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Abstract—Digital fingerprinting is a technology for tracing the
distribution of multimedia content and protecting them from
unauthorized redistribution. Unique identification information is
embedded into each distributed copy of multimedia signal and
serves as a digital fingerprint. Collusion attack is a cost-effective
attack against digital fingerprinting, where colluders combine
several copies with the same content but different fingerprints
to remove or attenuate the original fingerprints. In this paper,
we investigate the average collusion attack and several basic
nonlinear collusions on independent Gaussian fingerprints, and
study their effectiveness and the impact on the perceptual quality.
With unbounded Gaussian fingerprints, perceivable distortion
may exist in the fingerprinted copies as well as the copies after
the collusion attacks. In order to remove this perceptual distor-
tion, we introduce bounded Gaussian-like fingerprints and study
their performance under collusion attacks. We also study several
commonly used detection statistics and analyze their performance
under collusion attacks. We further propose a preprocessing
technique of the extracted fingerprints specifically for collusion
scenarios to improve the detection performance.

Index Terms—Digital forensics, multimedia fingerprinting,
nonlinear collusion attacks, spread spectrum embedding, traitor
tracing.

I. INTRODUCTION

WITH the rapid development of multimedia technologies
and the wide deployment of broadband networks, an in-

creasing amount of multimedia data are distributed through net-
works. This introduces an urgent need to protect the proper dis-
tribution and use of multimedia content, especially in view of
the ease of copying and manipulating digital multimedia data.

Although traditional cryptography can provide multimedia
data with desired security during transmission, the protection
vanishes after the data are decrypted into clear text. Digital
watermarking is one of the emerging technologies to address
the protection of multimedia content after decryption [1]–[3],
and digital fingerprinting is a specific application of digital wa-
termarking to trace illegal redistribution of multimedia content,
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where unique identification information is embedded into each
copy prior to distribution. Collusion is a cost-effective attack
against digital fingerprinting, where several users (colluders)
combine information from different copies and generate a new
copy in which the original fingerprints are removed or atten-
uated [4], [5]. Digital fingerprints should not only be robust
against common signal processing and single-copy attacks
[6]–[8], but also be resistant to collusion attacks.

An early work on digital fingerprint code design and collusion
attacks was proposed in [9], which assumed that the colluders
can detect a specific fingerprint code bit if it takes different
values between their fingerprinted copies and can change it to
any value. For those bits where different copies have the same
value, it was assumed that the colluders cannot change an unde-
tected bit without rendering the object useless. Based on these
assumptions, a fingerprint code of length was
built to catch at least one colluder out of up to total colluders
with arbitrarily high probabilities, where is the number of
total users. Similar work was presented in [10], which focused
on tracing the leakage of decryption keys in broadcast instead
of tracing multimedia content.

In [11], improvement was made upon the fingerprint code
in [9] by replacing the lower layer code with direct spread
spectrum sequence. It relaxed the assumptions in [9] and in-
creased the total number of users that can be supported by three
times. In [12] and [13], new features were introduced in the
fingerprint code, such as dynamic code design and asymmetric
fingerprinting.

These prior works mainly concern fingerprint code design
and address few issues on the actual fingerprint embedding
and detection. Multimedia data have a unique characteristic
that minor perturbations on the values will not introduce per-
ceptually distinguishable difference. This robustness makes it
feasible and desirable to embed fingerprints seamlessly into the
host multimedia data. Fingerprint codes designed by these prior
works are usually too long to be reliably embedded into and
extracted from multimedia data. Furthermore, for generic data,
colluders can easily detect a fingerprint code bit if it differs
between different copies and change it to any value. However,
for multimedia data such as images, the embedding is capable
of spreading each fingerprint code bit over the entire content.
Thus, different bits embedded additively over the same region
are not distinguishable, neither can they be changed to any
value due to the perceptual quality constraint. Consequently,
the assumptions of the collusion attacks in many previous
works are not always suitable for multimedia data. Instead,
the average attack and those order statistics based nonlinear

1057-7149/$20.00 © 2005 IEEE



ZHAO et al.: FORENSIC ANALYSIS OF NONLINEAR COLLUSION ATTACKS 647

collusions in [4] are more common when colluding multimedia
data.

