Table A.1.

Room temperature properties of silicon, germanium, and gallium arsenide

A phillips current in	Si Si	ole di Asse Ge carrent s	GaAs	
$\Delta E_g(eV)$	1.124	0.67 2.4×10^{13}	1.42 9 × 10 ⁶	
$n_i (\text{cm}^{-3})$	1.08 × 10 ¹⁰ 1500	3900	8500	
$\mu_e (\text{cm}^2/\text{V} \cdot \text{s})$ $\mu_h (\text{cm}^2/\text{V} \cdot \text{s})$	600	1900	400	
$\varepsilon_r \left(\varepsilon / \varepsilon_0 \right)$	11.7	15.8	13.1	

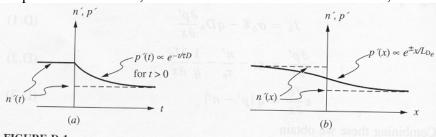
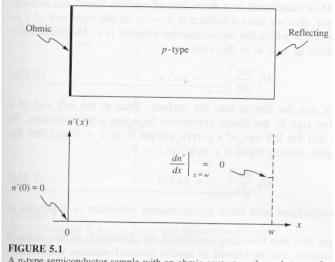
adapted from Fonstad, Microelectronic Devices and Circuits, 1994.

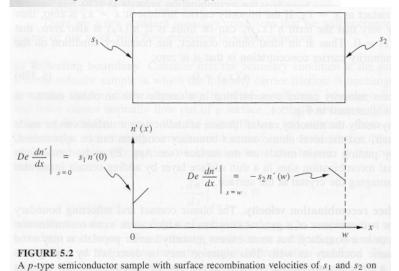
Table A.2 Properties at room temperature (300 K) of some representative elemental and compound semiconductors.

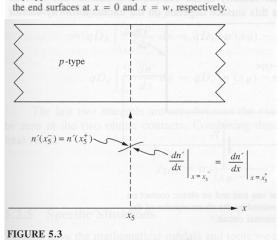
	Lattice		Energy Gap		Mobilities	
	$\begin{array}{c} \textbf{Period} \\ (\leftrightarrow) \end{array}$	Туре	Size (ΔE_g)	Type	$\mu_e(\text{cm}^2/\text{V}\cdot\text{s})$	$\mu_h(\text{cm}^2/\text{V}\cdot\text{s})$
C	3.57	d	5.5	d	2000	2100
Si	5.43	d	1.124	i	1500	500
Ge	5.64	d	0.67	i	3900	1900
a-Sn	6.49	d	≈ 0.08	sord on	2500	2400
AlP	5.46	Z of	2.43	be given	80	
AlAs	5.66	Z	2.17	ide i wit	1000	180
AlSb	6.13	Z	1.58	i	200	420
GaP	5.4	Z	2.26	i	300	150
GaAs	5.65	Z	1.42	d	8500	400
GaSb	6.09	Z	0.72	d	4600	850
InP	5.86	Z	1.35	d	4000	600
InAs	6.05	Z	0.36	d	33,000	200
InSb	6.47	Z	0.17	d	80,000	1700
ZnS	5.42	Z	3.68	d	165	5
ZnSe	5.67	Z	2.70	d	500	30
ZnTe	6.10	Z	2.26	d	340	50
CdS		W	2.42	d	250	
CdSe		W	1.73	d	650	
CdTe	6.48	Z	1.56	d	1050	100

The abbreviations used are, in the lattice type column: d-diamond, z-zinc blende, w-wurtzite (hexagonal); and in the energy gap type column: d-direct, i-indirect.

adapted from Fonstad, Microelectronic Devices and Circuits, 1994.


FIGURE D.1


Variations of the excess majority carrier concentration p'(x) (solid curve) in response to a hypothetical temporal or spatial step change, respectively, in the minority carrier concentration n'(x) (dashed curve): (a) temporal; (b) spatial.

adapted from Fonstad, Microelectronic Devices and Circuits, 1994.

A p-type semiconductor sample with an ohmic contact on the end at x = 0 and a reflecting boundary on the end at x = w.

Internal boundary at $x = x_5$ in a *p*-type semiconductor sample, illustrating the continuity of the excess minority carrier concentration and its derivative.

adapted from Fonstad, Microelectronic Devices and Circuits, 1994.