N, i \j 2€[d,, - V) N, -

9 N;(N, + Ny q N; (N, + Ny
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With this value for x, we find the stored charge Q to be

Na Nd

QVy = A \'2‘1‘5(4)“, - Vab) N + N, (32)
a d

where we write Q = Q(V,,) since Q isafunction of V. Itisclear that if we try to expressthe

capacitance through C = :—gwe will end up with a non-linear relationship whose meaning will

be complicated. However, if the changein V,, issmall, we can linearize Equation 32 by

expanding Q(V ,g) in a Taylor's series and keeping only the first term:

_dQV,) qe N, N, _
v R g -

Note that thisimplies that when the voltage applied across the junction changes with time the
charge stored in the junction will change with time so there will be a current. If the voltage
changes by asmall amount so V=V 5 + V(t), then the current flowing in the junction will be

givenby i = dQ _ dQ 4V _ C dTTit),whereCis Cepietion from Equation 33. With

¢_=0.7V,V,=0andtypica vauesN, = 10" cm®, N, = 10 cm®, q= 1.6 x 10" C,

A = 10% m? (100 micrometers square) and the dielectric constant of Si being € = 10 Fm?,
Ceetion ~ 10 For ~ 10° Fm® (10" Fcm?).

X-B. Current flow through the junction

In order to calculate the current flow through the p-n junction we have to solve the second
order differential equation for the carriersin the two parts (p and n) of the junction, subject to the
appropriate boundary conditions (this last is a very important point). Then we can find the drift

currents and, by differentiating the densities, we get the diffusion currents. The boundary
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conditions are very important and contain physical information that is the key to the junction
behavior.

Wa Wh

Figure 13. Schematic diagram of ajunction diode. The distance w,, - X, >> X, and w,, - X, >> X,..
The ends of the diode are at -w,, and w,,, where the Al contacts are placed. The voltage across the
junction diodeisVa- Vb=V, . The heavily doped regions p* and n" near the metal contacts are

ignored.

To begin we examine a diagram of the junction, or, as we will now call it, the junction
diode (Figure 13). The region between -x, and X, is the depletion region. The regions between -
X, and -w,, , and between x,, and w,, are called quasi-neutral regions. This meansthat in any
region large compared to the Debye length, there is no net charge - the holes, electrons and ions
approximately balance each other out. The only place thereis a net charge density isin the
depletion region. More precisaly, in the quasi-neutral regions we have the relations

n'(x) =n(x) - n, = p'(X) = p(x) - p, wherethe meaning of “ =" isthat [n’(x) - p'(x)| <<

n'(x) + p'(X). Also, quasi-neutrality requires|8nl(x) - 8p/(x)| << |8n’(x) + 8p’(x)|. These
| ox ox | | ax ax |

are the equations that define low level injection, which was mentioned previoudy. These may
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seem like drastic requirements, but they aren’t, actually. The reason is that any imbalancein
chargesisrapidly removed by motion of the carriers, as was described in section VIII. Only for
distances of the order of nanometers or less are there any imbalances. Over macroscopic

distances of the order of micrometers, there is essentially no imbalance to be seen: electrostatic

forces are very strong and charges move very quickly (Refaxation time).

Before considering the equations and their solutions, we will explain in words how we

calculate the current flows. Differential equations 21a and 21b from section V111,

2./ / 2./ /
dn2 _n_ g(x) for electronsand D, dp2 - P _ £(x) for holes (remember
dx T dx T

D

e

that p, and n, are independent of position), can be solved in the quasi-neutral regions to find the
excess electron and hole densities. We know that any charge that is injected into the depletion
region moves through it very quickly (the electric field is high so the velocities are high, implying
small chance of electron-hole recombination), so we assume there is no loss or recombination
taking place there. This means we only have to consider the currents that flow in the quasi-
neutral regions. To find these currents we first find the solutions to the differential equations,
which means boundary conditions need to be specified at the ends of the quasi-neutral regions. at
X =-W, at X =-X,; a X =X,; and at x =w,. The boundary conditions at -w, and at w, are smple:
n' =p =0, sincethe metal effectively absorbs all electrons and holes that flow into it. Electrons
are injected into the diode at w, and holes are injected in at -w,,. Beyond these points the injection
is zero, and so we can set g(x) = 0 within the quasi-neutral regions (this means the differential
equations for the holes and electrons are homogeneous). So, to finish the problem it is necessary
to relate the density of holes at -x;, to the density of holes at x,,, and the density of electrons at x,,
to the density of electrons at -x,. When thisis done, we will have the necessary boundary
conditions to obtain numerical solutions for the equations for n’(x) and p’ (x).