In [14], a two-layer fingerprinting design scheme for mul-
timedia data was proposed where the inner code from the
spread spectrum embedding [15] is combined with an outer
error-correcting code. In [16], the finite projective geometry
was used to generate codes whose overlap with each other can
identify colluding users. The Anti Collusion Code based on
combinatorial theories was proposed in [5] for multimedia fin-
gerprint code design. In [17], the collusion attack was modeled
as averaging different copies followed by an additive noise, and

colluders were shown to be enough to break
the fingerprint system where is the fingerprint code length.
Similar results were given in [18]. The collusion attack model
was generalized to linear shift invariant filtering followed by
an additive noise in [19].

Most works on digital fingerprinting and collusion attacks for
multimedia employ the watermark embedding method in [15]
and use a linear collusion attack model. In [4], several types
of collusion attacks were studied, including a few nonlinear
collusion attacks. For uniformly distributed fingerprints, non-
linear collusion attacks were shown to defeat the fingerprinting
system more effectively than the average attack [4]. Simulation
results in [4] also showed that normally distributed fingerprints
are more robust against nonlinear collusion attacks than uniform
fingerprints, but analytical study on the Gaussian fingerprints’
performance was not provided. In addition to the robustness
against collusion attacks, compared with discrete watermarks
and uniform watermarks, Gaussian watermarks have the advan-
tage that they do not provide the attackers with the positions
and the amplitudes of the embedded watermarks under statis-
tical and histogram attacks [20]. Therefore, we use in this paper
Gaussian distributed fingerprints. We first consider from the col-
luders’ point of view and compare various nonlinear collusion
attacks on independent Gaussian fingerprints. We analyze the
effectiveness of the collusion attacks and the perceptual quality
of the colluded signals. We then shift our role to desinger/de-
tector and analyze the performance of several commonly used
detection statistics [4], [21], [22] in the literature under collu-
sion attacks. There is no other work to our knowledge that com-
pares their detection performance under collusion attacks. We
use digital image as an example, and our results are applicable
to other types of multimedia.

Note that, in addition to collusion attacks, the colluders can
also apply single-copy attacks to further hinder the detection.
Spread spectrum embedding [15], [23] has been widely used in
the literature and is proven to be resistant to many single-copy
attacks. Recent investigation has shown that simple rotation,
scale and translation based geometric attacks may prevent the
detection of the embedded watermarks [24]. However, since the
host signal can be made available to the detector in digital finger-
printing applications, the detector can first register the attacked
copy with respect to the host signal and undo the geometric at-
tacks before the colluder identification process. It was shown in
[25] that the alignment noise from inverting geometric distor-
tions is generally very small and, therefore, will not significantly

affect the detection performance. Consequently, in this paper,
we focus on collusion attacks, which are effective and have not
been well studied in the literature. Real systems should contain
other components, e.g., the registration module, to combat pos-
sible distortions of other types.

The organization of this paper is as follows. We begin, in
Section II, with a system model of digital fingerprinting and
collusion attacks. Then, in Section III, we analyze the effective-
ness and the perceptual quality of different nonlinear collusion
attacks, and investigate the detection performance of different
detection statistics. In Section IV, we first study the resistance of
independent unbounded Gaussian fingerprints to different collu-
sion attacks. We find that while Gaussian fingerprints are more
robust against collusion attacks, they may introduce noticeable
distortion in the fingerprinted copies due to their unbounded na-
ture. In order to achieve both the robustness against collusion at-
tacks and the imperceptibility, we introduce bounded Gaussian-
like fingerprints and analyze their performance. In Section V,
we propose a preprocessing technique of the extracted finger-
prints to improve the detection performance. Section VI shows
the simulation results on real images. A few more nonlinear col-
lusion attacks are discussed in Section VII. Finally, conclusions
are drawn in Section VIII.

