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Abstract—This paper presents a new data hiding method for
curves. The proposed algorithm parameterizes a curve using
the B-spline model and adds a spread spectrum sequence to the
coordinates of the B-spline control points. In order to achieve
robust fingerprint detection, an iterative alignment-minimiza-
tion algorithm is proposed to perform curve registration and to
deal with the nonuniqueness of B-spline control points. Through
experiments, we demonstrate the robustness of the proposed
data-hiding algorithm against various attacks, such as collusion,
cropping, geometric transformations, vector/raster-raster/vector
conversions, printing-and-scanning, and some of their combina-
tions. We also show the feasibility of our method for fingerprinting
topographic maps as well as writings and drawings.

Index Terms—B-splines, collusion-resistant fingerprinting,
data embedding, geospatial data protection, map watermarking,
resilience to printing-and-scanning.

I. INTRODUCTION

APS represent geospatial information ubiquitous in gov-
M ernment, military, intelligence, and commercial opera-
tions. The traditional way to protect a map from unauthorized
copying and distribution is to place deliberate errors in the map,
such as spelling “Nelson Road” as “Nelsen Road,” bending a
road in a wrong way, and/or placing a nonexisting pond. If an
unauthorized user has a map containing basically the same set
of errors, this is a strong piece of evidence for piracy that can
be presented in court. One of the classic lawsuits is the Rock-
ford Map Pub. versus Dir. Service Co. of Colorado, 768 F.2d
145, 147 (7th Cir., 1985), where phony middle initials of names
in a map spelled out “Rockford Map Inc.” when read from the
top of the map to the bottom, and thus, copyright infringement
was found. However, the traditional protection methods alter
the geospatial meanings conveyed by a map, which can cause
serious problems in critical government, military, intelligence,
and commercial operations that require high-fidelity geospatial
information. Furthermore, in the situations where distinct errors
serve as fingerprints to trace individual copies, such deliberately
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placed errors can be easily identified and removed by computer
programs after multiple copies of a map are brought to the dig-
ital domain. All of these limitations of the traditional methods
prompt the need for a modern way to map protection that can
be more effective and less intrusive.

Curves are one of the major components appearing in maps as
well as drawings and signatures. A huge amount of curve-based
documents are being brought to the digital domain, owing to the
popularity of scanning devices and pen-based devices (such as
Tablet PCs). Digital maps and drawings are also generated di-
rectly by various computer programs, such as map-making soft-
ware and computer-aided design systems. Having the capability
of hiding digital watermarks or other secondary data in curves
can facilitate digital rights management of important documents
in government, military, and commercial operations. For ex-
ample, trace-and-track capabilities can be provided by invisibly
embedding a unique ID, which is referred to as a digital finger-
print to each copy of a document before distributing it to a user
[3], [4]. In this paper, we present a new, robust data-hiding tech-
nique for curves and investigate its feasibility for fingerprinting
maps.

As a forensic mechanism to deter information leakage and
to trace traitors, digital fingerprints must be difficult to remove.
For maps and other visual documents, the fingerprint has to be
embedded in a robust way against common processing and ma-
licious attacks. Some examples include collusion, where several
users combine information from several copies, which have the
same content but different fingerprints, to generate a new copy
in which the original fingerprints are removed or attenuated [3];
various geometric transformations, such as rotation, scaling, and
translation (RST); and D/A-A/D conversions, such as printing-
and-scanning. On the other hand, the fingerprint must be em-
bedded in a visually nonintrusive way without changing the ge-
ographical and/or visual meanings conveyed by the document.
This is because the intrusive changes may have serious con-
sequences in critical military and commercial operations, for
example, when inaccurate data are given to troops or fed into
navigation systems.

There are a very limited amount of existing works on water-
marking maps [5], and few works exploit curve features or
address fingerprinting issues. A text-based geometric normal-
ization method was proposed in [6], whereby text labels are first
used to normalize the orientation and scale of the map image,
and conventional robust watermarking algorithms for grayscale
images are then applied. As a map can be represented as a set
of vectors, two related works on watermarking vector graphics
perturb vertices through Fourier descriptors of polygonal lines
[7] or spectral analysis of mesh models [8] to embed copyright
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marks. The embedding in [7] introduces visible distortions,
as shown by the experimental results in the paper. The water-
marking approach in [8] has high complexity resulting from the
mesh spectral analysis, and it cannot be easily applied to maps
beyond urban areas, where curves become essential compo-
nents in mapping a vast amount of land and underwater terrains.
Since curve-based documents can also be represented as binary
bitmap images (known as the raster representation), we expand
the literature survey to data embedding works for general binary
images. The data hiding algorithm in [9] enforces the ratio of
black versus white pixels in a block to be larger or smaller than
1, and flippable pixels are defined and used in [10] and [11] to
enforce a specific block-based relationship to embed data. The
fragility of these embedding techniques and the dependence on
precise sampling of pixels for correct decoding pose challenges
in surviving geometric transformations, printing-and-scanning,
and malicious removal in fingerprinting applications. A few
other works embed information in dithered images by manip-
ulating the dithering patterns, in fax images by manipulating
the run-length [12], and in textual images by changing the line
spacing and character spacing [13]. These works cannot be
easily extended to robustly mark curve-based documents.

Several watermarking algorithms on graphic data explore
compact representations of curves or surfaces for data em-
bedding, such as through the nonuniform rational B-spline
(NURBS) model. The work in [14] explains how to embed data
in NURBS curves and surfaces without changing the shape or
increasing the number of B-spline parameters. The approach
demonstrated in the paper relies on reparameterizing a curve
or surface using a rational linear function that has an offset
determined by the bits to be embedded. The embedded data
are fragile and can be removed by perturbing the NURBS
parameters or another round of reparameterization. The work
in [15] and [16] focuses on three-dimensional (3-D) surfaces
and extracts NURBS features from a 3-D surface to form
a few two-dimensional (2-D) arrays. Through DCT-domain
embedding in these virtual images, a watermark is embedded
into the 3-D NURBS surfaces. The work in [17] employs a
different domain for 3-D surfaces through multiresolution
mesh modeling and embeds a spread spectrum watermark by
perturbing the mesh vertices along the direction of the surface
normal. Registration techniques for 3-D NURBS surfaces, such
as [18], may be employed to facilitate the alignment of the test
surfaces with the original reference surface prior to watermark
detection. These prior works provide enlightening analogies
for watermarking 2-D curves in the B-spline feature domain.
As most existing exploration either has limited robustness or
targets mainly 3-D surfaces, there are few discussions on robust
fingerprinting of curves. To the best of our knowledge, no
existing watermarking work has demonstrated the robustness
against curve format conversions and D/A-A/D conversions
or addressed collusion resistance and traitor tracing issues for
curves.

In this paper, we propose a robust curve watermarking
method and apply it to fingerprinting maps without interfering
with the geospatial meanings conveyed by the map. We select
B-spline control points of curves as the feature domain and
add mutually independent, noise-like sequences as digital

3989

fingerprints to the coordinates of the control points. A proper
set of B-spline control points forms a compact collection of
salient features representing the shape of the curve, which
is analogous to the perceptually significant components in
continuous-tone images [19]. The shape of curves is also
invariant to such challenging attacks as printing-and-scanning
and vector/raster-raster/vector conversions. The additive spread
spectrum embedding and the corresponding correlation-based
detection generally provide a good tradeoff between imper-
ceptibility and robustness [19], especially when the original
host signal is available to the detector, as in most of the fin-
gerprinting applications [3]. To determine which fingerprint
sequence(s) is(are) present in a test curve, registration with
the original unmarked curve is an indispensable preprocessing
step. B-splines have invariance to affine transformations in that
the affine transformation of a curve is equivalent to the affine
transformation of its control points. This affine invariance
property of B-splines can facilitate automatic curve registra-
tion. Meanwhile, as a curve can be approximated by different
sets of B-spline control points, we propose an iterative align-
ment-minimization (IAM) algorithm to simultaneously align
the curves and identify the corresponding control points with
high precision. Through the B-spline based data hiding as well
as the TAM algorithm for robust fingerprint detection, our curve
watermarking technique can sustain a number of challenging
attacks, such as collusion, cropping, geometric transformations,
vector/raster-raster/vector conversions, and printing-and-scan-
ning and is therefore capable of building collusion-resistant
fingerprinting for maps and other curve-based documents.

The paper is organized as follows: Section II discusses the
feature domain in which data hiding is performed and presents
the basic embedding and detection algorithms with experi-
mental results on marking simple curves. Section III details the
proposed iterative alignment-minimization algorithm for the
fingerprint detection and analyzes its robustness. Experimental
results on fingerprinting topographic maps are presented in
Section IV to demonstrate the robustness of our method against
a number of distortions and attacks. Finally, conclusions are
drawn in Section V.

II. BASIC EMBEDDING AND DETECTION

Our proposed algorithm employs B-spline control points
of curves as the feature domain, and adopts spread spectrum
embedding [19] for robustly watermarking the coordinates of
the control points. The fingerprints for different users are ap-
proximately orthogonal and are generated by a pseudo-random
number generator with different keys, and the detection is
based on correlation statistics. In Sections II-A-B, we explain
the main steps of the basic embedding and detection method in
detail.