How do we findp’ (x,) and n’(-x,)? We begin by assuming ajunction diode in thermal
equilibrium with no applied voltage. We then know there is no net motion of the holes and
electrons and so the density of holes at x = -X; is py(-X,) = N,. Similarly, the density of electrons

at X = X, isn,(X,) = Ng. At the ends of the junction diode we have p,(-w,) = 0 and n,(w,) = 0.
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Consider the case of electrons moving from the n-doped region through the depletion region into

the p-doped region. In the n-doped region the electrons are mgjority carriers and n, >> p,. At x

n2

E

2
. . . Ili
= -x, the electrons are minority carriersand n,(-x)) = p= -

. If we divide n,(-x,) by n,(x,)

Z

we get

n,(-x,) ) n?

n(x,) N, N,

a

(34)

The quantity on the right side of the last equation is familiar. If we look back to Equation 28,

N, N
d, = KT | 242 we seethat
q n’
n. -==
L_ =g M (35)
Na Nd

and as aresult we end up with the very important relationship

by

n(-x) = n(x) e (36)

This says that the density of electrons on the p (left) side of the depletion region is smaller than

the density on the n (right) side by the factore “®n AT Thisis called the Boltzmann factor

(Maxwell-Boltzmann distribution). Hereiswhat thismeans. Thelocation x = -x,isat a

potential of -¢_ relativeto thelocation x = x,,. Since the electrons carry a negative charge, as
far asthey are concerned the location x = -x,, isat an energy U = +q¢_ relativeto the location x =

X,. Now, the energy of the particlesis governed by the Maxwell-Boltzmann distribution, which

means the fraction of the particles that have kinetic energyU = +q_ > > U (whereU isthe

q¢,,

average kinetic energy), ise KT put another way, there are electrons moving around in the
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region x > X, with all sorts of velocities, and the distribution of velocities is governed by the
Maxwell-Boltzmann relation. When these electrons run up against the boundary of the depletion

region, only those with kinetic energy greater than +qd_, will be able to surmount the potential

barrier (“get to the top of the hill”) and make it to the p-side of the depletion region (see Figure
14). Exactly the same thing happens with the holes going in the opposite direction from the p-
side to the n-side of the junction. Asfar asthe holes are concerned, the location x = x isat a

positive potential +¢p_ relative to the location x = x,, and so, since the holes carry a positive
charge they also see an energy barrier of height +q¢_. Thusfor holes

q¢

Po(X) = P(~X,) e ¥ The energy barrier looks something like this

= qu = q(i)m (holes)

(electrons)

Figure 14. Schematic diagram of the potential energy for holes and electrons as a function of
position across the depletion region. The energy of the hole startsat U = 0 at X = -X, and rises to

U= +qé_, a x =x,. Thepotential energy for an electron startsat U = 0 at x = x, ands rises to

U= +q, at x=-X,

If we now apply a potential V,, across the junction, ¢_ - ¢_ - V,,. Holesand

electrons are injected into the p-side and n-side of the junction, respectively, from a battery or
power supply. Recall that the total charges are denoted by p(x) and n(x). Aslong as the current

is not too large so that the quasi-neutrality approximation remains valid, we can approximate n(x,,)
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by n,(x,) (n"(x) =n(x) - n(x) << n,(x) ) and, since al that has changed is the barrier height, we
have

9o V)
n(—xp) = n(x) e kT (37)

The excess charge n' (-x,) = n(-X,) - N,(-X,) is given by

_ q (¢m B Vab)
n'(-x,) = n(x) e T -n(-x)
_ 4 (b - Var)
~ n(x) e - (%)
B WV
=nx)e e T -n(-x) (38)
+qV&b

=n(-x)e T - n(-x)

.,
= n(-x) \e kT -1

2
n.
Findly, usng n(-x)) = N=‘we end up with

a

2 ( LA )

n/ -X = =l [+ kT —1 39
%) = X (39)

n.?

and by similar reasoning for the holes, we find, with p (x,) = N=l :
d
n2 [ T

pix) = — e -1 (40)

Ny
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Equations 39 and 40, and n’(-w,,) = 0 and p’(w,) = 0 are our boundary conditions for the

equations D, - —= 0 andD, = 0, and with the solution to these

d2n’ 0’ d%p’ p_/
dx? T dx? T

equations we can find the currents in the p-n junction when a potential is placed acrossit.