II. SYSTEM MODEL

A. System Model and Assumptions

We consider a digital fingerprinting and collusion attack
system that consists of three parts: fingerprint embedding,
collusion attacks, and fingerprint detection.

We use in this paper the spread spectrum embedding [15],
[23] to hide fingerprints in the host signal. Assume that there are
a total of users in the system. Given a host signal represented
by a vector of length , the owner generates a unique finger-
print of length for each user , . In
this paper, we assume that the fingerprints are
independent of each other. The fingerprinted copy that is
distributed to user is generated by .

Here, , , and are the th components of the fin-
gerprinted copy, the original signal, and the fingerprint, respec-
tively, and is the just-noticeable-difference (JND) from human
visual models [23] to control the energy and achieve the imper-
ceptibility of the embedded fingerprints. Then, the fingerprinted
copy is distributed to user .

Assume that out of users collude, and
is the set containing the indices of the

colluders. We further assume that the collusion attack is in the
same domain as the fingerprint embedding. With different
copies , the colluders generate the th component
of the attacked copy using one of the collusion functions
shown in (1)

average attack

minimum attack

maximum attack
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median attack

minmax attack

modified negative attack

randomized negative attack
with prob.
with prob. .

(1)

In (1), , and
return the minimum, the maximum and

the median values of , respectively. The colluded
copy is . For our model, applying the
collusion attacks to the fingerprinted copies is equivalent to
applying the collusion attacks to the embedded fingerprints.
For example

In fingerprinting applications, the original signal is often
available to detectors. To improve the detection performance
[5], the detector first removes the host signal from the attacked
copy and extracts the fingerprint where

is a collusion function defined in (1). The detector analyzes
the similarity between and each of the original fingerprints

, and outputs the estimated colluder set.
In the literature, there are three detection statistics available to

test the presence of the original fingerprint in the extracted
fingerprint [4], [21], [22]

where

and

where

and (2)

In (2), is the Euclidean norm of ; is the
length of the fingerprint; is the estimated correlation
coefficient between and ; and

are the sample means of and

, respectively;

and are the unbiased esti-
mates of the original fingerprint’s variance and the extracted
fingerprint’s variance, respectively; and and are the

sample mean and sample variance of . Note that all
three detection statistics are correlation based in which the
correlation between the extracted fingerprint and the original

fingerprint is the kernel term, and they differ primarily in
the way of normalization.

B. Performance Criteria

In this paper, we consider the following performance criteria
to analyze different collusion attacks and different detection
statistics.

1) Effectiveness of Collusion Attacks and Detection Perfor-
mance of Detection Statistics: To study the effectiveness of
collusion attacks and the performance of detection statistics,
different criteria were used to address different applications in
the literature. One set of criteria is the probability of falsely
accusing at least one innocent user and the probability of not
identifying any of the colluders [17], [18]. The second set of cri-
teria is the fraction of colluders that are successfully captured
and the fraction of innocent users that are falsely accused, as
considered in [5] and [26]. In this paper, we adopt these criteria
and use the following measurements:

• : probability of capturing at least one colluder;
• : probability of falsely accusing at least one innocent

user;
• : fraction of colluders that are successfully captured;
• : fraction of innocent users that are falsely accused.
Different applications have different goals and may need dif-

ferent balance between capturing colluders and accusing inno-
cent users. and are used in applications where falsely ac-
cusing an innocent user may lead to severe consequences. One
possible application is to provide digital evidence in the court
of law. The detector in these applications is designed to capture
one colluder with high confidence. On the other hand, and

are used in applications where the detection process is com-
bined with other components in the decision making system and
other evidences to make the final decision. The detector there is
designed to capture more colluders at the cost of accusing more
innocent users.