A. Feature Extraction

A number of approaches have been proposed for curve mod-
eling, including using chain codes, Fourier descriptors, autore-
gressive models, and B-splines [20]. Among them, B-splines are
particularly attractive and have been extensively used in com-
puter-aided design and computer graphics. This is mainly be-
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Fig. 1.

cause the B-spline model provides a continuous approximation
of a curve with excellent local shape control and is invariant to
affine transformations [21]. These advantages also lead to our
choosing B-splines as the feature domain for embedding data in
curves.

B-splines are piecewise polynomial functions that provide
local approximations of curves using a small number of parame-
ters known as the control points [20]. Let {p(¢)} denote a curve,
where p(t) = (pz(t), py(t)) and ¢ is a continuous indexing pa-
rameter. Its B-spline approximation {p!Z!(#)} can be written as

n

=0

ey

where ¢ ranges from O to n — 1, ¢; = (¢4, ¢y, ) is the sth control
point (i = 0,1,...,n), and B, ;(t) is the weight of the ith
control point for the point p!”!(#) and known as the kth order
B-spline blending function. B; ;(¢) is recursively defined as

L i<t <t
Bia(t) = {0, otherwise
t—1t;)B; p_1(t tivk — ) Big1k_1(t
Boyty = 0Bk @) | (k= DBisnsin (1)
t1+k—1 -t tl—l—k - tz—l—l
k=23,... )

where {¢;} are parameters known as knots and represent loca-
tions where the B-spline functions are tied together [20]. The
placement of knots controls the form of B-spline functions and
in turn the control points.

As a compact representation, the number of B-spline control
points necessary to represent a curve at a desired precision can
be much smaller than the number of points that can be sampled
from the curve. Thus, given a set of samples on the curve, finding
a smaller set of control points for its B-spline approximation that
minimizes the approximation error to the original curve can be
formulated as a least-squares problem. Coordinates of the m + 1
samples on the curve can be represented as an (m+1) X 2 matrix

Po Pz Dyo
p= | PP P2 py )
Pm Pz,, Pym

Estimate
Fingerprint Sequence

Basic embedding and detection process of data hiding in curves.

The indexing values of the B-spline blending functions corre-
sponding to these m + 1 samples are £t = Sg, $1,52,- -, Sm>
where sg < 51 < s2 < --- < S, Further, let C represent a set
of n + 1 control points

Co Czy  Cyy
c c c

C=|"1]=|" "|2(cpcy). 4)
Cn Car,  Cyn

Then, we can write the least-squares problem with its solution
as

min[[BC -~ P> = C = (BTB)'BTP =B'P (5

where {B}; is the value of the kth-order B-spline blending
function B; x(t) in (2) evaluated at ¢ = s, for the ith control
point and t denotes the pseudo inverse of a matrix. Because of
the natural decoupling of the = and ¢ coordinates in the B-spline
representation, we can solve the problem separately along each
of the two coordinates as

{mincr |IBc, —

) pz”; — {Ca: = BTpa:
mine, IBey — pyll

6)
cy = Bpr. (

B. Basic Embedding and Detection Methods in the
Control-Point Domain

Control points of a curve are analogous to perceptually signif-
icant components of a continuous-tone image [19] in that they
form a compact set of salient features for curves. In such a fea-
ture domain, we apply spread spectrum embedding and correla-
tion-based detection, as shown in Fig. 1.

In the embedding, we use mutually independent, noise-like
sequences as digital fingerprints to represent different users/IDs
for trace and track purposes. As each of the n + 1 control points
has two coordinate values z and y, the overall length of the fin-
gerprint sequence is 2(n + 1). To apply spread spectrum em-
bedding on a curve, we add a scaled version of the fingerprint
sequence (W, W, ) to the coordinates of a set of control points
obtained from the previous subsection. This results in a set of
watermarked control points (c/,, ¢}, ) with

¢ =c, +aw,
{ c, = ¢y +aw,

(N
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where « is a scaling factor adjusting the fingerprint strength.
A watermarked curve can then be constructed according to the
B-spline synthesis equation (1) using these watermarked control
points.

To determine which fingerprint sequence(s) is(are) present in
a test curve, we first need to perform registration using as a ref-
erence the original unmarked curve that is commonly available
to a detector in fingerprinting applications. After registration,
control points (¢, ¢, ) are extracted from the test curve. The
accurate registration and correct extraction of control points are
crucial to the detection of fingerprints, which will be detailed in
Section III. Assuming we have the set of sample points given
by (P, Py) = (B(c, + aw,), B(c, + aw,)), we can extract
the test control points (¢, ¢y) from (P, Ppy) using (6). After
getting (€., ¢,), we compute the difference between the coor-
dinates of the test and the original control points to arrive at an
estimated fingerprint sequence

Wm _ Cr—Cyp
{ &, ()

Wy = %

The estimated fingerprint sequence consists of one or several
users’ contributions as well as some noise coming from dis-
tortions or attacks. The problem of finding out which user(s)
has(have) contributed to the estimated fingerprint can be for-
mulated as hypothesis testing [22], which is commonly handled
by evaluating the similarity between the estimated fingerprint
sequence and each fingerprint sequence in the database through
a correlation-based statistic. Various correlation-based statistics
share a kernel term that measures the total correlation (W, w)
(where w £ [W,,w,] and w £ [w,, w,]) and differ in how
they are normalized. To facilitate the evaluation of detection per-
formance, we often normalize the detection statistic to make it
have a unit variance and follow approximately a Gaussian dis-
tribution under distortions and attacks. There are several ways
to do so [23], for example, to normalize using the product of
the noise’s standard deviation and the watermark’s Lo norm or
through a logarithm-based transformation to be introduced next.

C. Z Statistic for Detection

A nonlinear function of the sample correlation coefficient
from the mathematical statistics literature [24] was introduced
to the watermarking community by Stone and colleagues of the
NEC Research Institute [25]. This is often referred to as the
Fisher’s Z statistic. Among several correlation-based statistics
analyzed and compared in [23], the Z statistic shows excellent
robustness against different collusion attacks and does not re-
quire the explicit estimation of the noise’s variance. These ad-
vantages make it attractive to handle our problem.

The Z statistic originated from the statistical problem of sam-
pling a bivariate normal population [24], i.e., to obtain indepen-
dent and identically distributed (i.i.d.) samples from a pair of
random variables that are jointly Gaussian distributed, with cor-
relation coefficient p unknown to the observers. Let 7 be the
sample correlation coefficient computed from L pairs of sample
data, and —1 < r < 1. The function of r

1+7r
1—7r

1
—log
98
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has been shown [24] to asymptotically follow a normal distribu-
tion when L — oo, with the mean approximating (1/2) log((1+
p)/(1 — p)) and the variance approximating 1/(L — 3). Thus,
the Z statistic defined below follows a unit-variance Gaussian

distribution
vL -3 1 L-3 1
z2 log ~ " N log 2 1) . (9
2 1-—r 2 1—p

The approximation is found excellent with as few as ten pairs of
samples.

In our fingerprint detection problem in the control-point
domain, the effective number of samples for computing the
statistic is L = 2(n + 1). Denoting the average values of the
components in w and w as /1 and p, respectively, we compute
the sample correlation coefficient r between w and w by

L

> (Wi — i) (w; — p)

=1

L 2 L 2
¢ 35 ity = )* 3 (k= 1)

(10)

T =

A simplified model considers that the corresponding compo-
nents of an extracted fingerprint in question and a particular user
Alice’s fingerprint are i.i.d. samples from a bivariate normal
population. When the extracted fingerprint does not have Alice’s
contribution, the expected correlation coefficient is zero, and
the Z statistic will approximately follow a Gaussian distribu-
tion with a zero mean and a unit variance. When the fingerprint
has Alice’s contribution, the Z statistic will have a large posi-
tive mean determined by the correlation coefficient p. To derive
the expression for p, we define a random variable Y EW4+N
and the extracted fingerprint consists of i.i.d. samples from Y.
Here, WV is a zero-mean Gaussian random variable representing
Alice’s fingerprint, and NV is a zero-mean Gaussian random vari-
able representing noise. The correlation coefficient of this bi-
variate normal population (W,Y) is

cov(W)Y)
~ /Var(W)Var(v)
B Var(W) + cov(W, N)
~/Var(W) [Var(W) + Var(N) + 2cov(W, N)]’

(11

When W and N are uncorrelated, the correlation coefficient
becomes

B Var(W) 1
P= \/Var(W) +Var(N) [ 1+ g (12)

where the watermark-to-noise ratio WNRZ  (Var(W)/
Var(N)). Now knowing the distribution of the Z statistics
under the presence and absence of Alice’s fingerprint, we can
compute the probabilities of detection P; and false alarm Py,
for different decision thresholds. A threshold of 3 gives a false
alarm probability on the order of 10™2, while a threshold of 6
corresponds to the order of 1077,

In reality, as the noise introduced by attacks does not neces-
sarily follow a Gaussian distribution and/or the noise samples
may be mutually correlated, the Z statistics with true traitors
may be different from the unit-variance Gaussian distribution.
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The actual distributions of the Z statistics for the fingerprint
presence/absence cases and the detection performance in terms
of the detection probability and the false alarm probability will
be presented in our experimental results.

