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Mass action

This material involves more extensive use of thermodynamics than is usually covered in first year

physics, but the material is not intrinsically more difficult than other 3rd year electrical engineering

topics.  It is somewhat lengthy but it should be understood in order to follow the arguments about

recombination in this chapter.

The Law of Mass Action governs chemical reactions of the form 2H2 +O2  2H2O or 

[electron-hole pair]  [Si bond].  The notation used is as follows: when i molecules of initial

reactant Ni produces j molecules of product Nj, we write .  This means that the i

are negative numbers since they represent reactants used up in the reaction.  For example, in the

production of water where 2H2O  2H2 + O2 we write   or 

 or, without the symbols,

.  For a reaction described this way, if the number of moles of the ith

constituent (reactant or product) is ni and if ni = n where n is the total number of moles of

material, then the concentration of the ith constituent is ni/n.  The Law of Mass Action is then   

  (1) 

where f(T) is a function of the temperature if the pressure of the system is constant.  

In order to see how the Law of Mass Action comes about we confine ourselves to a

system of ideal gases for which the Ideal Gas Law PV = nRT holds.  For such a system the partial

pressure of each gas is given by  where P is the total pressure.  The pressure can be

kept constant by allowing the reaction to take place in a vessel with one end a piston that exerts a

constant force on the gas mixture.  To proceed we need to review the First law of

thermodynamics and the concept of entropy.  We then define some new thermodynamic quantities

designed for the specific problem at hand, called the Enthalpy and the Gibbs Function.

The First Law says that the change in energy U of a gas is equal to the heat added to the
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gas less the work done by the expansion (change in volume) of the gas: 

dU = dQ - dW (2)  

The heat dQ = TdS, where T is the temperature and S is the entropy.  The work done by the gas

is 

dW = PdV.  Work done on the gas is dW = -PdV.  Thus, if the volume decreases as work is done

on the gas, dW < 0.  The entropy dS is given by 

dS > dQ/T (3) 

where the equality holds only for reversible processes.  An example of a reversible process is one

in which the volume of gas increases infinitesimally slowly as the gas does work on a piston.  An

irreversible process would be the rapid expansion of the gas volume with resulting turbulence set

up in the gas.  For a reversible process dU can be integrated exactly: dU is a perfect differential in

the mathematical sense.  

If we allow the possibility of a mixture of gases which can react chemically, to dU we

must add a term  which represents the energy extracted from or added to the system

when dni moles react, depending on whether the reaction is exothermic or endothermic,

respectively.   is called the chemical potential: it represents the amount of energy absorbed or

released per mole in a chemical reaction. Then   

(4)

(for a reversible process).  Since dU is a perfect differential for a reversible process we may write

it in the form 

(5)

 where .  The subscripts on the

partials explicitly indicate the variables that are kept constant.  The energy depends explicitly on

S, V and n (or several ni ) - these are the natural variables for U and they are called extensive
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variables; they depend on the amount of material in the system.  If we write dU generally as

 then we see that when a small change in S, V or n doesn’t

change U, that U must be a minimum.  This is the equilibrium state of the system.  For a system

where the volume is allowed to change but the pressure is kept constant, the energy will no longer

be a minimum in equilibrium and we must look for another function or potential to describe the

system.   The quantities P, T and  are called intensive variables: they do not depend on the

amount of material in the system (T doesn’t double if the amount of material is doubled).  

To find the new potentials we use a method developed by Euler.  Suppose the extensive

variables S, V and n are increased by an amount  and the intensive variables are kept

unchanged. Then U would change by the same factor : 

dU = T dS - P dV + dn (6)

(we consider just one species of gas in this example to simplify the notation).  Put another way, 

U( S, V, n) = U(S,V,n) (6') 

If this expression is differentiated with respect to  we find   

(7)

 where X1 = S, X2 = V, X3 = n etc.  Then we have

(8)  

When there is more than one species of gas the term n is replaced by .  Before

proceeding we calculate the entropy and chemical potential of an ideal gas where dn = 0: the

results will be needed shortly.

For an ideal mono-atomic gas at constant temperature 

(9)  

From the first law we then have 
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 (10)  

When this is integrated we get 

 (11) 

where S = So when T = To and V = Vo .  If we now take into consideration the chemical potential

of the gas and write the energy again as U = TS - PV + n = 3/2 nRT, we can express the

chemical potential as 

 (12)

In terms of the entropy calculated above we obtain 

(13)

which can be simplified to 

 (14) 

The quantity  is the entropy of 1 mole of gas at temperature To and volume Vo .  

Note that if the volume of the gas is constant so no work is done by or on the gas, 

dU = dQ = 3/2 nRT.  Then , which is the heat capacity of the gas at constant

volume.

Suppose now that instead of holding the volume of the gas constant we hold the pressure

constant.  We define a new potential H called the enthalpy as 
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1  If P is constant, from  we get, with 

P = constant = , .  Thus . 