2) Perceptual Quality: When considering the perceptual
quality, one of the commonly used objective measurements
on perceptual distortion is the mean square error (MSE) and
equivalently PSNR for image applications. A major weak-
ness of MSE is that it ignores the unique characteristic of
multimedia data: minor perturbations on the data values will
not cause noticeable distortion as long as they do not exceed
the just-noticeable difference [23]. Furthermore, MSE only
measures the average energy of the noise introduced and does
not consider the local constraints on each noise component.

We take JND into consideration and define the following two
new measurements:

• ;
• the redefined mean square error

where is defined as

if
if
if .

(3)

calculates the power of the noise components that in-
troduce perceptual distortion and reflects the percentage
of the noise components that exceed JND. A large or
a large indicates large perceptual distortion introduced.
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III. STATISTICAL ANALYSIS OF COLLUSION ATTACKS

AND DETECTION STATISTICS

In this section, we will analyze the statistical behavior of three
detection statistics under different collusion attacks.

A. Analysis of the Correlation Term Under Different
Collusion Attacks

In our system model, the extracted fingerprint is
. As discussed in the previous section, when

measuring the similarity between and , all three statis-
tics are correlation based, and the common kernel term is the
linear correlation

(4)

where is the length of the fingerprint. For different collusion
attacks, follows different distributions. This section ana-
lyzes the statistical behavior of this correlation term under dif-
ferent collusion attacks.

Under the assumption that
are i.i.d. distributed with zero mean and variance ,

are also i.i.d. distributed. From

central limit theorem, if have fi-

nite mean and finite variance , then can be

approximated by

(5)

The problem is reduced to find

and

. We simplify the nota-
tion by dropping the subscript . For a given and a
given collusion function , due to the symmetry of

with respect to the user index , all
where have the same mean and

variance, and similarly, all where
have the same mean and variance.

For , define

and

(6)

For , because are i.i.d. distributed with
zero mean and variance , we have

and

(7)

Therefore, ,

for and

are needed for analyzing the
correlation term under each collusion attack.

Under the average attack, if , we have

and (8)

Under the minimum attack, given the pdf and cdf of
, if the number of colluders is , from the proba-

bility and order statistics theory [27], we can get the pdf of

(9)

From (9), we can calculate the second moment of .
For , we can express the joint pdf of and
as follows by noticing that breaks into two
nonzero regions

if
if .

(10)

Consequently,
, where

and

(11)

The calculation of is similar.
The analysis of the maximum and median attacks follows the

same approach. For the maximum attack, the pdf of
is

(12)

and the joint pdf of and for is

if
if .

(13)
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Under the median attack, define
. If , the pdf of

is

(14)
and the joint pdf of and for is shown in
(15), at the bottom of the page.

Under the minmax attack
, if , we have

and

(16)

The results from the previous analysis on the minimum and the
maximum attacks can be applied to (16). In addition, we can
find the correlation between and from their joint
pdf

(17)

thus

(18)

The calculation of is similar.

is obtained based on the joint pdf of

, and , which is shown in (19), at the bottom
of the page.

The analysis of the modified negative (ModNeg) attack is
similar to that of the minmax attack. If , then the
joint pdf of and and the joint pdf of and

are

(20)

and

(21)

For , the joint pdf of and and the
joint pdf of , and are shown in (22) and (23),
respectively, at the bottom of the next page.

Under the randomized negative (RandNeg) attack, we assume
that is independent of . The colluded fingerprint can
be written as ,
where is a Bernoulli random variable with parameter and
is independent of . The -th moment ( ) of

for and the -th moment of
are

and

(24)

From all the above analysis, the correlation kernel term
can be approximated by the following Gaussian distribution

if

if .
(25)

if
if
if

(15)

if
if
if .

(19)
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B. Analysis of the Detection Statistics

From (25), we can approximate the detection statistics
by a Gaussian random variable

if

if .