D. Fidelity and Robustness Considerations

1) Fingerprint Construction: The collusion resistance re-
quirement makes the fingerprinting problem more challenging
than robustly embedding a meaningful ID label, as the simple
encoding of IDs can be vulnerable to collusion (e.g., different
users average their copies of the same content to remove the
IDs). Designing a collusion-resistant code is one of the possible
approaches and has been studied in [26]. Such a coded approach
requires that each code symbol be reliably embedded, which
consumes a nontrivial amount of markable features per em-
bedded bit. The markable feature for our curve watermarking
problem is the coordinates of control points. As the number
of control points is limited and the changes have to be small,
orthogonal modulation that uses (approximately) orthogonal
signals to represent different users is more attractive than the
coded modulation [27]. The general collusion resistance of
orthogonal fingerprinting has been studied in [22], which shows
the maximum number of colluders that the system can resist
is a function of the watermark-to-noise ratio, the number of
markable features, the total number of users, as well as the false
positive and negative requirements.

While the orthogonal design of fingerprints is conceptually
simple and easy to analyze, the practical implementation often
employs a pseudo-random number generator to produce a se-
quence of independent random numbers as a fingerprint and
uses different seeds for different users [23], [26], [28]. In this
way, the actual fingerprints would be statistically uncorrelated,
but they can have a nonzero correlation. This correlation can
accommodate a larger number of fingerprint vectors than the
vector’s dimension, but it also affects the detection performance
to some degree. Since the correlation is very low between the
independent fingerprints, the impact is small. This can be seen
from our experimental results of the detection performance in
Sections II-E and IV.

2) Curvature-Based Sampling: The overall distortion intro-
duced by the embedding process on a curve consists of two
parts: one is from the watermark signals added to the control
point coordinates, and the other is from the B-spline modeling.
To make the B-spline synthesized curve as close to the orig-
inal curve as possible and thus keep the modeling error low,
the knots connecting adjacent segments of B-splines should be
wisely placed, and the sample points should be properly chosen
to feed into the least-squares estimator for the control points.
Uniform sampling can be used when there are no abrupt changes
in a curve segment, while nonuniform sampling is desirable for
curve segments that exhibit substantial variations in curvature.

Inspired by [29] and [30], we employ a curvature-based
method to select sample points from raster curves. Formally,
the curvature [31] of a point p(t) = (p.(t),py(t)) on a curve
{p(t)} is defined as

PLDy — DDy
, 2)3/2

A
) &
(. +v,

(13)
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where p!, = dp,/dt, p d*p. /dt?, p), dp,/dt, and
pg = d?p, /dt*. In practical implementations, we approximate
the curvature of each point on the curve by measuring the
angular change in the tangent line at its location. Specifically,
we perform a Ist-order polynomial curve fitting on an [-pixel
interval before and after the curve point pA(t) to get two slopes,
ky and ky. The approximate curvature k(t) is computed by
k(t) = |arctan(ki) — arctan(ks)|. Based on k(t), we select
more sample points from higher-curvature segments and fewer
from lower-curvature segments.

After selecting m + 1 sample points and put them together
into (ps, py) as defined in (3), we need to determine their in-
dexing values ¢ S05 81552, ., Sm, Which will be used to
evaluate their B-spline blending function values B; (t). In our
tests, we employ the uniform nonperiodic B-spline blending
function of order k£ = 3, and the knot parameters {¢;} are de-
termined as [to, t1,...,tnt3]= [0,0,0,1,2,3,...,n — 2,n —
1,n — 1,n — 1]. One way of the indexing-value assignment
is known as the chord-length method [32], which increases ¢
values of the sample points in proportion to the chord length

n—1
s;j=sj_1+(Pj — Pj—1ll-

> Ipi — pi-tl|
=1

j=1,2,...m (14)

where so = 0, and ||p; — p;—_1|| denotes the chord length be-
tween points p; and p;_1.

In the case of vector curves, we are generally given a set of
discrete, nonuniformly spaced points for each curve. Since a
vector curve can be rendered as a raster curve by interpolation,
we can determine its sample points and their corresponding
indexing values by rendering it to be a raster curve and then
performing the curvature-based sampling and the chord-length
method as described above. A simpler alternative is to directly
use the given discrete points as sample points but assign their
indexing values according to a curvature-based rule. Specif-
ically, we approximate the curvature of each sample point

(p2(55), py(s5)) by

];'(Sj) — |arctan py(5j+1) _py(sj)
Pa(8j+1) — Px(85)

py(85) = py(sj=1)
Pa(85) — Px(8j-1)

and then increase ¢ values of the sample points in inverse propor-
tion to their curvature. The higher the curvature, the smaller the
increase in the ¢ value. This is equivalent to having more control
points for higher-curvature segments. With more “resources” in
terms of B-spline control points assigned to segments with more
details (i.e., higher curvature segments), it allows for a better
B-spline approximation.

3) Determining the Fingerprint Length and Strength: The
number of control points is an important parameter for tuning.
Depending on the shape of the curve, using too few control
points could cause the details of the curve to be lost, while using
too many control points may lead to over-fitting and bring arti-
facts even before data embedding. One simple method of de-
termining the number of control points is to compute the ap-

15)

— arctan
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Fig. 2. Fingerprinting a hand-drawn “Swan” curve. (a) Original curve. (b) Fingerprinted curve. (c) Control points overlaid on the original curve.

proximate curvature of each sample point as in (15) and assign
higher weights to points with higher curvature. We then deter-
mine the number of control points according to the total weights
of all sample points on the curve. The number of control points
not only affects the distortion introduced by the embedding but
also determines the fingerprint’s robustness against noise and
attacks. The more the control points there are, the longer the fin-
gerprint sequence is, and in turn, the more robust the fingerprint
is against noise and attacks. Too many control points, however,
may lead to over-fitting and incur visible distortions even be-
fore data embedding. In our tests, the number of control points
is about 5-8% of the total number of curve pixels.

The scaling factor « also affects the invisibility and robust-
ness of fingerprints. The larger the scaling factor is, the more ro-
bust the fingerprint is, but it results in a larger distortion. For car-
tographic applications, industrial standards provide guidelines
on the maximum allowable changes [8]. Perturbation of two to
three pixels is usually considered acceptable. We use random
number sequences with a unit variance as fingerprints and set
a to 0.5 in our tests. The difference between two curves can
be quantified using such max-min metrics as the Hausdorff dis-
tance [33]. More specifically, let d(a, b) be the distance between
two points a and b, which are on two curves A and B, respec-
tively. We further define the distance from point a to curve B
as d(a, B) £ infyep d(a,b), and the distance from curve A to
curve B as dg(A) £ sup, 4 d(a, B). Thus, the Hausdorff dis-
tance between curve A and B is

h(A, B) £ dp(A) + da(B). (16)

4) Nonblind Detection: The basic fingerprint detection pre-
sented earlier makes use of the original unmarked copy and is
known as nonblind detection. While blind detection is preferred
for a few major data hiding applications (such as ownership ver-
ification, authentication, and annotation), nonblind detection is
considered as a reasonable assumption for many fingerprinting
applications [4], [26], [34], which is also the focus of this paper.
The rationale for nonblind detection is that the fingerprint ver-
ification is usually handled by the content owner or by an au-
thorized central server, who can have access to the original host
signal and use it in the detection to answer the primary ques-
tion of whose fingerprint is in the suspicious document. The

availability of the original unmarked copy in the detection gives
a high equivalent watermark-to-noise ratio, thus allowing for
high resistance against noise and attacks. Additionally, using
the original unmarked copy as a reference copy, the detector
can register a test copy that suffers from geometric distortions,
which enables the resilience to various geometric transforma-
tions as to be demonstrated later in this paper.

E. Experimental Results of Fingerprinting Simple Curves

To demonstrate our basic embedding and detection algo-
rithms, we first present the fingerprinting results on two simple
curves, the “Swan” curve in Fig. 2(a) and the “W” curve in
Fig. 3(a). These two curves were hand-drawn on a Tablet PC
and stored as binary images of size 329 x 392 and 521 x 288,
respectively. We use the contour following algorithm in [30]
to traverse the curve and obtain a set of ordered curve points.
When fingerprinting these two curves, we perform uniform
sampling on the curve points and determine the indexing values
of the sample points using the chord-length method. We high-
light the control points of the “Swan” curve in Fig. 2(c). The
fingerprinted curves are shown in Figs. 2(b) and 3(b), where we
have marked 101 control points for each curve. With the marked
control points, we construct the fingerprinted curve with the
same number of points as the original curve by evaluating the
B-spline synthesis formula (1) at indexing values uniformly
sampled between ¢ = 0 and ¢ = n — 1. As for the fidelity of
the fingerprinted curves, the Hausdorff distance between the
original and marked curves is 5.0 for the “Swan” curve, and 3.4
for the “W” curve. The differences are hardly visible to human
eyes.

In the detection, we take a fingerprinted curve constructed
above as a test curve and apply uniform sampling to it to ob-
tain an approximation of the set of sample points (P.,Py) =
(B(c. + aw,),B(c, + aw,)) assumed in Section II-B. We
then estimate the test control points and perform the correla-
tion-based detection. The detection results on the fingerprinted
“W” curve are shown in Fig. 3(c), which illustrates a high Z
value for the correct positive detection with the 1000th sequence
corresponding to the true user, and very small 7 statistics for
the correct negative detection with other sequences of the inno-
cent users. To quantify the detection performance, we generate
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(a)

Fig. 3.

