
Si Conduction

The conduction of electricity in Si is quite different from the conduction in metals. 

Metals have an ionic structure with a vast number of conduction electrons available - one per

metal atom, typically.  Since there are ~ 1022 atoms cm-3 in a metal, the density of conduction

electrons is very high.  When a potential is placed across a metal the electrons move due to the

force of the electric field and the conductivity  is proportional to the electron density.  The

resistivity is low (  ~ 10-6 ohm-cm for a good conductor such as Cu or Al at room

temperature).  Si has a diamond like structure due to the fact that Si has four valence electrons

and each atom bonds to four nearest neighbors by this strong, two-electron valence bond (each

atom in a Si - Si bond contributes one electron to the bond).  

Fig. 1.  The three-dimensional representation of the Si lattice (diamond-like).  Each Si atom

bonds covalently to the four nearest neighbors.



Figure 2.  A two-dimensional representation of the Si lattice explicitly showing the two-electron

covalent bonds.

Figure 3.  Two-dimensional representation of the Si lattice showing formation of an electron-hole

pair.

Figure 4.  Schematic representation of the motion of the electron and the hole from Figure 3

moving in an applied electric field E.



At 0K essentially every valence electron is bound to two Si atoms and the resistivity of the Si is

extremely high.  At higher temperatures thermal jostling of the atoms occasionally will allow an

electron to free itself from a bond and to wander through the crystal lattice.  The vacancy left

behind by the electron is called a hole, and it too can move from atom to atom.  At room

temperature ( 293 K) there are about 1010 electrons and holes cm-3 in pure Si and the resistivity

is correspondingly high - hundreds of thousands of ohm-cm.

The motion of holes and electrons is random unless an electric field is applied to the Si. 

In this case a general drift is imposed on the random motion of the electrons and holes: the

electrons move in the direction opposite to the electric field vector while the holes move in the

same direction as the electric field.  Because the density of holes and electrons in Si is vastly less

than the density of electrons in a metal, the conductivity is much less than a metal and so Si is

called a semiconductor.  The resistivity of pure Si at room temperature is about 3 x 105 ohm-cm,

some ten orders of magnitude greater than copper and about ten orders of magnitude less than that

of an excellent insulator such as SiO2 (quartz).



Holes

Holes are somewhat curious objects at first: they are the absence of electrons but their

motion represents an electric current.  One way to think about holes is to imagine an electron

being removed from a Si - Si bond, leaving only one electron shared between the two atoms.  If

an electron from a neighboring bond jumps in to fill the gap, the hole left by the absence of an

electron can move from its original location to a neighboring location.  In this way electrons

migrate in one direction from atom to atom (they are not free, like the electron that got away)

and so, effectively, a positive charge moves the other way: hole current to the right means

electrons are moving from atom to atom to the left.  However, for our purposes it is

advantageous to treat a hole as an actual particle carrying electric charge +q and having a finite

mass, and we will consider the hole to be a particle here and treat current flow in terms of the

motion of the two kinds of charge carriers, holes and electrons.



Electron-hole pairs

As we mentioned, the reason the resistivity of pure Si is so high relative to a metal is that

the density of holes and electrons in Si is so small compared to a metal (in fact, holes do not

exist in metals since metal atoms don’t bind via a valence bond).  In Si ni is about one trillionth

the density of Si atoms: ni = 1010 (holes or electrons) cm-3 compared to 5 x 1022 atoms cm-3.  This

is to be compared to a metal where the electron density is ~ atomic density because free electrons

are created when the metal atoms bond together  (there are no holes in metals).  The reason for

this is that the amount of energy required to break a bond and free an electron, creating thereby

an electron-hole pair in Si, is about 1.1 electron-volts, or 1.1 eV.  (1 electron volt is the energy

acquired by an electron dropping through an electric potential of one volt which isn’t much

energy: 1 eV = 1.6 x 10-19 C x 1 V = 1.6 x 10-19 joules.  An angry fly stamping its foot on the

floor probably uses up 10-8 joules or around 1011 eV).  The average energy U of an electron or a

hole in Si due to thermal jostling is U = kT, where k is Boltzmann’s constant = 1.38 x 10-23 joule

deg-1 and T is the temperature (K).  At room temperature (293 K) U = 4 x 10-21 joules, or 0.025

eV.  Thus the average thermal energy is more than forty times smaller than the energy needed to

break a bond, and, since the probability for a bond breaking is proportional to ,

relatively few are broken.  The factor is the Boltzmann factor which comes from

classical statistical mechanics (Maxwell-Boltzmann Distribution)

Si conducts because there are so many (5 x 1022) atoms per cm-3 that a reasonable number

(1010) of electron-hole pairs are in existence at any given time.  As the temperature decreases the

number of pairs also decreases and at absolute zero (0 K) Si is an insulator.  Metals conduct at 0

K.