(26)
The statistics can be approximated by a

Gaussian random variable with mean
,

where is the mean of defined in (2) and is the
estimated correlation coefficient of the extracted fingerprint
and the original fingerprint [4]. We can show that

if

if .
(27)

Here, for

(28)

where is the variance of the extracted fingerprint.
The statistics normalize the correlation term with the unbi-

ased estimate of its variance. So we have
if

if . (29)

C. Analysis of the Performance of Collusion Attacks and
Detection Statistics

1) Analysis of , , , and : In our system
model with a total of users and colluders, given a signal to
be tested and given one detection statistics, out of the sta-
tistics are normally distributed with a positive mean
and the others are normally distributed with a zero mean, as an-
alyzed in the previous section.

Take the statistics as an example, define
, , and .

If are uncorrelated with each other or the correlation
is very small, then for a given threshold , we can approximate

and by

and

(30)

where is the Gaussian tail func-
tion.

To calculate and , we can have the following
approximations:

and (31)

The analysis of , , , and for the and statistics
are the same.

2) Perceptual Quality: In our system, the distortion in-
troduced to the host signal by the colluded fingerprint is

, . Given
the collusion attack and the number of colluders , if

has the pdf and is
the absolute value of , we can simplify the and

to

and

(32)

if
if
if

if
(22)

if
if
if

if

(23)
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Fig. 1. (a) � , (b) � , (c) � , and (d) � of the unbounded Gaussian fingerprints with � = 1=9.

IV. EFFECTIVENESS OF COLLUSION ATTACKS

ON GAUSSIAN BASED FINGERPRINTS

It has been shown in [4] that the uniform fingerprints can be
easily defeated by nonlinear collusion attacks, and the simula-
tion results there also showed that the Gaussian fingerprints are
more resistant to nonlinear collusion attacks than the uniform
fingerprints. However, no analytic study was provided in the lit-
erature on the resistance of Gaussian fingerprints to nonlinear
collusion attacks. In this section, we study the effectiveness of
nonlinear collusion attacks on Gaussian based fingerprints.

A. Unbounded Gaussian Fingerprints

1) Statistical Analysis: We first study the resistance of un-
bounded Gaussian fingerprints to collusion attacks. As before,
we assume that there are a total of users and the fingerprints

are i.i.d. Gaussian with zero mean and variance .
Usually we take to ensure that around 99.9% of
fingerprint components are in the range of [ , 1] and are im-
perceptible after being scaled by a JND factor.

Under the assumption that the Bernoulli random vari-
able in the randomized negative attack is indepen-
dent of the zero mean Gaussian fingerprints, we have

for

all possible . Consequently, we have

(33)

and the upper bound of the variance in (33) is achieved when
and . From (30) and (31), the larger

the variance, the more effective the attack. Consequently, we
take in the randomized negative attack and consider the
most effective attack.

Given the analysis in the previous section, we can calculate
the parameters , , , and for Gaussian dis-
tribution with zero mean and variance . Due to the existence
of the terms in the pdfs and joint pdfs, analytical expres-
sions are not available. We use the recursive adaptive Simpson
quadrature method [28] to numerically evaluate the integrals
with an absolute error tolerance of and the results for

are plotted in Fig. 1.
From Fig. 1, we find that, for a given number of colluders
, are the same for all collusion attacks and equal to

. Different collusion attacks have different ,
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Fig. 2. Perceptual quality of the attacked copy under different attacks with unbounded Gaussian fingerprints. Here, � = 1=9. (Left) MSE =N .
(Right) E[F ].

and . The relationship of and for different col-
lusion attacks are

and

(34)

and that of is

(35)

Note that the extracted fingerprint under the minimum or
maximum attack is not zero mean. is proportional to the
second moment of , and is the largest under the minimum,
maximum, and randomized negative attacks. However, the vari-
ance of under the minimum or maximum attacks is small and
comparable with under the average, median, and minmax
attacks.

In order to compare the effectiveness of different collusion
attacks, we define the following notations.

• Attack A Attack B: Attack A is more effective than
attack B in defeating the system.

• Attack A Attack B: Attack A and attack B have the
same performance in defeating the system.