1000 different sets of fingerprint sequences, and each set con-
sists of 1000 independent fingerprint sequences that are approx-
imately orthogonal to each other. For each set, we embed each
of the 1000 fingerprint sequences into the original curve to form
a fingerprinted curve, and then estimate a fingerprint sequence
from the fingerprinted curve and compute the Z values with the
1000 fingerprint sequences. In this way, we collect a total of
1000 x 1000 = 1 x 10° values for the fingerprint presence case
and 1000 x 1000 x 999 ~ 1 x 10 values for the fingerprint
absence case. Using these data, we plot in Fig. 4 the histogram
of the Z values for both fingerprint presence and absence cases.
For each of these two sets of data, we calculate its mean and
variance and then plot the Gaussian distribution with the cal-
culated mean and variance. As shown by the dashed curves in
Fig. 4, the two Gaussian approximations N (11.22,0.87) and
N (—0.0009, 1.00) fit the observed Z values very well. We can
see that we indeed get an approximate Gaussian distribution
with a large positive mean under the presence of a fingerprint
and a zero mean under the absence.

We further examine the measured and the Gaussian approx-
imated probabilities of detection and false alarm for different
thresholds on the Z statistic. We see from the results in Table I
that the Gaussian approximation works well in regions close to
the mean, whereas the measured values slightly deviate from
the Gaussian approximation in regions farther from the mean.
At the same time, we note that in the tail regions where the
Gaussian approximation becomes loose, the approximated order
of magnitude matches very well with the measured value from
our experiments. The miss probability or false alarm probability
in the tail regions is already very small (below 10~ °). There-
fore, for many practical applications, either the probability may
be deemed as zero, or an approximation on the order of magni-
tude would be sufficient. The table also shows that a threshold
of 6 on the detection statistics gives a false alarm probability of
10~?, which is sufficiently low for most applications. Thus, we
choose 6 as the detection threshold in our tests. The detection
result for the “Swan” curve is similar and will not be repeated
here.

Furthermore, we examine the survivability of the fingerprints
by using our basic scheme, which employs the coordinates of the
B-spline control points as the embedding domain, and uses ap-
proximately orthogonal spread spectrum signals as fingerprints.
We perform a printing-and-scanning test with manual registra-
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tion between the scanned fingerprinted curve and the original
unmarked curve. We print out the fingerprinted “W” curve using
a HP laser printer, and scan it back as a 527 x 288 binary image,
as shown in Fig. 5(a). In addition to manual registration, a thin-
ning operation is performed to extract a one-pixel-wide skeleton
from the scanned curve that is usually several pixels wide after
high-resolution scanning. As we can see from the detection re-
sults in Fig. 5(b), despite the curve being simple and the number
of control points being relatively small, the fingerprint survives
the printing-and-scanning process and gives a detection statistic
higher than the detection threshold. The issue of automating the
registration process will be addressed in Section III.

III. ITERATIVE ALIGNMENT-MINIMIZATION ALGORITHM FOR
ROBUST FINGERPRINT DETECTION

The set of test sample points (p.., p,,) assumed in Section II-B
is not always available to a detector, especially when a test curve
undergoes vector-raster conversion, geometric transformations
(suchasrotation, translation, and scaling), and/or is scanned from
a printed hard copy. A pre-processing step preceding the basic
fingerprint detection module is needed to align the test curve
with the original one. While manual registration between the test
curve and the original unmarked curve shown in Section II-E is
a possible way to overcome simple geometric distortions, auto-
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TABLE 1
MEASURED DETECTION PERFORMANCE AND ITS GAUSSIAN APPROXIMATION FOR THE “W/” CURVE

Threshold on Z 3

4.5 6 7.5 9

Measured 0

0 4.1x10° | 8.7x10°

1-P,4

Gaussian approx. | 6.6x107"

3.1x10"

1.1x10% | 3.4x10° 8.7x10°

Measured 1.4x107

4.1x10°

2.0x10” 0 0

Pha 13x10°

Gaussian approx.

3.4x10°°

0.97x10° | 3.1x10™ | 1.1x10™"

(a)

©

7.60

Detection statistics

o 200 400 600 800
Fingerprint indices

(b)

1000 1200

Fig. 5. Printing-and-scanning test for the “W” curve. (a) Fingerprinted curve
after printing-and-scanning. (b) Detection statistics.

mated registration is more desirable to improve the accuracy and
efficiency of this indispensable preprocessing step. Note that the
test curve should be registered with the original unmarked curve,
and any “clean/undistorted” fingerprinted copies known to the
detector should not be used as a reference for registering the test
curve. This is not only because which fingerprints are present in
the test curve still remains to be determined but also because using
a fingerprinted copy as a reference for registration may increase
the false alarm probability in determining the presence or absence
of the corresponding fingerprint.

With the affine invariance property, B-splines have been used
in a few existing curve alignment works. In the moment-based
approach of [29], two affine-related curves are fitted by two sep-
arate B-splines, and the transform parameters are estimated by
using weighted B-spline curve moments. This method requires
taking integration as well as the second-order curve derivatives
to obtain the moments. In a recent method employing a super-
curve [35], two affine-related curves are superimposed together
in the same frame, and then this combined super-curve is fitted
by a single B-spline. Through minimizing the B-spline fitting

error, both transform parameters and control points of the fitting
B-spline can be estimated simultaneously. Since neither integra-
tion nor differentiation is needed, this method is robust to noise
and will serve as a building block in our work.

Another problem related to the test sample points assumed
earlier is the inherent nonuniqueness of B-spline control points,
which refers to the fact that a curve can be effectively approx-
imated by different sets of B-spline control points. We have
seen from Section II-A that B-spline control points are estimated
from a set of sample points from the curve. With a different set
of sample points or a different indexing-value assignment, we
may induce a quite different set of control points that can still
well describe the same curve. It is possible for the difference
between two sets of unmarked control points to be much larger
than the embedded fingerprint sequence, as demonstrated by the
example in Fig. 6. Therefore, if we cannot find from a test curve
a set of control points corresponding to the one used in the em-
bedding, we may not be able to detect the fingerprint sequence.
Considering the one-to-one relationship between sample points
(including their indexing values {s; }) and control points, we try
to find the set of sample points from a test curve that corresponds
to the set of sample points used in the embedding. We shall refer
to this problem as the point correspondence problem. As we
shall see, the nonuniqueness issue of B-spline control points can
be addressed through finding the point correspondence.

In Sections III-A-C, we first formulate the curve registra-
tion and point correspondence problem in the context of fin-
gerprint detection. We then take the curve alignment method
introduced in [35] as a building block and propose an Itera-
tive Alignment-Minimization (IAM) algorithm that can perform
curve registration and solve the point correspondence problem
simultaneously. Finally, we present a detection example for a
single curve using the IAM algorithm and discuss the robust-
ness issues.

A. Problem Formulation

We use “View-I” to refer to the geometric setup of the orig-
inal unmarked curve and “View-II” to refer to the setup of the
test curve. Thus, we can register the two curves by transforming
the test curve from “View-II"” to “View-I" or transforming the
original curve from “View-I” to “View-11.” We focus on regis-
tration under affine transformations, which can represent combi-
nations of scaling, rotation, translation, reflection, and shearing.
These are common geometric transformations and can effec-
tively model common scenarios in the printing-and-scanning
process.
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Fig. 6. Nonuniqueness of B-spline control points. (a) Set of control points for
the original unmarked curve and its fingerprinted version. (b) Two different sets
of control points for modeling the same unmarked curve.

Under affine transformations, each point (x,y) on one curve
is transformed to a corresponding point (%, §) on another curve

via
T a T a
Ll _ |on 4| @
Yy a21 Y a23
where {a;;} are parameters representing the collective effect
of scaling, rotation, translation, reflection and shearing. The
transform parameters can also be represented in a homogeneous

coordinate by two column vectors a, and a,, or by a single
matrix A:

a12
a22

a7)

z a1l a2 Q13 T
Y| = | a2 as a3 i
1] Lo o 1]|1
[ al x x
= ag y| =Aly (18)
0o 0 1] |1 1
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Fig. 7. Basic flow and main modules of the proposed Iterative Alignment-
Minimization (IAM) algorithm.