Maxwell-Boltzmann distribution

Using classical statistical mechanics based on classical probability theory it is possible to

derive a relationship between the temperature of an ensemble of particles such as atoms or

electrons, which is a measure of the average energy of the particles, and the kinetic energy of each

particle.  The result is a distribution function giving the probability for finding a certain number of

particles with energy between U and U + dU.  The Maxwell-Boltzmann (M-B) distribution

function  is  where the kinetic energy is U = p2/2m (p is the

momentum). .  The shape of this distribution  (f(U) plotted vs. U) is shown in

Figure 1.

Figure 1.  The distribution function f(U) plotted vs. the energy U.

For an example of the use of the M-B distribution, the average kinetic energy <U>  of a particle is

found by integrating the distribution multiplied by the energy of a particle:

 , thus relating average energy and temperature.  The



exponential factor from the M-B distribution comes up all the time in physics; it is not

exactly correct because the M-B distribution was derived before the discovery of quantum

mechanics; classical probability theory isn’t correct at the atomic level, but for many purposes the

difference between the exact statistics (called Fermi-Dirac statistics for electrons and holes) and

the M-B distribution is small.



Single crystals

In order for donated holes or electrons to affect the conductivity of Si the Si must be in

the form of a perfect, or nearly perfect crystal.  Most metals or crystalline materials consist of a

large number of micro-crystals.  These are of the order of micrometers in size and the material is

called polycrystalline.  Si used for semiconductor device manufacturing is in a highly purified

single-crystal form: The Si is melted and re-grown into a single large crystal.



Equilibrium

Equilibrium of a Si crystal is a somewhat subtle concept.  It means the crystal is not

subjected to any net increase or decrease of energy and that the temperature is constant and

doesn’t vary throughout the crystal.  In addition, the entropy of the system will be a maximum.

Entropy is a measure of disorder in a system - it increases with increasing disorder.  For

example, the entropy of water in the form of ice is less than the entropy of the same amount of

water when it is a liquid, since the atoms in a liquid are not as ordered as the atoms in an ice

crystal.  In statistical terms entropy can be expressed as  , where pn is the

probability the system will be in the nth energy state.  As the order increases and the number of

states shrinks, the pn vanish except for one of them, which approaches unity and S vanishes, that

is, as the number of states shrinks, .   As the number of states increases,

increasing numbers of the pn are non-zero, and S increases.  From thermodynamics we have

(First Law) dU = TdS - dW where U = energy, S = entropy and W is the work done (by the

system).  If the volume of the crystal is constant and the temperature is constant, dU = TdS. 

Since S = maximum, dS = 0 and hence dU = 0.  This is the condition of thermodynamic

equilibrium.  
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Mass action

This material involves more extensive use of thermodynamics than is usually covered in first year

physics, but the material is not intrinsically more difficult than other 3rd year electrical engineering

topics.  It is somewhat lengthy but it should be understood in order to follow the arguments about

recombination in this chapter.

The Law of Mass Action governs chemical reactions of the form 2H2 +O2  2H2O or 

[electron-hole pair]  [Si bond].  The notation used is as follows: when i molecules of initial

reactant Ni produces j molecules of product Nj, we write .  This means that the i

are negative numbers since they represent reactants used up in the reaction.  For example, in the

production of water where 2H2O  2H2 + O2 we write   or 

 or, without the symbols,

.  For a reaction described this way, if the number of moles of the ith

constituent (reactant or product) is ni and if ni = n where n is the total number of moles of

material, then the concentration of the ith constituent is ni/n.  The Law of Mass Action is then   

  (1) 

where f(T) is a function of the temperature if the pressure of the system is constant.  

