http://www.ece.umd.edu/~pabshire/enee312h.htm

due Tuesday, March 19, 2002

1) The *npn* silicon transistor shown below is characterized by the following parameters: $N_{DE} = 5 \times 10^{17} \text{ cm}^{-3}$, $w_E = 3 \ \mu \text{ m}$, $\tau_{hE} = 0.1 \ \mu \text{ s}$, $\mu_{hE} = 250 \text{ cm}^2/\text{Vs}$ $N_{AB} = 5 \times 10^{16} \text{ cm}^{-3}$, $w_B = 0.8 \ \mu \text{ m}$, $\tau_{eB} = 0.1 \ \mu \text{ s}$, $\mu_{eB} = 1000 \text{ cm}^2/\text{Vs}$ $N_{DC} = 5 \times 10^{15} \text{ cm}^{-3}$, $w_C = 6 \ \mu \text{ m}$, $\tau_{hC} = 0.1 \ \mu \text{ s}$, $\mu_{hC} = 500 \text{ cm}^2/\text{Vs}$

Start by checking whether the lengths w are small compared to the diffusion lengths, and use these results to compute the effective lengths w^* . The active cross-sectional area of the transistor is 5×10^4 cm². Use V_T = kT/q = 0.025V and $n_i = 10^{10}$ cm⁻³.

- a. The transistor is operated in the forward active mode with $V_{BE}>0$ and $V_{BC}=0$. Obtain numerical values for the base and emitter defects, δ_{EF} and δ_{BF} .
- b. The transistor is operated in the reverse active mode with V_{BC}>0 and V_{BE}=0. Obtain numerical values for the base and collector defects, δ_{CR} and δ_{BR} .
- c. Obtain numerical values for β_F and β_R .
- d. Obtain numerical values for the parameters of the Ebers-Moll model: I_{ES} , I_{CS} , α_F and α_R .
- e. Show that $\alpha_F I_{ES} = \alpha_R I_{CS}$.
- Two high-gain bipolar transistors have identical dimensions and identical emitter, base, and collector doping profiles, except that transistor A is *npn* and transistor B is *pnp*. Indicate which device, if either, has the properties stated below and explain why.
 - a. Largest forward current gain β_F
 - b. Smallest transconductance g_m with $|I_C| = 1mA$
 - c. Largest base-collector diode saturation current I_{CS}
 - d. Lowest parasitic base resistance r_x

3) Consider using the emitter-base junction of an *npn* transistor as a diode. We want to compare the three possible connections illustrated below.

- a. Find a relationship for the diode current I_D as a function of V_{AB} in terms of the Ebers-Moll parameters I_{ES} , I_{CS} , α_F and α_R of the transistor.
- b. For which of these "diodes" is the saturation current " I_S " the smallest? The largest?
- c. For each of these connections find expressions in terms of the Ebers-Moll parameters for the ratio of the collector current to the emitter current.
- d. Indicate on sketches of each of the connections the main current path through the device from A to B.

4) - 7) Complete Sedra & Smith problems 4.3, 4.5, 4.10, 4.97

Research Question:

What is the Early effect? Perform a literature search to find the original paper (nearly 50 years old!) in which Jim Early provides a quantitative explanation and model for the phenomenon. Read the paper and comment on his explanation.