Similarly, the inverse transform can be represented by

g
g,
0 0 1
The original curve available to the detector in fingerprinting
applications can be a raster curve or a vector curve. The de-
tector also knows the original set of sample points (p.., py) ~
(Bc., Be,) that is used for estimating the set of control points
upon which spread spectrum embedding is applied. The test
curve can be a vector curve with sampled curve points (v, V)
or a raster curve with pixel coordinates (f,T,). A relatively
simple case is that the set of discrete points in a test vector curve
corresponds to the set of sample points used in the embedding,
except with possible affine transformations and noise addition.
In this case, the test vector points (V,, v,) and the original set
of control points (c, ¢, ) are related by

{Gz = [B(c, + aw,)
vy = [B(cy + aw,)

>

X
y|=A"" (19)
1

— 2 B
—_ < &

B(c, +awy)
B(cy + awy)

l]la, + n,

1l]a, +n, (20)

where (n,, n, ) represents additional noise applied to the trans-
formed fingerprinted vector points, and 1 is a column vector
with all 1s. With the point correspondence available, the only
issue is curve alignment, and it can be solved by directly ap-
plying the curve alignment method in [35]. However, in ad-
dition to possible affine transformations between the original
and the test curves, the correct point correspondence informa-
tion may not always be available. This is especially the case
after a fingerprinted curve undergoes vector-raster conversions
and/or printing-and-scanning. Under these situations, not only
transform parameters for the curve alignment but also the point
correspondence must be estimated in order to locate the finger-
printed control points successfully. We consider that both the
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Fig. 9. Register a curve using the proposed IAM algorithm. (a) Original curve and a fingerprinted curve undergone vector-raster conversion and affine
transformations. (b) Estimated sample points after one iteration. (c) Estimated sample points after 15 iterations.

original and the test curves are represented in raster format since
a vector curve can be rendered as a raster curve by interpolation
and that the sample points used in fingerprinting the original
curve are known to the detector. The problem can be formulated
as follows:

Given an original raster curve with a set of sample points
(P2, Py) and a test raster curve (f,,T,), we register the test
curve with the original curve and extract the control points of the
test curve. Both transform parameters (a,, a, ) (or equivalently
(8+,8,)) and a set of sample points (p.., p,) corresponding to
the one used in the fingerprint embedding must be found from
the test curve.

B. Iterative Alignment-Minimization (IAM) Algorithm

To align the test curves with the original curves and in the
mean time identify the point correspondence of the sample

points, we develop an IAM algorithm. As shown in Fig. 7,
the IAM algorithm consists of three main steps and the latter
two steps will be executed iteratively. We first obtain an initial
estimation of the test sample points. With the estimated point
correspondence, we then perform super-curve alignment to
estimate both the transform parameters and the control points
of the test curve. With the estimated transform parameters,
we refine the estimation of point correspondence through a
nearest-neighbor rule. A detailed block diagram of the proposed
IAM-based fingerprint detection is shown in Fig. 8.

1) Step 1—Initial Estimation of Sample Points on the Test
Curve: We initialize the sample points (f);(rl), f)g(,l)) on the test

curve using the following simple estimator. Let M and M be
the number of points on the original and the test raster curves,
respectively. From the known indices J = [jo, J1,J2,- - - jm]
of the original curve’s m + 1 sample points, where jp < 71 <
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Jo < --- < jm are integers ranging from 0 to M — 1, we es-
timate the indices of the test curve’s m + 1 sample points by
J = round (( -1/M-1)- J). Using this estimated index

vector J, we can identify their corresponding sample points
from the test curve and take them as the initial estimate.
2) Step 2—Curve Alignment With the Estimated Sample

Points: Given the estimated point correspondence with sample

points ( g), §,>) for the test curve in the <th iteration, we

apply the curve alignment method in [35] to estimate the
transform parameters and the control points of the test curve.
More specifically, let the transform parameters from View-I

(QIINC)

(the original curve) to View-II (the test curve) be (ax ,ay )
The sample points on the test curve can be transformed back
to View-I by (gg%g?(f)
sample points as well as the original sample points with a single
B-spline curve (referred to as a super-curve in [35]), and we
5 gl )) and the

) to minimize the fitting error

). We then fit these transformed test

search for both the transform parameters (

(@) &)

B-spline control points (cx , Cy
A (i) A(i i A Pz
) (B

Py
J isu)A(U

where P() & [ pl¥) N( ) 1 and 1 is a column vector with
all 1s. The partlal derlvatlves of the fitting error function with
respect to g;(r), 5 (! ) A(Z) , and c( R being zero is the necessary
condition for the solutlon to this optimization problem. Thus, we
obtain an estimate of the transform parameters and the B-spline

control points as

;) = D p,,

g .
é A (1)

2

2
ey

g:i) = D(i)pzv = D(Z)py

cl & (f)(i)Tf)(i))Tf)@)TB
D@ £ (2BTB - BTP(Z‘)C(Z‘))T BT
The estimated control points ( el CS ))

estimate the fingerprint sequence and further compute the de-
tection statistic Z ("), as described in Section II.
3) Step 3—Refinement of Sample Point Estimation on the Test

where (22)

can then be used to

Curve: Given the estimated transform parameters ( (Z), gz(,”) ,

we align the test raster curve (I, I'y) with the original curve by
transforming it to View-I

{ S)I—[ra: ry 1]A(l (23)
0= 5, 180
As the fingerprinted sample points (B(c, + aw,),

B(c, + aw,)) are located at the neighborhood of their
corresponding unmarked version (Bc,,Bc,), we apply a
nearest-neighbor rule to refine the estimation of the test curve’s
sample points. More specifically, for each point of (Bc,, Bc,),
wez )ﬁnc% )1ts closest point from the aligned test raster curve

(r, T I) and then denote the collection of these closest

points as (pgjl) f)(7+1)) These nearest neighbors form a

refined estimate of the test sample points in View-I and are then
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transformed with parameters (ag),és )) back to View-II as a

new estimate of the test sample points

f)gﬂ) _ [f)gijl) ~z(/ij1) 1] ég) o
I~)§i+1) = [f’gjl) f’g(,ijl) 1] ég‘).

After this update, we increase ¢ and go back to Step 2. The
iteration will continue until convergence or for an empirically
determined number of times. A total of 15 rounds of iterations
are used in our experiments.

C. Detection Example and Discussions

We present a detection example employing the proposed
IAM algorithm on a curve taken from a topographic map. The
original curve and a fingerprinted curve having undergone
vector-raster conversion and some geometric transformations
are shown in Fig. 9(a). The original curve consists of 367 vector
points, which are used as sample points to estimate a set of
200 control points for data embedding. Then, a fingerprinted
curve with 367 vector points is generated, rendered to be a
raster curve, and affinely transformed. After the vector-raster
conversion, the point correspondence is no longer directly
available from the raster curve representation. We apply the
IAM algorithm to align the test curve with the original one and
to estimate the correspondence between sample points. The
estimated sample points for the test curve after one iteration
and 15 iterations are shown in Fig. 9(b) and (c), respectively.
We can see that initially the estimated values deviate from the
true values by a nontrivial amount, whereas after 15 iterations,
the estimated values converge to the true values. We plot the six
estimated transform parameters for each iteration in Fig. 10(a),
which shows an accurate registration by the proposed IAM al-
gorithm after half of a dozen iterations. Upon convergence, we
@ @

use the estimated control points (cx , €y ) to perform detec-

tion with the fingerprint involved. The high detection statistic
value shown in Fig. 10(b) suggests the positive identification of
the correct fingerprint by using the proposed IAM algorithm.
The computation time for this experiment is as follows. The
IAM algorithm is implemented in Matlab 6.5 and tested on a
Pentium-4 2.0 GHz PC with 512M RAM. Each iteration of the
algorithm takes about 0.5 of a second, and the total 15 iterations
plus the initialization take 7.61 seconds. Together with the 0.56
sec required for computing Z statistics with 1000 fingerprint
sequences, the total duration of the detection process is 8.17 sec.
The above example shows that through the IAM algorithm,
we can register the test curve with the original unmarked curve
and extract the fingerprinted control points with high accuracy.
With good estimation of affine transform parameters, our data
embedding method for curves is resilient to combinations of
scaling, rotation, translation, and shearing. The explicit esti-
mation of point correspondence also provides resilience to the
vector-raster and vector-raster-vector conversions. In the vector-
raster conversion case, a fingerprinted curve stored in vector
format is rendered as a raster curve, and thus the point corre-
spondence is no longer directly available from the raster curve
representation. In the vector-raster-vector conversion case, the
intermediate raster curve is converted to a vector curve with a
new set of vector points that are likely to be different from the



GOU AND WU: DATA HIDING IN CURVES WITH APPLICATION TO FINGERPRINTING MAPS

| —o— True value
—— Estimated value

N
o
T

-
0
T
L

Transform parameters

\s

[$4)
T
1

Iteration time

(a)

Detection statistics

0 H

Iteration time

(b)

Fig. 10. Convergence results on estimated transform parameters and detection
statistics for the example curve in Fig. 9 using the proposed IAM algorithm.
(a) Estimated transform parameters for each iteration. (b) Fingerprint detection
statistic for each iteration.

initial vector points prior to the conversion, even though there is
little visual difference between these two vector curves. Again,
the point correspondence is likely to get corrupted by this con-
version, and accurate estimation of point correspondence is a
necessary step for the successful detection of the fingerprint.
With robustness resulting from the spread spectrum embedding
in B-spline control points and the IAM algorithm, our curve
fingerprinting approach can resist a number of challenging at-
tacks and distortions. For example, the distortion from printing-
and-scanning involves both vector-raster rendering and a cer-
tain amount of rotation, scaling, and translation; a fingerprinted
curve in vector format may be rendered as a raster image and
then affinely transformed before reaching the detector; in the
collusion scenario, colluders may construct a colluded copy,
print it out, and then distribute it out of the allowed domain.
In Section IV, we use our curve-based data hiding approach to
fingerprint topographic maps and demonstrate the robustness of
our approach against various attacks and distortions.