We consider first the hole current flowing from the p-side of the junction towards the n-

2,/ /
side. The solution to the equation for the minority holesin the n-type Si, D, d 1’2 - P _
dx T

isp/(x) = A e*™ + B e ™. With an ohmic boundary at x = w, (see Figure 13, repeated

below) A e™ ™ + B e ™™ = 0 and the constant B hasthevalue B = -A ¢”™ ™. The

density of excess holesis now given by

X 2wn _i
p’(x)=A( e - e e Lh]

Al e D - L*‘] (41)

- X - W
=2Ae ™ si z
L,

va wh
Np Nd

Figure 13 (repeated). Schematic diagram of ajunction diode. The distance w, - X, >> x, and
W, - X, >>X,. The ends of the diode are at -w, and w,,, where the Al contacts are placed. The

voltage across the junction diodeisV,- V, =V, .
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n.
At the right edge of the depletion region we saw that p /(xn) = —

Ny

n2 Vap
p/(xn) 1 e kT -1

I
N
>
o
Sk
=
—_——
BN
|
E
~————

and the constant A is

p'(x) =

YV
e *¥T -1/, sowehave

(42)

(43)

(44)
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Figure 15. A schematic drawing of the density of excess holesin the n-side of a p-n junction.

The distances x,, and w,, are not to scale.

The hole diffusion current density is found by differentiating p’ (x):

dp'(x)
dx

w, - X
2 4V, cosh T
—(e* -1 (45)

N, . [w]
sinh | ——

1,5 = -qD,

D
= q_h
Lh

45
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=]
v
=
S

h i
L, N, oy
Note that at x = w, the current density is h d e

sinh

2
i

n
exponential factor is of the order of 10 — A cm® For N, = 10" cm?® thisiis of the order of

Nd
102 A cm?.

The éectron diffusion current density is calculated in exactly the same way and we find

Wp - X

. D n2| L cosh L

JH = g—= — (e’ -1 ° (46)

L N W - X

e a sinh P P

[ Le )

To get afed for the size of this, suppose D, ~ 50 cm? sec?, L, = 100 micrometers = 102 cm,
N,= 10", w, = 100 micrometers, V, = 0.7V and T = 290K. Then J*" =~ 1 A cm® Clearly the

diffusion current is large only where the derivative of the excess charge density islarge. If L or

L, issmall compared to the x-dimensions of the junction then asx - w,, (or w,) the diffusion

current will be small and the total current at the ends of the junction (near the metal contacts) will
be dominated by the drift current. One way to picture thisis to imagine alarge current density of
electronsinjected into the n-side of the junction at x = w,. These are supplied by a battery, say.
As the current density moves towards the left it encounters a current density of holes injected
across the space-charge region. As the excess eectrons and holes recombine the result isa

current density shared between diffusion and drift as shown in Figure 16:
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| Jgr\ﬂ

Xn W *

Figure 16. Schematic diagram of the electron drift current 1™ and the hole diffusion current 3

in the n-side of ap-n junction. JOT = 3t + 347

(not to scale).
The same thing happens on the p-side of the junction except with the roles of electrons and holes
reversed.

So far we have said nothing about the currents through the space-charge region between
-X, and X,. This distance which is ~ 1 micrometer is small compared to the overall dimensions of a
diode. The current through it consists of those holes and electrons that have sufficient energy to
traverseit. Since the dimensions are small and the particles are moving quickly (they have
relatively high energy) there will be little recombination in the depletion region and we can, to an
excellent approximation, assume the total current density across the depletion region remains
constant except at very low voltages when the width of the depletion region islarger and the
particles moving less rapidly. This means the electron total current density at x = x,, (shown in
Figure 16) equals the electron diffusion current density at x = -x,,, and that the hole diffusion
current density at X = x,, equals the hole total current density at x = -X,,, as shown in Figure 17.

Thus the total current density is J°" = J™(-x)) + 3" (x,):

\}
D D e
JTOTzanZ h L e [e kT _ 1] or
N L, et X
e —h
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[eF - 1] (47)

TOT _ 2
J = qn;

Wn X
where Lh* = L, tanh [—

p-side n-side

JtDt

|
TOT | TOT
ENI__{ - //-/l Je
|
|
|

|
e ‘

g An ¥n bt

Figure 17. Schematic diagram of the electron and hole drift and diffusion current densities and
the total current density through the p-n junction. Note the electron and hole current densities are
assumed to be constant across the depletion region in the approximation we work with (ignoring

recombination in the depletion region).

