Mobility

Here is a simplified argument for the equation $\mu=\frac{q \tau}{m}$. Recall that the mobility μ is defined by $\overline{\mathbf{v}}=\mu E$ where $\overline{\mathbf{v}}$ is the average, or drift speed and E is the electric field strength. Suppose the average distance an electron or hole travels between collisions is l and the average time between collisions is τ; when there is a collision the particle changes direction and begins to accelerate in the direction of the electric field again. The average speed is then $\overline{\mathrm{v}}=\frac{l}{\tau}$ and the average momentum is $\mathrm{p}=\mathbf{m} \overline{\mathrm{v}}$. The particle is subject to a force $\mathrm{F}=\mathrm{q} E$ due to the electric field. From $F=\frac{d p}{d t}$ we can identify the force F with the momentum divided by the time between
collisions, or, conversely, $\mathrm{p}=\mathrm{m} \overline{\mathrm{v}}=\mathrm{F} \tau=\mathrm{q} E \tau$. We then have: $\overline{\mathrm{v}}=\mu E=\frac{\mathrm{p}}{\mathrm{m}}=\frac{\mathrm{q} E \tau}{\mathrm{~m}}$ or, cancelling the common factor $E, \mu=\frac{\mathrm{q} \tau}{\mathrm{m}}$. A tighter argument can be made by calculating the average speed and mean free path using appropriate distribution functions, but the result is the same.