IV. EXPERIMENTAL RESULTS FOR MAP FINGERPRINTING

We now present experimental results of the proposed curve
fingerprinting algorithm in the context of tracing and tracking
topographic maps. A topographic map provides a two-dimen-
sional representation of the earth’s 3-D surface. Vertical eleva-
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Fig. 11. Fingerprinting topographic maps. (a) Original map. (b) Original and
fingerprinted curves overlaid with each other. (¢c) Zoomed-in view of (b).

tion is shown with contour lines (also known as level lines) to
represent the earth’s surfaces that are of equal altitude. Contour
lines in topographic maps often exhibit a considerable amount
of variations and irregularities, prompting the need for nonuni-
form sampling of curve points in the parametric modeling of the
contours. We will first examine the fidelity of the fingerprinted
map, and then evaluate the robustness of the fingerprints against
collusion, cropping, geometric transformations, format conver-
sions, point deletion, curve smoothing, printing-and-scanning,
and some combinations of these distortions.
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interleaving collusion. (b) Two-user averaging collusion. (c) Five-user averaging
collusion.

1) Fingerprinted Topographic Maps: A 1100 x 1100 topo-
graphic vector map obtained from http://www. ablesw.com is
used in our experiment. Starting with the original map shown in
Fig. 11(a), we mark nine curves that are sufficiently long. For
each of these nine curves, a set of nonuniformly spaced vector
points is given by the original dataset. We directly use these
points as sample points and determine their indexing values ac-
cording to the curvature-based rule presented in Section II-D.
A total of 1331 control points are used to carry the fingerprint.
In Fig. 11(b), we overlay the nine original curves and the corre-
sponding marked curves using solid lines and dotted lines, re-
spectively. To help illustrate the fidelity of our method, we en-
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large a portion of the overlaid image in Fig. 11(c). We can see
that the fingerprinted map preserves the geospatial information
in the original map with high precision. The perturbation can be
adapted to be compliant with cartographic industry standards
and/or the need of specific applications.

2) Resilience to Collusion: To demonstrate the resistance
of the proposed method against collusion, we present in Fig. 12
the detection statistics under two different types of collusion
attacks. Fig. 12(a) shows the collusion results under a random
interleaving attack, where the control points for each curve
are equiprobably taken from two differently fingerprinted
maps. The collusion attack for Fig. 12(b) and (c) is known
as averaging, where the coordinates of the corresponding
control points from two and five differently fingerprinted
maps are averaged, respectively. We assume the correct point
correspondence is available in this test, and the cases with
unknown point correspondence will be addressed in the later
subsections. As we can see from the detection statistics, the
embedded fingerprints from all contributing users survive the
collusion attacks and are identified with high confidence. For
both two-user random interleaving collusion and five-user
averaging collusion, we use 20 different sets of fingerprint se-
quences to evaluate the detection performance, using a similar
experiment setup to the one discussed in Section II-E. The
histograms and the Gaussian approximations in Fig. 13 show
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Fig. 14. Cropping test on fingerprinted vector maps. (a) Fingerprinted map
with the cropping area. (b) Z statistics.

a very good separation between the Z values for the presence
and absence of true fingerprints. Compared with the two-user
averaging collusion, the two-user random interleaving leads
to more substantial coordinate changes in control points when
a detector performs B-spline parametrization, and such coor-
dinate changes may follow a distribution different from i.i.d.
Gaussian. This is reflected by a reduced mean and a nonunit
variance for the fingerprint presence case.

3) Resilience to Cropping: As shown in Fig. 14(a), we crop
an area of a fingerprinted vector map and use it as the test map.
Among the nine curves used for carrying the fingerprint, only
two curves are retained with sufficiently large size. Using the
original map as a reference, we perform detection on these
two retained segments and obtain the detection result shown
in Fig. 14(b). As we can see, the detection statistic with the
correct fingerprint is still high enough so that its corresponding
user can be identified with high confidence.

4) Resilience to Affine Transformations on Vector Maps: To
demonstrate the resilience of our approach to a substantial
amount of affine transformations, we take a fingerprinted vector
map and apply a combination of rotation, scaling, and transla-
tion. More specifically, we rotate it by —30°, then scale it by
120% or 80% in the X and Y directions, respectively, followed
by 100- and 200-pixel translation in the X and Y directions,
respectively. The resulting vector map is rendered in Fig. 15(a).
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Fig. 15. Affine transformation test on fingerprinted vector maps. (a) Test map.
(b) Aligned map. (c) Z statistics.

In this test, we assume that correct point correspondence is
available. Thus, the super-curve alignment method can be di-
rectly applied to register the original and the test curves and to
extract the control points. The registered vector map is shown
in Fig. 15(b), and Fig. 15(c) shows the detection statistics.
We can see that the embedded fingerprint can survive affine
transformations, and the detection statistic with the correct
fingerprint is high after the registration.

5) Resilience to Vector-Raster Conversion: We now ex-
amine the resilience to vector-raster conversion coupled with
possible affine transformations. A fingerprinted vector map
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after raster rendering as a 1100 x 1100 image and affine trans-
formations is shown in Fig. 16(a). The affine transformation
consists of 10° rotation, 80% and 140% scaling in the X and Y’
directions, respectively, and 10- and 20-pixel translation in the
X and Y directions, respectively. As the point correspondence
is no longer directly available after the vector-raster conver-
sion, we apply the proposed IAM algorithm to estimate the
transform parameters and to locate the sample points on test
curves corresponding to those used in the embedding. After
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15 iterations, we get the registered raster map as shown in
Fig. 16(b) and the detection statistics as shown in Fig. 16(c).
The detection statistic results suggest that the embedded finger-
print is identified with high confidence. Using the same settings
on the computing system as in Section III-C, we measure the
detection time required for this transformed raster map. The
total duration of the detection process is 42.43 sec, including
40.05 sec for curve registration and fingerprint extraction from
nine curves and 2.38 sec for evaluating Z statistics with 1000
fingerprint sequences.

Similar to the collusion test, we plot in Fig. 17 the histogram
and the Gaussian approximation of the Z statistics for this
vector-raster conversion test combined with geometric transfor-
mations. The transform parameters are randomly selected from
the following ranges with a uniform distribution: —20 ~ 420
degrees of rotation, 60%—140% scaling in the X and Y direc-
tions, and 20—40 pixels’ translation in the X and Y directions.
As the errors from registration and resampling are not always
1.i.d. Gaussian distributed, we observe a variance larger than 1
for the Z values in the fingerprint presence case.

6) Resilience to Vector-Raster-Vector Conversion: To
demonstrate the resilience of our method to vector-raster-vector
conversion, we first render a fingerprinted vector map as a
raster map. Then, we uniformly sample it to obtain a new
vector map, which has the same number of vector points as
prior to the conversion but at different sampling locations. In
the detection process, we first render this “new” vector map
as a raster map by linear interpolation and then apply our
IAM algorithm. From the high detection statistic shown in
Fig. 18(a), we can see that our approach is robust against the
vector-raster-vector attack.

7) Resilience to Point Deletion in Vector and Raster Maps:
As we have seen throughout the paper, traitor tracing applica-
tions usually involve adversaries who have strong incentives
to remove fingerprints. Attackers may delete a certain number
of points from a fingerprinted vector/raster map while keeping
similar shapes of its contour lines. Detection statistics after
point deletion in a fingerprinted vector and raster map, respec-
tively, are shown in Fig. 18(b) and (c). For the vector map,
20% of points are randomly chosen and removed from each
fingerprinted curve, whereas in the raster map 70% of black
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Fig. 18. Detection results after various attacks. (a) Z statistics for vector-
raster-vector conversion. (b) Z statistics for point deletion in vector maps.
(c) Z statistics for point deletion in raster maps.

pixels on the curve are randomly chosen and removed. We can
see that the embedded fingerprints can survive point deletion
applied to both vector maps and raster maps. Similar to the
vector-raster-vector conversion test, linear interpolation and the
IAM algorithm are used in fingerprint detection.

8) Resilience to Curve Smoothing: Similar to lowpass
filtering for images, curve smoothing can be applied to topo-
graphic maps as an attempt to remove the embedded fingerprint.
In order to demonstrate the resilience of the proposed method
to curve smoothing, we traverse each marked curve and apply
a moving average filter to it. A curve point with coordinates
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Fig. 19. Curve smoothing test on fingerprinted raster maps. (a) Z statistics for
filter window size 5. (b) Z statistics for filter window size 21.

(4,,7y,) will be replaced by a new point, whose coordinates
(Ta(csi), Tg(/j)) are obtained by

) _ 1 <2

Tey = T—l—ljzz_:srriﬂ'

) _ 1 < 2
Ty = 3541 _Z Tyiy;

where 2.5 + 1 is the filter length. Finally, we apply the proposed
IAM algorithm to these smoothed curves and compute the de-
tection statistics. Two different filter lengths (5 and 21) are used
in our experiments. As shown in Fig. 19, the detection statistic
with the correct fingerprint under five -point averaging is 24.61
and that under 21-point averaging is 9.45. Indeed, the finger-
print is weakened by the smoothing operation, but the detection
statistics are still well above the threshold for a correct posi-
tive detection. In the latter case, when a long filter is used in
the smoothing attack, some visual details have been lost from
the curves. This study shows that the proposed method is robust
against curve smoothing, provided that the smoothing does not
severely change the shape of the curve and that the fingerprint
sequence is sufficiently long to help the detector collect infor-
mation for a positive detection.