The current through the p-n junction diode is then
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(48)

which defines the saturation or scale current I (A is the cross sectional area of the diode). If the
diodeisforward biased (V,, > 0), we have the behavior shown in Figure 18.

log Iy

al

Figure 18. A log plot of the current I, through an ideal p-n junction diode as a function of

applied voltage V

There are some relatively small corrections to bring this result into closer accord with
experiment. First, there is some resistance in the diode and so there will be an IR drop acrossiit.
This causes the current to rise less quickly than shown, at higher currents. Second, thereis, in
actuality, a certain amount of recombination that takes place in the depletion region. The
additional recombination (above and beyond what happensin the regions w,, - X, and -w, - (-X,)
has to be made up for by additional holes and electrons injected into the junction. This happens
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mainly at lower applied voltages and so when V, is small the current is somewhat higher than
what isindicated in Figure 18.

X-C. Diffusion Capacitance

In section X-A the capacitance across a p-n junction due to the charges in the depletion
region was calculated (Cygyeion) - Thereis an additional source of capacitance in the p-n junction
that shows up only when current is flowing, called the diffusion capacitance (Cyy.40,) Theorigin
of this capacitance lies in the excess holes and electronsin the Si in the regions w,, - X, and -w,, -
(-xp). Since there are adjacent charge densities we should expect some capacitance associated
with them, but this capacitance vanishes when the current I, -~ 0.  The charge can be found by
multiplying n’(x) and p’ (x) by q and by the volume A(w,, - x) (on the n-side of the junction). A is

the cross sectional area of the junction. The excess hole density is given by Equation 44

W, —X
qv. sinh =
i W = _ ( L, )
p'(® = N\ € 1 (49)

d Sinh[wn_xn)

From our quasi-neutraity assumption n’(x) = p’(x). The positive and negative charges are then

given by

. W, —X
of 3 ) L
QW = AW, - x) —{ e 7 -1 —— (50)
d smh[ n n)

If we writeV,, asasum of aconstant bias voltage V ,5 plus a small variable voltage v, :

V= Vs + Vy, then we can differentiate the expression for Q with respect to v,, to get an

2| e T
eﬁlmatGOf Cdiffusion' We%tX:Xn and flnd Q = qA(\Nn - Xn) N=l € kT € kT _]. Or,
d
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n2 Van qv
when v, issufficiently small, Q = qA(w, - x) — | e T (1 + —2) -1 | sowearrive
N, kT
at
dQ _ PAw, - x) n?| T
Cdifﬁlsion = = - = — € kT (51)

dv,, kT N,

To get afed for the size of this capacitance, suppose w,, = 100 micrometers = 10* m, x, = 0,
Ng=10" cm?, V, = KT _ 25 mV, A = 10® m? (100 micrometers square) and V .5 = 0.7 V;
q

then Cyuson ~ 107 F, which is similar to the size of the depletion capacitance calculated earlier.

X-D. Concept of The Bipolar Junction Transistor

We can now begin to understand the operation of the BJT, a device that uses two p-n
junctions to perform amplification of signals.

The usual notation shows all the currents flowing into the transistor, implying one or more
of the currents is negative. We will depart from that and use a more intuitive notation in which,
for a PNP transistor, positive current flows into the emitter and out of the base and collector. For
the NPN transistor positive current will be shown flowing into the collector and base, and out of
the emitter.

The conceptual layout of a BJT is shown in Figure 20, although an actual transistor has a
planar structure like that shown in Figure 19.



52

Emitter Base Collector

F N r

Jh‘ Ty e— N 4

jretazmul]

Ic

"sactificial" holes Th "camivore" electrans waiting o swallow up "sacrificial" holes

Figure 19. A somewhat whimsical schematic representation of aPNP BJT. The direction of positive
current flow isindicated by the arrows, as well as the flow of the holes and electrons in the transistor. Note
that there are two p-n junctions, the emitter - base (EB) junction and the base - collector (BC) junction, and
that the EB junction is forward biased while the BC junction isreverse biased. Typically Vg isan order of
magnitude larger than Vg (9 voltsvs. 0.7 volts). A tiny fraction (~ 1%) of the holes (J,) injected from
the emitter into the base are “ sacrificed” when they recombine with carnivorous electrons (J ) in the base
lying in wait for them; the rest (J,) flow into the collector to become I.. Most of the emitter current I¢ is
carried by the emitter holes, atiny fraction (~ 1%) is carried by electrons injected from the base.