In order to see how the Law of Mass Action comes about we confine ourselves to a

system of ideal gases for which the Ideal Gas Law PV = nRT holds.  For such a system the partial

pressure of each gas is given by  where P is the total pressure.  The pressure can be

kept constant by allowing the reaction to take place in a vessel with one end a piston that exerts a

constant force on the gas mixture.  To proceed we need to review the First law of

thermodynamics and the concept of entropy.  We then define some new thermodynamic quantities

designed for the specific problem at hand, called the Enthalpy and the Gibbs Function.

The First Law says that the change in energy U of a gas is equal to the heat added to the
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gas less the work done by the expansion (change in volume) of the gas: 

dU = dQ - dW (2)  

The heat dQ = TdS, where T is the temperature and S is the entropy.  The work done by the gas

is 

dW = PdV.  Work done on the gas is dW = -PdV.  Thus, if the volume decreases as work is done

on the gas, dW < 0.  The entropy dS is given by 

dS > dQ/T (3) 

where the equality holds only for reversible processes.  An example of a reversible process is one

in which the volume of gas increases infinitesimally slowly as the gas does work on a piston.  An

irreversible process would be the rapid expansion of the gas volume with resulting turbulence set

up in the gas.  For a reversible process dU can be integrated exactly: dU is a perfect differential in

the mathematical sense.  

If we allow the possibility of a mixture of gases which can react chemically, to dU we

must add a term  which represents the energy extracted from or added to the system

when dni moles react, depending on whether the reaction is exothermic or endothermic,

respectively.   is called the chemical potential: it represents the amount of energy absorbed or

released per mole in a chemical reaction. Then   

(4)

(for a reversible process).  Since dU is a perfect differential for a reversible process we may write

it in the form 

(5)

 where .  The subscripts on the

partials explicitly indicate the variables that are kept constant.  The energy depends explicitly on

S, V and n (or several ni ) - these are the natural variables for U and they are called extensive
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variables; they depend on the amount of material in the system.  If we write dU generally as

 then we see that when a small change in S, V or n doesn’t

change U, that U must be a minimum.  This is the equilibrium state of the system.  For a system

where the volume is allowed to change but the pressure is kept constant, the energy will no longer

be a minimum in equilibrium and we must look for another function or potential to describe the

system.   The quantities P, T and  are called intensive variables: they do not depend on the

amount of material in the system (T doesn’t double if the amount of material is doubled).  

To find the new potentials we use a method developed by Euler.  Suppose the extensive

variables S, V and n are increased by an amount  and the intensive variables are kept

unchanged. Then U would change by the same factor : 

dU = T dS - P dV + dn (6)

(we consider just one species of gas in this example to simplify the notation).  Put another way, 

U( S, V, n) = U(S,V,n) (6') 

If this expression is differentiated with respect to  we find   

(7)

 where X1 = S, X2 = V, X3 = n etc.  Then we have

(8)  

When there is more than one species of gas the term n is replaced by .  Before

proceeding we calculate the entropy and chemical potential of an ideal gas where dn = 0: the

results will be needed shortly.

For an ideal mono-atomic gas at constant temperature 

(9)  

From the first law we then have 
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 (10)  

When this is integrated we get 

 (11) 

where S = So when T = To and V = Vo .  If we now take into consideration the chemical potential

of the gas and write the energy again as U = TS - PV + n = 3/2 nRT, we can express the

chemical potential as 

 (12)

In terms of the entropy calculated above we obtain 

(13)

which can be simplified to 

 (14) 

The quantity  is the entropy of 1 mole of gas at temperature To and volume Vo .  

Note that if the volume of the gas is constant so no work is done by or on the gas, 

dU = dQ = 3/2 nRT.  Then , which is the heat capacity of the gas at constant

volume.

Suppose now that instead of holding the volume of the gas constant we hold the pressure

constant.  We define a new potential H called the enthalpy as 
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1  If P is constant, from  we get, with 

P = constant = , .  Thus . 

H = U + PV (15) 

If we take the differential of H we get 

dH = dU + PdV + VdP = TdS + VdP + dn (16)

The natural variables of H are those that appear as differentials: S, P and n.  .  

If the pressure and number of moles of gas are constant so 

dP = dn = 0, dH = TdS = dQ and  , the heat capacity at constant pressure1.  