9) Resilience to Printing-and-Scanning: To show the ro-
bustness of our approach against the printing-and-scanning
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attack, we render a fingerprinted vector map by taking a screen
shot of its display in Matlab, print out the image using a HP
laser printer, and then scan it back as a binary image using a
Canon scanner with 360 dpi resolution. Preprocessing before
detection includes a thinning operation to extract one-pixel
wide skeletons from the scanned curves that are usually sev-
eral-pixel wide after high-resolution scanning. As we can see
from the detection results in Fig. 20(a), the fingerprint survives
the printing-and-scanning test and gives reliable positive detec-
tion with the detection statistic much higher than the detection
threshold.

To further examine our approach under the combined attack
of collusion and printing-and-scanning, we first generate a col-
luded map by averaging coordinates of the corresponding con-
trol points from four users’ fingerprinted maps, then render and
print it out, and scan it back as a binary image. From the detec-
tion statistics in Fig. 20(b), we can see that the embedded finger-
prints from all the four colluders can be correctly identified after
this combination of attacks involving collusion, vector-raster
conversion, filtering, and affine transformations.

V. CONCLUSIONS

In this paper, we have presented a new data hiding algo-
rithm for curves by parameterizing a curve using the B-spline
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model and adding spread spectrum sequences to curve param-
eters. In conjunction with the basic embedding and detection
techniques, we have proposed an iterative alignment-mini-
mization algorithm to allow for robust fingerprint detection
under unknown geometric transformations and in the ab-
sence of explicit point correspondence. We have demonstrated
the fidelity of our method as well as its robustness against
collusion, cropping, affine transformations, vector-raster
and vector-raster-vector conversions, point deletion, curve
smoothing, printing-and-scanning, and their combinations. Our
work has shown the feasibility of the proposed algorithm in
fingerprinting applications for tracing and tracking topographic
maps as well as writings/drawings from pen-based inputs. The
protection of such documents has increasing importance to
the emerging digital operations in government, military, and
commercial agencies.

ACKNOWLEDGMENT

The work in this paper was inspired by discussions with
Prof. B. Liu of Princeton University and Dr. M. Xia of
Microsoft Corporation, who also kindly provided a preprint of
the super-curve registration paper [35]. D. Cardy of the Univer-
sity of Maryland, College Park, provided helpful input on the
curvature-based sampling method in Section II-D. In addition,
the authors would like to thank the Guest Editor Prof. P. Moulin
and the anonymous reviewers for their comments and sugges-
tions that have helped improve the quality and the clarity of the

paper.

REFERENCES
(1]
[2]

H. Gou and M. Wu, “Data hiding in curves for collusion-resistant digital
fingerprinting,” in Proc. IEEE ICIP, 2004.

, “Robust digital fingerprinting for curves,” in Proc. IEEE ICASSP,
vol. II, 2005, pp. 529-532.

M. Wu, W. Trappe, Z. J. Wang, and K. J. R. Liu, “Collusion resistant
fingerprinting for multimedia,” IEEE Signal Process. Mag., vol. 21, no.
2, pp. 15-27, Mar. 2004.

I. Cox, J. Bloom, and M. Miller, Digital Watermarking. San Franicsco,
CA: Morgan Kaufmann, 2001.

H. Chang, T. Chen, and K. Kan, “Watermarking 2D/3D graphics for
copyright protection,” in Proc. IEEE ICASSP, 2003, pp. 720-723.

M. Barni, F. Bartolini, A. Piva, and F. Salucco, “Robust watermarking of
cartographic images,” EURASIP J. Applied Signal Process., vol. 2, pp.
197-208, 2002.

V. Solachidis and I. Pitas, “Watermarking polygonal lines using Fourier
descriptors,” IEEE Computer Graphics Appl., vol. 24, no. 3, pp. 44-51,
May/Jun. 2004.

R. Ohbuchi, H. Ueda, and S. Endoh, “Watermarking 2D vector maps in
the mesh-spectral domain,” Proc. Shape Modeling Int. Conf., 2003.

E. Koch and J. Zhao, “Embedding robust labels into images for copyright
protection,” in Proc. Int. Congr. Intellectural Property Rights Specical-
ized Inf., Knowledge New Technol., 1995.

M. Wu, E. Tang, and B. Liu, “Data hiding in digital binary image,” in
Proc. IEEE ICME, 2000, pp. 393-396.

M. Wu and B. Liu, “Data hiding in binary image for authentication and
annotation,” IEEE Trans. Multimedia, vol. 6, no. 4, pp. 528-538, Aug.
2004.

K. Matsui and K. Tanaka, “Video-steganography: How to secretly embed
a signature in a picture,” Proc. IMA Intellectural Property Project, vol.
1, no. 1, 1994.

N. F. Maxemchuk and S. Low, “Making text documents,” in Proc. IEEE
ICIP, 1997.

R. Ohbuchi, H. Masuda, and M. Aono, “A shape-preserving data embed-
ding algorithm for NURBS curves and surfaces,” in Proc. CGI, 1999, pp.
180-187.

31

(4]
(3]
(6]

(71

(8]
(91

[10]

[11]

[12]

[13]

[14]



GOU AND WU: DATA HIDING IN CURVES WITH APPLICATION TO FINGERPRINTING MAPS

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. J. Lee, N. I. Cho, and J. W. Kim, “Watermarking for 3D NURBS
graphic data,” Proc. IEEE MMSP, pp. 304-307, 2002.

J. J. Lee, N. L. Cho, and S. U. Lee, “Watermarking algorithms for 3D
NURBS graphic data,” EURASIP J. Appl. Signal Process., no. 14, pp.
2142-2152, Oct. 2004.

E. Praun, H. Hoppe, and A. Finkelstein, “Robust mesh watermarking,”
in Proc. Comput. Graphics, 1999, pp. 49-56.

K. H. Ko, T. Maekawa, N. M. Patrikalakis, H. Masuda, and F.-E. Wolter,
“Shape intrinsic fingerprints for free-form object matching,” in Proc. 8th
ACM Symp. Solid Modeling Appl., 2003, pp. 196-207.

1. Cox, J. Killian, F. Leighton, and T. Shamoon, “Secure spread spectrum
watermarking for multimedia,” IEEE Trans. Image Process., vol. 6, no.
12, pp. 1673-1687, Dec. 1997.

A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

G. E. Farin, Curves and Surfaces for Computer-Aided Geometric De-
sign: A Practical Guide, Fourth ed. New York: Academic, 1997.
Z.J. Wang, M. Wu, H. Zhao, W. Trappe, and K.J. R. Liu, “Anti-col-
lusion forensics of multimedia fingerprinting using orthogonal modu-
lation,” IEEE Trans. Image Process., vol. 14, no. 6, pp. 804-821, Jun.
2005.

H. Zhao, M. Wu, Z. J. Wang, and K. J. R. Liu, “Forensic analysis of
nonlinear collusion attacks for multimedia fingerprinting,” IEEE Trans.
Image Process., vol. 14, no. 5, pp. 646-661, May 2005.
H. D. Brunk, An Introduction to Mathematical Statistics.
Ginn, 1960.

H. Stone, “Analysis of Attacks on Image Watermarks With Randomized
Coefficients,” NEC Res. Inst., Tech. Rep. 96-045, 1996.

W. Trappe, M. Wu, Z. J. Wang, and K. J. R. Liu, “Anti-collusion fin-
gerprinting for multimedia,” IEEE Trans. Signal Process., vol. 51, no. 4,
pp. 1069-1087, Apr. 2003.

M. Wu and B. Liu, “Data hiding in image and video: Part-I fundamental
issues and solutions,” IEEE Trans. Image Process., vol. 12, no. 6, pp.
685-695, Jun. 2003.

D. Kirovski, H. S. Malvar, and Y. Yacobi, “Multimedia content screening
using a dual watermarking and fingerprinting system,” in Proc. ACM
Multimedia, 2002.

Z. Huang and F. Cohen, “Affine-invariant B-spline moments for curve
matching,” IEEE Trans. Image Process., vol. 5, no. 10, pp. 1473-1480,
Oct. 1996.

C. Cabrelli and U. Molter, “Automatic representation of binary im-
ages,” IEEE Trans. Pattern Anal.Machine Intell., vol. 12, no. 12, pp.
1190-1196, Dec. 1990.

H. S. M. Coxeter, Introduction to Geometry,2nd ed. New York: Wiley,
1969.

F.S. Cohen and J. Y. Wang, “Modeling image curves using invariant 3-D
object curve models—A path to 3-D recognition and shape estimation
from image contours,” IEEE Trans. Pattern Anal. Machine Intell., vol.
16, no. 1, pp. 1-12, Jan. 1994.

E. Belogay, C. Cabrelliay, U. Molter, and R. Shonkwiler, “Calculating
the Hausdorff distance between curves,” Inf. Process. Lett., vol. 64, pp.
17-22, 1997.