collectar P

Figure 20. Schematic physical layout of an pnp transistor. Note the emitter is physically small compared
to the collector. The thickness of the base region has been exaggerated.
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The way the BJT worksis that the emitter-base p-n junction is forward biased to about 0.7
volts. A small signa is added to the bias voltage and this has a great effect on the emitter current
because of the exponential relationship between voltage and current. The emitter current consists
mainly of holes flowing through and from the emitter, with a small current of electrons flowing
from the base into the emitter. Most of the hole current from the emitter diffuses through the thin
base region and winds up at the base-collector junction, which is reverse biased. Normally, very
little current would flow through the base-collector circuit because of the reverse biasing.
However, when a hole diffuses across the base from the emitter and ends up at the B-C junction,
it sees a strong electric field pointing into the collector (note the polarity of the power supplies)
and the hole isimmediately swept into the collector. Essentialy every hole from the emitter that
does not recombine with an electron in the base finds its way into the collector. Typicaly, only
about 1% or less of the holes are lost in the base due to recombination, so that 1 is~ 99% pf
the emitter hole current. The base current consists of electrons that partially flow from the base
into the emitter and partially recombine in the base with holes from the emitter. The hole current
flowing into the collector returns to the emitter through the large power supply Vg . A resistor
can then be placed in this part of the circuit and alarge power dissipated through it, and a

substantial power gain can be had with the transistor.

Xl. More Detailed Operation of the BJT and the Ebers-Moll Model
A widely used model for BJT operation is the Ebers-Moll model. If we examine Figure

20, reproduced again here, we can see and analyze the various current flowsin the BJT.
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Figure 20 (repeated, in more conventional format). A PNP bipolar junction transistor showing
the current carriersin the various parts of the transistor. J , represents the base electron current

density that recombines with holes from the emitter J ..

The current | flowing into the emitter manifestsitself in the emitter as alarge current of holes
and asmall current of electrons, the latter coming from the base. This is because the doping of
the emitter is much heavier than the doping of the base, resulting in the excess charge profiles
shown schematically in Figure 21 below.

We now want to characterize the transistor by finding the currents flowing in the base,
emitter and collector in terms of the voltages Vg and V.. Animmediate problem in doing this
would appear to be that the currentsin the E-B junction and the B-C junction are very non-linear
functions of the voltages, at |east when the junctions are forward biased. Thismeansthereisa
guestion as to the validity of the usua procedure of calculating the effect of each voltage
separately and the superimposing the results, which works only if the systems are linear.
However, if we keep each junction voltage constant, then the results can be superimposed
because for this case, there will be no non-linearities. We proceed by setting V. = 0 and finding

the currents. Then we set V; = 0 and do the same thing again.
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XI-A. The Forward Mode
With V; > 0, the E-B junction is forward biased, and the density of holes at x = x,, is

V,
n2 .
p'(x) = —— (e ¥* - 1) whilethe density of dlectrons at X = -x, is
N N p
dB
o Ve
n/(—xp) = Ni e 'T -1 , where N is the donor density in the base and N is the acceptor
aF

density in the emitter. The thermal voltageis V., = k—T which is about 0.026 V at room
q

temperature. The density of holes falls to zero at the metal contact to the emitter at x = -wg.
p’(wg) isalso zero, for reasons we will discuss shortly. The resulting profiles of the excess charge

densitiesis shown in Figure 21.

i = Base, d =N
Emitter, doping NaE ase, dopmg B

k

|
X
m
|
Ege
-
=
w
x

Figure 21. Schematic representation of the excess charge densitiesn’ and p’ in the emitter and

the base. In an actual transistor p'(x,,) ismore like 100 n’(-x).

The current density due to electrons in the emitter is much smaller than the current density due to

holes in the base:
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Wp - X
D 2 v, cosh T
J58x) = g—= — | e T -1 e , whereas
L, N, smh[wE_X"]
Le

W, = X
) v, cosh
ati, _ o Dn 1 T _ h : —
J®) = qL— e 1 . Since the emitter is much more
W, — X

n

L,

heavily doped than the base (N >> Ng3), 34" >> 397 Thisis shown schematically in Figure 17
repeated below.

p-side n-side

Jtot

| |
:Nl TOT
I Jh iﬁ |\\/ﬁ/f//l "

‘ P
| s
| I | /’/
W—{/ Sy

|

—WE —}{p A WB ®

Figure 17 (repeated). The current density profiles through the emitter-base junction of the pnp
trangistor (emitter on the left, base on the right). The amount of electron current has been greatly

exaggerated. Note that J, and J, remain constant across the depletion region.