• Attack A Attack B: Attack A and attack B have similar
performance in defeating the system.

From (30), (31), (34), and (35), with the statistics or the
statistics, we can sort different collusion attacks in the de-

scending order of their effectiveness as

(36)

and with the statistics, we can sort different attacks in the
descending order of their effectiveness as

(37)

Therefore, the randomized negative attack is the most effective
attack.

So far, we have studied the effectiveness of different collu-
sion attacks. As for the perceptual quality, Fig. 2 shows the

and of different collusion attacks with i.i.d.
fingerprints. As we can see from Fig. 2, although

the minimum, maximum, and randomized negative attacks are
more effective in defeating the fingerprinting system, they also
introduce larger noticeable distortion that is proportional to the
number of colluders.

2) Simulation Results: Our simulation is set up as follows.
Since the number of embeddable coefficients in 256 256
and 512 512 images is usually , we assume that the
length of the fingerprints is 10 000. To accommodate a total of

users, we generate 100 independent fingerprints of
length 10 000. Every fingerprint component is independent of
each other and follows the Gaussian distribution.
Our results are based on a total of 2000 simulation runs.

In Fig. 3(a) and (c), is fixed as and we compare
of the and statistics, respectively, under different collu-
sion attacks. In Fig. 3(b) and (d), is fixed as and we
compare of the and statistics, respectively, under
different attacks. The performance of the statistics is similar to
that of and is not shown here. We compare different detec-
tion statistics with in Fig. 3(e) and
in Fig. 3(f). Note that in Fig. 3(e) and (f), we only plot the perfor-
mance of the minimum and that of the modified negative attacks
since the maximum attack yield the same result as the minimum
attack and all other attacks have a similar trend.

The simulation results shown in Fig. 3 agree with our anal-
ysis. From Fig. 3(a) and (b), with the or statistics, the min-
imum, maximum, and randomized negative attack are the most
effective attacks followed by the modified negative attack. The
average, median, and minmax attacks are the least effective at-
tacks. From Fig. 3(c) and (d), with the statistics, the random-
ized negative attack is the most effective attack followed by the
modified negative attack. The average, median, and minmax at-
tacks have similar performance and they are the least efficient
attacks. The minimum and maximum attacks are the second
least effective attacks. From Fig. 3(e) and (f), the statistics
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Fig. 3. (a) P of the T statistics under different attacks, (b) E[F ] of the T statistics under different attacks, (c) P of the Z statistics under different attacks,
(d) E[F ] of the Z statistics under different attacks, (e) P of different statistics, and (f) E[F ] of different statistics with unbounded Gaussian fingerprints. Here,
� = 1=9, M = 100, and N = 10 . In (a), (c), and (e), P = 10 . In (b), (d), and (f), E[F ] = 10 .

are more resistant to the minimum and maximum attacks than
the and statistics while the three statistics have similar
performance under other collusion attacks. Therefore, from the
colluders’ point view, the best strategy for them is to choose the
randomized negative attack. From the detector’s point of view,
the statistics should be used to be more robust against the
minimum and maximum attacks.

In Fig. 4, we show the attacked images after the average and
the minimum attacks with 75 colluders. Although the minimum,
maximum and randomized negative attacks are more effective,
they also introduce much larger noticeable distortion in the host
image. This is because the fingerprints are not bounded, and in
fact, such unbounded fingerprints can introduce noticeable dis-
tortion in the fingerprinted copies even when without collusion.
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Fig. 4. Comparison of perceptual quality of the attacked images under different attacks with 75 colluders. Fingerprints are generated from unbounded Gaussian
distribution with � = 1=9. (Left) Zoomed-in region of the original 256� 256 Lena. (Middle) Lena under the average attack. (Right) Lena under the minimum
attack.