H = U + PV (15) 

If we take the differential of H we get 

dH = dU + PdV + VdP = TdS + VdP + dn (16)

The natural variables of H are those that appear as differentials: S, P and n.  .  

If the pressure and number of moles of gas are constant so 

dP = dn = 0, dH = TdS = dQ and  , the heat capacity at constant pressure1.  

Finally, we define the quantity 

G = H - TS  (17)

called the Gibbs Function.  G is very handy for calculations involving chemical reactions taking

place at constant temperature and pressure.  This is the case for reactions in a vessel in contact

with a heat reservoir and sealed by a movable piston that applies a constant force.  From 

G = H - TS = U +PV - TS (18)

we get 

dG < TdS -PdV + dn + PdV - VdP -TdS - SdT = dn - VdP - SdT   (19)

If the temperature, pressure and number of moles of gas are constant, dG is negative or zero for

an irreversible or reversible process, respectively, which implies G is a minimum.  

We are now ready to see what happens when a chemical reaction defined by 

takes place.  Recall that  is the number of molecules of substance Ni while ni is the number of
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moles.  From G = U + PV - TS and U = TS - PV +  we see 

G =  (20)

and 

dG =  (21)

if T and P are constant.

We can now derive the Law of Mass Action for a mixture of ideal mono-atomic gases that

undergo a chemical reaction.  First we note that since ideal gases do not interact except to

undergo a chemical reaction, their energies and entropies add.  Suppose there are ni moles of gas

of type i (species Ni) and that the total number of moles of gas is .  The energy of

species i is            

 (22)

where Uoi is the energy of no moles of the gas that occupy a volume Vo when T = To.  Similarly,

the entropy of gas of species i is 

   (23)

Soi is the entropy of no moles of gas when T = To and V = Vo; the factor is due to the entropy

of mixing (it is, obviously, present only when more than one species of gas is present).  The total

energy and entropy are 

  (22')

and 

     (23')
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The independent variables in the expressions are ni, T and V.  

As a check on the validity of these expressions we can use them to derive the ideal gas law

PV = nRT: from dU = TdS - PdV + i dni we have .  By manipulating the

partial derivatives the pressure can be expressed as 

(24)

This is done as follows: if U and the ni are held constant,  dU = 0 and dni = 0 for all i.  Then  

dU = TdS - PdV + i dni becomes 0 = TdS -PdV or .  The temperature T is

given by or , and Equation 24 follows directly.

Similarly 

  (25) 

so we can write the pressure as

  (26)

From the expressions for the energy and the entropy we can calculate:

(27)



8

(28)   

(using the fact that for the perfect gas if U is constant, T is constant) and

(29)

From these partials we then get 

(30)

 so the ideal gas law has indeed been recovered.  If P is multiplied by the concentration ni/n of

species i we find the partial pressure  of the ith species.

Now assume that the mixture of gases undergoes a chemical reaction that produces new

gas molecules, and that the temperature and pressure are maintained at constant values by using a

heat reservoir and a constant pressure piston.  Then with

(31) 

we have 

(32)

Let the number of moles be expressed in terms of the number of molecules by dni = i dx (this

means dn is  times a dimensionless differential dx).  If in the chemical

reaction i is a negative number this implies that ni moles of gas i will be used up; if i is positive

ni moles will be created.  and at equilibrium, when the reaction is over, G is a
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minimum so dG = 0.  This implies that

 (33)

since a small change in dx must leave G unchanged (the meaning of a minimum).  Now at

constant volume the differential change in the energy U is 

(34)

  If we differentiate this expression with respect to nk we get 

(35)  

Since  where ik is the Kronecker delta (defined as ik = 0, i  k, ik = 1, i = k), we

find the chemical potential 

(36)  

With 

(37)

 the differentiation yields 

   (38)

Now if we use Equation 23 for the entropy, 

, differentiation gives us  
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(39) 

Putting all the terms together we get the chemical potential in terms of the initial energy and

entropy, the temperature, the volume and the number of moles of the gases:     

(40)

We can now manipulate this expression into a more useful form by using the Ideal Gas Law 

PV = nRT to write .  Then the product  becomes

.   Finally, with a little algebraic manipulation the chemical

potential of the kth species is found to be 

  (41) 

or            

(42)

 where Fk(T) is a function only of the temperature.  This is the key result, for if we now re-write

the equation describing the chemical reaction

(33)

 in terms of Equation 42 for  we obtain
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      (43) 

or,   

 (44)

where A(T) is a function only of T.  If we divide both sides of this expression by RT we have   

(45)

or, using the relation between the partial pressures of the gases, 

(45')

or (45'’)

By taking the anti-logarithm of both sides of this last equation we get the Law of Mass Action:  

 (46)

where f(T) is a function only of the temperature if P is constant.  That is, the product of the

concentrations nk/no raised to the power   is a function only of the temperature if the pressure P

is constant.