The current in the emitter is denoted | ., which stands for forward emitter current. It consists of
two parts, I, and | ¢ I = |, + |, where |, is the forward hole current and | is the forward

electron current. Sinceit is the hole current that is of interest we write thisas
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Lp=L;(1+0;) (52

& iscalled the emitter defect: it is the fraction of the emitter current | carried by electrons from
the base that doesn’'t eventually contribute to the collector current. & iseasily calculated. At

the right side of the depletion zone in the base, J*" (x,) = J,7°" (-x), the total hole current

density at the left end of the depletion zone (-x,), because we assume no recombination in the

depletion region. The hole current injected into the base is therefore obtained from the diffusion
n? D

VEB
current: L. = qANl h (e vro- 1] ,Where L,.,* = L, tanh[
dB

u) . Similarly, the
Lh

electron current density at the right end of the depletion zone J,"°" (x,) = J.*" (-x,), and so

V.
n’ D, ~— _ Wg — X _
I; = qA e " - 1) withL;" = L, tanh] ———2L|. Then from therelation
NaE LeE* Le
; . : D Ly Ng
ler = lpe + 1 = 1 (1 + 05), with alittle dgebrawefind 8, = —————=. Since Nz >> Ny
h LeE* NaE

and the other terms are of the same (close) order of magnitude,d, < < 1.

The next question is: what is the current in the collector? The collector current isthe
current that passes through the high voltage part of the power supply and represents the amplified
power. Clearly, since the B-C junction is reverse biased no electron current will be injected from
the base into the collector, nor will any hole current be injected from the collector into the base.
However, because there is alarge eectric field with positive sense into the collector, any holes
injected into the base that appear at the B-C junction will be immediately swept into the collector
(thisisthejustification for setting p’(wg) = 0). The collector current will therefore be I,-(x,) less
whatever holes are lost as they diffuse across the base towards the collector. We take into

account this loss by expressing the forward collector current as
Iep = L (1 - 8p) (53)
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whered, represents the fraction of the holes lost to recombination. & Is called the base defect.

Another way of writing | ISl = I, - Igg, Where |5 iS the current due to recombination. From

|
Equation 53 we seethat I, = L, 8., 0r 8, = —=. The recombination current can be
hF

calculated by finding the total charge Q injected into the base and dividing by the mean time for

recombination, t,. Qissimply the volume integral over the excess charge density gp’(x). The

integral is taken from x = X, to X = wg, but the result is much cleaner if we make the

approximation x,, = 0O:

Q=qA [ p dx
0

o wy - X
Wp 2 E § 2 (54)
n, v, L,
= gA f e -1 dx

where the differential volume element dV = A dx (A isthe cross sectiona area of the base, here
assumed to be a constant), and we have set x,, = 0 in the lower limit of the integral and in the
hyperbolic sine in the denominator of p'(x). Sincex <wg and wg << L, , we can use

sinh (u) ~ uasu ~ 0tofindQ:

v W
Q qANni [CV_E:_l]fMdX

dB wy /L,
2 Ver Wp
= gA a [eVT - 1] f(l - i) dx (59)
N A Wg
2 [ Ven ] w
= gA — e'T - 1) B
N 2

We obtain the recombination current by dividing Q by t:
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n2 D -
The equation for &, can be smplified by recalling that L, = qA— h (e Vro_ ). Lig
NdB LhB*

can be reduced to w using the fact that wg islarge compared to x,, and the series expansion

oow? W ~ X Wp—X
tanh(u) = u - — + 2L — 4+ L = tanh | — 2| - L e wy, .
® 3 15 v = Lig L, L, B
2 E
_ 1 Dh VT H
Thus L, = qA —=\e - 1) . Wethenfind
aB VB
I Wy 2 W2
8y = RB _ B - B (57)

Ip 2,1, 2L

d, << lsincewg/L,, << 1, so the forward collector current is very nearly equal to .. We can

easily relate the forward collector current to the total emitter current |- as follows:

Tip = Tp + Ty = T (1 + 8 ), and Igp = T (1 - 8y). Therefore we have

1 -9 1 -9
o = —— L; = @ I, where the parameter e, = £, Sinced, andd, are both
1+ o 1+ o

positive quantitiese.; < 1, dthough since the defects are both very small, e will be very closeto

unity (~ 0.99, typicaly).
It isvery useful to find the relationship of 1 to the forward base current 1. Thisiseasly

done since the base current isjust Iz = I

e

gt hpand Iy = Tp+ L= T (1 + ), %0, as
we saw above, I = 8y L. Sincely = 8y L wehave Iy, = T, (8 + &), whichisvery

much lessthan I,.. Thensince I = Iz (1 - BB) we find the ratio of the collector current to the
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|
base current is &£ =

BF

Br. By iscalled theforward current gain of the transistor,

and is a very important parameter. Becaused; and 8, are both very small, B is quite large.