J. Lubin, J. A. Bloom, and H. Cheng, “Robust, content-dependent, high-
fidelity watermark for tracking in digital cinema,” in Proc. SPIE, vol.
5020, 2003, pp. 536-545.

Boston, MA:

4005

[35] M. Xia and B. Liu, “Image registration by ’super-curves’,” I[EEE Trans.
Image Process., vol. 13, no. 5, pp. 720-732, May 2004.

Hongmei Gou (S’05) received the B.E. and D.E. de-
grees in automatic control and industrial engineering
from Tsinghua University, Beijing, China, in 1997
and 2002, respectively. She is currently pursuing the
Ph.D. degree in signal processing and communica-
tions with the Electrical and Computer Engineering
Department, University of Maryland, College Park.

Previously, she was a research intern at the IBM
China Research Lab, Beijing, in 2001 and with the
R&D Department, Pitney Bowes, Shelton, CT, in
2005. Her research interests include information
security, multimedia signal processing, and biomedical signal processing.

Ms. Gou received the Outstanding College Graduate Award from Tsinghua
University in 1997 and the Graduate School Fellowship from University of
Maryland for the years 2002 to 2004.

Min Wu (5’95-M’01) received the B.E. degree
in electrical engineering and the B.A. degree in
economics (both with the highest honors) from
Tsinghua University, Beijing, China, in 1996 and
the M.A. and Ph.D. degrees in electrical engineering
from Princeton University, Princeton, NJ, in 1998
and 2001, respectively.

Since 2001, she has been an Assistant Professor
with the Department of Electrical and Computer En-
gineering and the Institute of Advanced Computer
Studies, University of Maryland, College Park. Pre-
viously, she was with NEC Research Institute and Signafy, Inc., Princeton, in
1998 and with Panasonic Information and Networking Laboratories, Princeton,
in 1999. She served as a Guest Editor of the Special Issue on Media Security
and Rights Management published in October 2004 by the EURASIP Journal
on Applied Signal Processing. She co-authored a book Multimedia Data Hiding
(New York: Springer-Verlag, 2003) and holds four U.S. patents on multimedia
security. Her research interests include information security and forensics, mul-
timedia signal processing, and multimedia communications.

Dr. Wu received a CAREER award from the U.S. National Science Founda-
tion in 2002, a George Corcoran Education Award from University of Maryland
in 2003, a TR100 Young Innovator Award from the Massachusetts Institute of
Technology’s Technology Review Magazine in 2004, and a Young Investigator
Award from the U.S. Office of Naval Research in 2005. She is a member of the
IEEE Technical Committees on Multimedia Signal Processing and on Multi-
media Systems and Applications for the years 2002 to 2005 and was Publicity
Chair of 2003 IEEE International Conference on Multimedia and Expo.



	toc
	Data Hiding in Curves With Application to Fingerprinting Maps
	Hongmei Gou, Student Member, IEEE, and Min Wu, Member, IEEE
	I. I NTRODUCTION
	II. B ASIC E MBEDDING AND D ETECTION
	A. Feature Extraction


	Fig.€1. Basic embedding and detection process of data hiding in 
	B. Basic Embedding and Detection Methods in the Control-Point Do
	C. $Z$ Statistic for Detection
	D. Fidelity and Robustness Considerations
	1) Fingerprint Construction: The collusion resistance requiremen
	2) Curvature-Based Sampling: The overall distortion introduced b
	3) Determining the Fingerprint Length and Strength: The number o


	Fig.€2. Fingerprinting a hand-drawn Swan curve. (a) Original cur
	4) Nonblind Detection: The basic fingerprint detection presented
	E. Experimental Results of Fingerprinting Simple Curves

	Fig.€3. Fingerprinting a hand-drawn W curve. (a) Original curve.
	Fig.€4. Histogram and Gaussian approximation of the $Z$ statisti
	III. I TERATIVE A LIGNMENT -M INIMIZATION A LGORITHM FOR R OBUST

	TABLE I M EASURED D ETECTION P ERFORMANCE AND ITS G AUSSIAN A PP
	Fig.€5. Printing-and-scanning test for the W curve. (a) Fingerpr
	A. Problem Formulation

	Fig.€6. Nonuniqueness of B-spline control points. (a) Set of con
	Fig.€7. Basic flow and main modules of the proposed Iterative Al
	Fig.€8. Block diagram of curve registration and fingerprint dete
	Fig.€9. Register a curve using the proposed IAM algorithm. (a) O
	B. Iterative Alignment-Minimization (IAM) Algorithm
	1) Step 1 Initial Estimation of Sample Points on the Test Curve:
	2) Step 2 Curve Alignment With the Estimated Sample Points: Give
	3) Step 3 Refinement of Sample Point Estimation on the Test Curv

	C. Detection Example and Discussions

	Fig.€10. Convergence results on estimated transform parameters a
	IV. E XPERIMENTAL R ESULTS FOR M AP F INGERPRINTING

	Fig.€11. Fingerprinting topographic maps. (a) Original map. (b) 
	Fig.€12. Collusion test on fingerprinted vector maps. (a) Two-us
	1) Fingerprinted Topographic Maps: A 1100 $\, \times \,$ 1100 to

	Fig.€13. Histogram and Gaussian approximation of the $Z$ detecti
	2) Resilience to Collusion: To demonstrate the resistance of the

	Fig.€14. Cropping test on fingerprinted vector maps. (a) Fingerp
	3) Resilience to Cropping: As shown in Fig.€14(a), we crop an ar
	4) Resilience to Affine Transformations on Vector Maps: To demon

	Fig.€15. Affine transformation test on fingerprinted vector maps
	5) Resilience to Vector-Raster Conversion: We now examine the re

	Fig.€16. Affine transformation test on fingerprinted raster maps
	Fig. 17. Histogram and Gaussian approximation ${\cal N}(0, 1.00)
	6) Resilience to Vector-Raster-Vector Conversion: To demonstrate
	7) Resilience to Point Deletion in Vector and Raster Maps: As we

	Fig.€18. Detection results after various attacks. (a) $Z$ statis
	8) Resilience to Curve Smoothing: Similar to lowpass filtering f

	Fig.€19. Curve smoothing test on fingerprinted raster maps. (a) 
	9) Resilience to Printing-and-Scanning: To show the robustness o

	Fig.€20. Printing-and-scanning test. (a) $Z$ statistics for prin
	V. C ONCLUSIONS
	H. Gou and M. Wu, Data hiding in curves for collusion-resistant 
	M. Wu, W. Trappe, Z. J. Wang, and K. J. R. Liu, Collusion resist
	I. Cox, J. Bloom, and M. Miller, Digital Watermarking . San Fran
	H. Chang, T. Chen, and K. Kan, Watermarking 2D/3D graphics for c
	M. Barni, F. Bartolini, A. Piva, and F. Salucco, Robust watermar
	V. Solachidis and I. Pitas, Watermarking polygonal lines using F
	R. Ohbuchi, H. Ueda, and S. Endoh, Watermarking 2D vector maps i
	E. Koch and J. Zhao, Embedding robust labels into images for cop
	M. Wu, E. Tang, and B. Liu, Data hiding in digital binary image,
	M. Wu and B. Liu, Data hiding in binary image for authentication
	K. Matsui and K. Tanaka, Video-steganography: How to secretly em
	N. F. Maxemchuk and S. Low, Making text documents, in Proc. IEEE
	R. Ohbuchi, H. Masuda, and M. Aono, A shape-preserving data embe
	J. J. Lee, N. I. Cho, and J. W. Kim, Watermarking for 3D NURBS g
	J. J. Lee, N. I. Cho, and S. U. Lee, Watermarking algorithms for
	E. Praun, H. Hoppe, and A. Finkelstein, Robust mesh watermarking
	K. H. Ko, T. Maekawa, N. M. Patrikalakis, H. Masuda, and F.-E. W
	I. Cox, J. Killian, F. Leighton, and T. Shamoon, Secure spread s
	A. K. Jain, Fundamentals of Digital Image Processing . Englewood
	G. E. Farin, Curves and Surfaces for Computer-Aided Geometric De
	Z. J. Wang, M. Wu, H. Zhao, W. Trappe, and K.J. R. Liu, Anti-col
	H. Zhao, M. Wu, Z. J. Wang, and K. J. R. Liu, Forensic analysis 
	H. D. Brunk, An Introduction to Mathematical Statistics . Boston
	H. Stone, Analysis of Attacks on Image Watermarks With Randomize
	W. Trappe, M. Wu, Z. J. Wang, and K. J. R. Liu, Anti-collusion f
	M. Wu and B. Liu, Data hiding in image and video: Part-I fundame
	D. Kirovski, H. S. Malvar, and Y. Yacobi, Multimedia content scr
	Z. Huang and F. Cohen, Affine-invariant B-spline moments for cur
	C. Cabrelli and U. Molter, Automatic representation of binary im
	H. S. M. Coxeter, Introduction to Geometry, 2nd ed. New York: Wi
	F. S. Cohen and J. Y. Wang, Modeling image curves using invarian
	E. Belogay, C. Cabrelliay, U. Molter, and R. Shonkwiler, Calcula
	J. Lubin, J. A. Bloom, and H. Cheng, Robust, content-dependent, 
	M. Xia and B. Liu, Image registration by 'super-curves', IEEE Tr