Finally, we define the quantity 

G = H - TS  (17)

called the Gibbs Function.  G is very handy for calculations involving chemical reactions taking

place at constant temperature and pressure.  This is the case for reactions in a vessel in contact

with a heat reservoir and sealed by a movable piston that applies a constant force.  From 

G = H - TS = U +PV - TS (18)

we get 

dG < TdS -PdV + dn + PdV - VdP -TdS - SdT = dn - VdP - SdT   (19)

If the temperature, pressure and number of moles of gas are constant, dG is negative or zero for

an irreversible or reversible process, respectively, which implies G is a minimum.  

We are now ready to see what happens when a chemical reaction defined by 

takes place.  Recall that  is the number of molecules of substance Ni while ni is the number of
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moles.  From G = U + PV - TS and U = TS - PV +  we see 

G =  (20)

and 

dG =  (21)

if T and P are constant.

We can now derive the Law of Mass Action for a mixture of ideal mono-atomic gases that

undergo a chemical reaction.  First we note that since ideal gases do not interact except to

undergo a chemical reaction, their energies and entropies add.  Suppose there are ni moles of gas

of type i (species Ni) and that the total number of moles of gas is .  The energy of

species i is            

 (22)

where Uoi is the energy of no moles of the gas that occupy a volume Vo when T = To.  Similarly,

the entropy of gas of species i is 

   (23)

Soi is the entropy of no moles of gas when T = To and V = Vo; the factor is due to the entropy

of mixing (it is, obviously, present only when more than one species of gas is present).  The total

energy and entropy are 

  (22')

and 

     (23')
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The independent variables in the expressions are ni, T and V.  

As a check on the validity of these expressions we can use them to derive the ideal gas law

PV = nRT: from dU = TdS - PdV + i dni we have .  By manipulating the

partial derivatives the pressure can be expressed as 

(24)

This is done as follows: if U and the ni are held constant,  dU = 0 and dni = 0 for all i.  Then  

dU = TdS - PdV + i dni becomes 0 = TdS -PdV or .  The temperature T is

given by or , and Equation 24 follows directly.

Similarly 

  (25) 

so we can write the pressure as

  (26)

From the expressions for the energy and the entropy we can calculate:

(27)
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(28)   

(using the fact that for the perfect gas if U is constant, T is constant) and

(29)

From these partials we then get 

(30)

 so the ideal gas law has indeed been recovered.  If P is multiplied by the concentration ni/n of

species i we find the partial pressure  of the ith species.

Now assume that the mixture of gases undergoes a chemical reaction that produces new

gas molecules, and that the temperature and pressure are maintained at constant values by using a

heat reservoir and a constant pressure piston.  Then with

(31) 

we have 

(32)

Let the number of moles be expressed in terms of the number of molecules by dni = i dx (this

means dn is  times a dimensionless differential dx).  If in the chemical

reaction i is a negative number this implies that ni moles of gas i will be used up; if i is positive

ni moles will be created.  and at equilibrium, when the reaction is over, G is a
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minimum so dG = 0.  This implies that

 (33)

since a small change in dx must leave G unchanged (the meaning of a minimum).  Now at

constant volume the differential change in the energy U is 

(34)

  If we differentiate this expression with respect to nk we get 

(35)  

Since  where ik is the Kronecker delta (defined as ik = 0, i  k, ik = 1, i = k), we

find the chemical potential 

(36)  

With 

(37)

 the differentiation yields 

   (38)

Now if we use Equation 23 for the entropy, 

, differentiation gives us  
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(39) 

Putting all the terms together we get the chemical potential in terms of the initial energy and

entropy, the temperature, the volume and the number of moles of the gases:     

(40)

We can now manipulate this expression into a more useful form by using the Ideal Gas Law 

PV = nRT to write .  Then the product  becomes

.   Finally, with a little algebraic manipulation the chemical

potential of the kth species is found to be 

  (41) 

or            

(42)

 where Fk(T) is a function only of the temperature.  This is the key result, for if we now re-write

the equation describing the chemical reaction

(33)

 in terms of Equation 42 for  we obtain
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      (43) 

or,   

 (44)

where A(T) is a function only of T.  If we divide both sides of this expression by RT we have   

(45)

or, using the relation between the partial pressures of the gases, 

(45')

or (45'’)

By taking the anti-logarithm of both sides of this last equation we get the Law of Mass Action:  

 (46)

where f(T) is a function only of the temperature if P is constant.  That is, the product of the

concentrations nk/no raised to the power   is a function only of the temperature if the pressure P

is constant.