From the definitions of B ande, it iseasy to show that e, = B Pe T For typical transistors
+

F

B ranges from 100 - 200.

XI-B. The Reverse Mode

In the forward active mode the emitter-base junction is forward biased and the base-
collector junction is reverse biased. If the emitter-base junction is reverse biased and the base-
collector junction is forward biased, the transistor is said to be in the reverse active or reverse
mode. If the transistor were physically symmetric the results would be the same as before, with
the roles of the emitter and the collector reversed. Because of the physical asymmetry,

however, B, isusualy substantiadly lessthan B, wheref, istheratio of the emitter current to

the base current. The reverse behavior is calculated by setting Vg = 0 and setting V oz positive,
thus forward biasing the base-collector junction. The method of calculation is exactly the same as

for the forward case except instead of an emitter defectd, we define a collector defect &,. We

thenend upwith B, = — and a, = L~ 5 = Br
BR 1 + 60 BR + 1

For the forward case we have Ige = | + I and | = el . For the reverse case we have

lcr =g + lig @Nd I = @ty I . From our expressionsfor | and I, we have that the forward

V. V.
e T - 1) =L \e T - 1),

Dh e

emitter current is I, = qAn?
I\IdBLhB,k NaELcE}k
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D, D

-+

NdBL hB,k NaELeE*

-]

where I, = qAn? . By anadogy we define | . as

D, . D,

NdBLhB’* NaCLeC*

Is = 9An? , With N the collector doping. Then the reverse

collector current - the analog of the forward emitter current (sort of amirror image) - is

VEB

D [ —_—
h 2 (e - 1) = Iog [e Vroo 1). Now, however,

NdBLhB’* NaCLcC*

Ig = qAni2

w, - x/
L." = L, tanh [ %) isthe length in the collector, with x,” now being the boundary of

/
W, - X
the base-collector junction depletion region in the collector, and L,,,* = L, tanh [ %]
h

where X, isthe boundary of the base-collector junction depletion region in the base.
The quantities | . and | 5 are called the saturation or sometimes, the scale currents. If we
now add the expression for the forward and reverse currents together, we get the complete

current-voltage relationships for the transistor. For the emitter current

I =L+ Ly=T,le' ™ - 1) -ay I e’ -1 (58)

the minus sign in the second term coming from the fact that the current direction isreversed in the
reverse active mode. For the collector current
Vep /V Vep V.
I.=1 +ICR=aFIES(eEBT—1>—ICS(eC‘3T—1> (59

C CF

(remember that the notation here is that current flows into the emitter and out of the collector).
Equations 58 and 59 are the Ebers-Moll model for the transistor. For this model the relationship

o Ipg = oy I holds.
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XI-C. The Forward Current Gain
You can seewhy B iscalled the current gain as follows. The forward collector current is

Ve Vr

I
Iy = 0 Ly = o I e - 1) and the forward base current is I, = % Suppose that

F

the emitter-base voltage is changed by asmall amount, Vi, - Vg + AV. Now, inorder to

operate the transistor so that AV can change in either the positive or negative sense without

turning the transistor off, Vo must be large compared to AV as shown in Figure 22.

Dy T &I .
Dpias === |//_/ bias + L8V
Ibias_AI’J 1] v
:|| / bias ~ £V
I
1/!!|
1“'r‘oias 1‘JEEI

Figure 22. Schematic diagram showing how the transistor is biased. The signal voltageis AV,

which is small compared to V. V.. €nsuresthat the transistor is always in the forward mode

with collector current I, = 1,,,. Thesignal current variesby + AT about |, asthe signal voltage

variesby+ AV about V..

Typicaly, Vg is set to a constant value of about 0.7 volts, and is called the bias voltage. Since

V, is about 1/40 volt the factor e ' V* = 1.5 x 10'2. Therefore we can say



e =V _ 1 = ¢VB VT t0an excellent approximation. If Vg changes dightly from

Vi to Vip + AV the emitter current changes by an amount

( Vgp + AV VEB]
v V.

