http://www.ece.umd.edu/~pabshire/enee312h.htm

- 1) Consider an abrupt *p*-*n* junction with $N_a = 5 \times 10^{17} \text{ cm}^{-3}$ and $N_d = 10^{16} \text{ cm}^{-3}$ at room temperature.
 - a. Find the ratio of the depletion region width on the *n*-side, x_n , to the width on the *p*-side, x_p .
 - b. Find the total width of the depletion layer (in microns).
 - c. Find the maximum electric field in this junction for applied biases of (i) $V_A=0$ and (ii) $V_A=-12V$.
 - d. The breakdown electric field in moderately doped silicon is approximately $5x10^5$ V/cm. At what reverse bias will the field reach this value, and what will the depletion region width be at that bias?
- 2) Data from a measurement of the small-signal capacitance of a silicon p+-n diode structure as a function of bias voltage is plotted below in the form $1/C_{dep}^2$ versus V_{ab} . The area of the junction is 10^{-5} cm².
 - a. What is the built-in potential of this junction?
 - b. What is the doping level of the more lightly doped side (*n*-side) of this diode in the vicinity of the junction?
 - c. What is the doping level of the more heavily doped side?
 - d. At some distance from the junction the doping level changes.
 - i. At what distance does the change occur?
 - ii. Does the doping level increase or decrease at this point, and what does it become?
 - e. Suppose that in addition to the above structure there is a very heavily doped n+-region 3 μ m from the junction. How would you expect the plot of $1/C_{dep}^{2}$ versus V_{ab} to look in this case?

3) The short-circuited, symmetrically doped p-n diode shown below is illuminated by a distributed source that generates $g(x) = g_0 \sin\left(\frac{\pi x}{w_n}\right)$ hole-electron pairs/cm³ in the

region 0 ≤ x ≤ w_n. You may assume: low level injection, w_n << L_h, w_p << L_e,
μ_e = 4μ_h, N_d = N_a. Label sketches of the following over the range - w_p ≤ x ≤ w_n.
a. n'(x)
b. J_e(x)

- c. $J_h(x)$
- d. Find the total short-circuit current of the diode.

4) - 7) Complete Sedra & Smith problems 3.47, 3.69, 3.71, 3.101

Design Question:

A photodiode has reverse saturation current $I_S = 1pA$. Upon illumination the short circuit reverse saturation current increases to about 1nA. Compute the optimum load so that maximum power is delivered from the diode.