Mobility

Here is a simplified argument for the equation .  Recall that the mobility  is defined

by   where  is the average, or drift speed and E is the electric field strength.  Suppose

the average distance an electron or hole travels between collisions is l and the average time

between collisions is ; when there is a collision the particle changes direction and begins to

accelerate in the direction of the electric field again.  The average speed is then  and the

average momentum is .  The particle is subject to a force F = qE due to the electric field.

 From  we can identify the force F with the momentum divided by the time between

collisions, or, conversely,  .    We then have:  or,

cancelling the common factor E, .  A tighter argument can be made by calculating the

average speed and mean free path using appropriate distribution functions, but the result is the

same.



Drift velocity

We see that the drift velocity of an electron in a field of 1 V cm-1 is not particularly high

and is equal to the velocity an electron would attain in free space in a few nanoseconds.  The

reason for this is that the electrons have frequent elastic collisions in which they change direction

and hence velocity.  Free electrons in Si have an average kinetic energy determined by the

temperature.  At room temperature this is about 0.025 eV, which corresponds to a velocity of

.  An electric field of about 5 x 103 V cm-1 gives a

drift velocity of this size.  It is found experimentally that the drift velocity becomes independent

of the electric field when it is about twice the thermal velocity - the velocity “saturates”.  The

reason is that collisions happen so frequently that the electron can’t gain any more speed no

matter how strong the field.



Current density

Current density is related to the concept of flux.  This concept is easily understood using

familiar terms.  Suppose there are people exactly five feet high passing through a doorway ten feet

wide and five feet high.  If the people take up one square foot each, their density is one person per

five cubic feet.  If they move through the doorway at a speed of one foot per second, then ten

people will move through the ten foot wide doorway per second.  The density of the people

multiplied by their velocity is v = 1/5 ft-3 x 1 ft sec-1 = 1/5 ft-2 sec-1.  The flux F of people is

defined as the number per second per square foot.  In this case the number of people is ten per

second  divided by the area A of the doorway, which is A = 5 x 10 = 50 ft2.  Therefore we find   

F = 10 sec-1 ÷ 50 ft2 = 1/5 ft-2 sec-1 = v.  In the case of electric current we multiply the number

density of the holes or electrons, po or no (cm-3), respectively, by the charge ±q to get the current

density J ( C cm-2 sec-1 = A cm-2).  



Resistivity of Si

To get a feel for the resistivity of Si, consider three cases: (1) intrinsic Si (no = po = ni);

(2) n-type Si with Nd = 1x1018; and (3) p-type Si with Na = 1x1017.  In the first case

Therefore the resistivity is  = 1/  = 3x105 -cm.  In the second case no = 1 x 1018  so po = 100,

which is completely negligible.   = 1.6x10-19 x 1x1018 x 1500 = 240 ( -cm)-1 so  = 4.2x10-3 

-cm.  Finally, in the third case po = 1x1017 so no = 1000, which is again negligible.  Then          

  = 9.6 ( -cm)-1 and   = 0.1 -cm.



Diffusion

The mathematics of diffusion can get involved, but if we limit ourselves to one-

dimension it’s pretty straightforward.  This is not much of a limitation because when we consider

diffusion in a semiconductor device the one-dimensional approximation is good.

The simplest conceptual picture of diffusion is probably the motion of ink molecules in

water.  Imagine a small drop of ink placed carefully into a glass of still water (a glass of water at

uniform temperature that has been sitting untouched for a few days, so there are no currents in

it).  From experience we know that the ink drop will slowly spread out and that, if we wait a long

time, the ink molecules will eventually be distributed uniformly throughout the glass.  What is

happening is that the molecules are moving from regions of high ink density to regions of low

ink density.  Why do they do this?  Here is a simple analogy.  Imagine a basketball court aligned

along a north-south line with the north half having one person every square foot and the south

half having one person every ten square feet.  If the people move randomly but only towards one

basket or the other, then at any given time half the people will be moving towards the south

basket and half towards the north basket.  Near the center court there will be, on the average, ten

times as many people moving south as moving north and so, after a while the densities of people

will start to equilibrate.