— T _ T

Al = I \e e

Vs
IESeVT[1+Q]—V—1
Vp T
:IlzsevT QT_V

T

Then the collector current will change by an amount
Al = o AL

Ve
=aFIESeVT Q,_V
Y T
= Ies e " Q/_V
T

Similarly, the base current changes by an amount

I Vg + AV Vig
AIBF=£ e T —e'r
Br
[ Y»
) e Vr 1 A_V -1
BF VT
Vep
V.
_lse ” AV
BF VT
A I
Br

In other words, the change in the collector current due to the change in base current is

(60)

(61)

(62)
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< - B (63)

AL = B, AL or —<£
CF F BF ]I
BF

A useful way to write the relation between collector current and input voltage is to define

. V. /V
I, astheforward collector current dueto the biasvoltage Vg = Ve I, = Ing € ™ 7 ,and to
, Ie, :
define g | = . From Equation 61 we then have
T
Al = g AV (64)

which directly relates the change in collector current to the change in input voltage. g, iscalled
the transconductance; it has units of amperes per volt (ohms)™?, or Siemens (after the large
German manufacturing company, or perhaps its founder). Asyou can probably guess, when

analyzing atransistor circuit one of the first steps will be to relate the current I, to the bias

voltage so the transconductance can be found.

Xl - D. The Diffusion Capacitance

Finally, we look at one other interesting phenomenon. Previously (section X-A) we saw
that the stored charge in the depletion region leads to a capacitance across the p-n junction called
the depletion capacitance. Thereis an additiona source of capacitance that shows up only when
current is flowing, due to the positive and negative excess charges in the region beyond the
depletion region. Thisis called the diffusion capacitance, and it is non-zero only when the voltage
across the junction V, is non-zero. An estimate of the size of this capacitance can be made by
calculating the charge stored in the junction material. The positive charge stored in a conducting
p-n junction where L,, >> w,, - X, is given by the following expression

" n’ W, - X
Q (Vi) = 9A [ p/09) dx = g 1= [e% M ) To o (65)
Xn d
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where the approximation sinh(u) = u is used, and replacing the integral by atriangular

approximation to the area under p’ (x), since p’ (x) is approximately linear (p/(x) ~ 1 - i).
W.

n

vab
d —_—
We define C i = ﬂ and find (ignoring the 1 in the expression (eVT - 1))
ab
C 2A ni2 evab /VT wn - Xn (66)
A 2
kT

where the V; in the denominator has been replaced by —.
q

XI-E  An Interesting Result

The forward collector current for aPNP transistor is I, = T, (1 -~ 8y), wherel, isthe

forward hole current injected into the base by the emitter and &, is the base defect that represents

2
B

the fraction of the hole current lost due to recombination. 8, = where W, is the width of

h

the base. The width of the base is the region in which recombination can take place. When ahole
diffuses from the right side of the depletion region of the emitter-base junction at x = x,, to the left
side of the depletion region of the base-collector junction at x,,’ , it isimmediately swept into the
collector by the field at that junction. Therefore the effective width of the base is the distance
from x,, to X, (see Figure 22). Since the (forward) bias of the emitter base junction remains
essentially constant, x,, is constant. But when the base-collector or emitter-collector voltage is

increased, the width of the reverse biased base-collector junction depletion region increases. In

fact, x| = \I2eSi (¢ +V )L where Vg = Ve -V isthe value of the reverse
' n m BC, N N ! BC EC EB
q

bias (that accounts for the + sign before V. in theradical). This mean that as V. increases the
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effective width of the base decreases and so | increases as well. Since the factor 8, contains

W¢? 8, decreases linearly with V.. This can be expressed concisely as

Vv

I. = Lo [ 1+ EC) . | isthe collector current established by the forward bias voltage of the
VA

emitter-base junction V. V, isaconstant characteristic of the transistor and which depends on

the parametersin x, ; it is called the Early voltage, after Early, an early pioneer in transistor

behavior. Sincel. vanisheswhen V. =V, , agraph of | vs. V. for various values of V; will

have the tangents to all the curves coincide at V. = -V, (see Figure 23).

E C
1 |
, { i N | i P
= |
| |
|
] ! |
xpxn 'fn fp

Figure 22. Schematic diagram showing the effective base width W in terms of the distance
between the right edge of the (essentially fixed) emitter-base depletion region at x,, and the left

edge of the (variable width) base-collector depletion region at -x,. Distances are not to scale.
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v
EBE2

I EE1

A EC

Figure 23. Graphical demonstration of the Early effect: T, = T, (1 + Vi /V,) . Thetwo

values of the emitter-base bias voltage V5, < Vg, establish two values of collector current which

are then modified by an increase in the emitter-collector voltage V.