Now consider the following situation: particles are arranged in three dimensions but can

move only along the direction of the x-axis.  The particles have an average speed vx and their

density  is a function of x:  = (x).  Consider a plane perpendicular to the x-axis at location

x and another plane perpendicular to the x-axis but located at x + dx.  The density of particles at

the first plane is (x) and the density at the second plane is (x+dx).  The average number of

particles cm-2 sec-1 moving from the plane at x towards the plane at x + dx will be ½ (x) vx and

the average number of particles cm-2 sec-1 moving towards the plane at x from the plane at x + dx

will be ½ (x+dx) vx.  The net number of particles per cm2 sec1 crossing the plane at x will then

be  so the flux F of particles is proportional to the

derivative of the density: .  The constant has units of cm2 sec-1 and is called

the diffusion constant. The minus sign means the flow is away from the high density region.



Non-linear equation

Although non-linear differential equations are in general very difficult to solve, there is one

almost obvious case where the solution is easy: if the generation rate g(t) is very large and then

shuts off, and if n >> no + po,  the equation becomes  or, with 

 , .  This is easily integrated to give

, or, re-arranging, which, for

large values of t, decreases linearly with t.



Equation of continuity

The easiest way to understand the equation of continuity is to consider a gas, which

consists of a very large number of particles cm-3, so that we can define a density.  Now, take some

small volume of gas in a volume dV = Adx, where A is the area of a side of the volume

perpendicular to the x-axis.  The mass of material in the volume is the dV = Adx.  Let the flux

of gas molecules into the volume at x be J(x) and the flow out of the volume at x + dx  be 

J(x + dx)) (J has units of gm cm-2 sec-1 ).  Then the time rate of change of the mass due to the net

flow out of the volume will be [J(x) - J(x + dx)] A = .  The rate of change of the

mass of gas in the volume due to the change in density is . The total rate

of change of the mass of gas must be zero since matter is conserved, so 

 



Relaxation time

Suppose you were to place a quantity of electric charge Q in doped Si.  The charge is

initially contained in a small volume vo of radius a.  The Si has dielectric constant  and

conductivity .  Since like charges repel the charge would spread itself out as much as possible

and, after some time, most of it would have left the initial volume.  How long would it take for

the amount of charge in vo to be reduced by 1/e?  This time can be found by using the equation of

continuity   and J = E.  Since  we immediately have 

which, when integrated, gives us  where is the dielectric

time constant.  For  n-type Si with doping  Nd = 1017,  = qno e = 24 ( -cm)-1 while the

dielectric constant of Si is 11.8   10-11 F cm-1, so   4 x 10-13 sec-1.  Thus the relaxation

time is very short.
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Density distribution

An example:  finding the density distribution of holes in n-type Si when there is a source of

electron-hole  pairs given by  g(x) = constant = G over part of the length of the Si.  Assume the Si

is doped with donors at a density Nd and that the Si has a length W.  Assume also that g(x) = 0 for

x < W1 and for x > W2 and that there are metallic contacts at x = 0 and x = W so that p(0) =

p(W) = 0.

For x < W1 and for x > W2 the equation for the holes is  , with boundary

conditions p(0) = p(W) = 0.  For W1 < x < W2 we have  .  A condition we

can impose on the carrier densities is that they and their first derivatives be continuous functions

of position, because if they were not that would imply discontinuities in the current density, which

would be unphysical.

In the regions where g = 0 the solutions are  for x < W1 and

 for x > W2.  At x = 0 we have B = -A so that p(x) = 2A sinh(x/Lh) .  At x =

W we have  and so .

Where g(x) = G we have a non-homogeneous differential equation.  The homogeneous

part is the same as before and so the solution is again E sinh(x/Lh) .  To these we add a particular

solution equal to a constant,  so p(x) = E sinh(x/Lh) + const .  When this is put into the differential

equation we get 

so the value of the constant is  .  We then require that p(x) and  be continuous
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at x = W1 and at x = W2, which gives the values for A, C and E in terms of W1 and W2.  Once

these constants are known the current densities can be found for all values of x, as well as the

electric field in the Si.

____________________________________________________________________________