B. Bounded Gaussian-Like Fingerprints

Compared with uniform fingerprints, Gaussian fingerprints
improve the detector’s resistance to nonlinear collusion attacks
[4] and are resilient to statistical and histogram attacks [20]. Be-
cause Gaussian distribution is unbounded, it is possible that the
embedded fingerprints exceed the JND and introduce percep-
tually distinguishable distortion. However, imperceptibility is a
requirement of digital fingerprinting and the owner has to guar-
antee the perceptual quality of the fingerprinted copies. In order
to remove the perceptual distortion while maintaining the ro-
bustness against collusion attacks, we introduce the bounded
Gaussian-like fingerprints and study their performance under
collusion attacks.

Assume that and are the pdf and cdf of a
Gaussian random variable with zero mean and variance ,
respectively. The pdf of a bounded Gaussian-like distribution

is

if
otherwise.

(38)

We can show that the variance of fingerprints following pdf
(38) is , and the embedded fingerprints introduce no percep-
tual distortion since and . By bounding
the fingerprints in the range of [ , 1], we maintain the energy
of the embedded fingerprints while achieving the impercepti-
bility.

For fingerprints following distribution (38), the analyses of
the collusion attacks and the detection statistics are similar to the
unbounded case and thus omitted. If we sort different collusion
attacks according to their effectiveness, the result is the same as
that of the unbounded Gaussian fingerprints.

The simulation of the bounded Gaussian-like fingerprints
under collusion attacks is set up similarly to that in Sec-
tion IV-A.II. Assume that there are a total of users
and the host signal has embeddable coefficients. The
i.i.d. fingerprints are generated from the distribution (38) with

. In Fig. 5(a) and (c), and we compare
of the and statistics, respectively, under different

collusion attacks. In Fig. 5(b) and (d), and

we compare of the and statistics, respectively,
under different collusion attacks. The performance of the
statistics is similar to that of . We compare the performance
of different detection statistics under the minimum and the
modified negative attacks with in Fig. 5(e) and

in Fig. 5(f), respectively. The simulation results
agree with the analysis and we have the same observations as in
the unbounded case. From the colluders’ point of view, the most
efficient attack is the randomized negative attack, and from the
detector’s point of view, the statistics are more robust.

V. PREROCESSING OF THE EXTRACTED FINGERPRINTS

The three detection statistics we have studied so far are not
specifically designed for collusion scenarios and, therefore, do
not take into account the characteristics of the newly generated
copies after the collusion attacks. Intuitively, utilizing the statis-
tical features of the attacked copies may improve the detection
performance, and one of such features is the sample mean of
the extracted fingerprint under the collusion attacks. From the
histogram plots of the extracted fingerprints under different at-
tacks as shown in Fig. 6, we observe different patterns of the
sample means of the extracted fingerprints: the extracted finger-
prints have approximately zero sample mean under the average,
median, minmax and modified negative attacks; the minimum
attack yields a negative sample mean, and the maximum attack
yields a positive sample mean; and under the randomized neg-
ative attack, the histogram of the extracted fingerprint compo-
nents have two clusters, one with a negative mean and the other
with a positive mean.

Recall from Section III-A that is proportional to
the second moment of the extracted fingerprint, subtracting
the sample mean from the extracted fingerprint will reduce
its second-order moment, thus help improve the detection
performance. Similarly, the detection performance under the
randomized negative attack can be improved by decreasing

and .
Motivated by this analysis, we propose a preprocessing

stage in the detection process: given the extracted finger-
print , we first investigate its histogram.
If a single nonzero sample mean is observed, we subtract
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Fig. 5. (a) P of the T statistics under different attacks, (b) E[F ] of the T statistics under different attacks, (c) P of the Z statistics under different attacks,
(d) E[F ] of the Z statistics under different attacks, (e) P of different statistics, and (f) E[F ] of different statistics with bounded Gaussian-like fingerprints.
Here, � = 1=9, M = 100, and N = 10 . In (a), (c), and (e), P = 10 . In (b), (d), and (f), E[F ] = 10 .

it from the extracted fingerprint, and then apply the de-
tection statistics. If the fingerprint components are merged
from two (or more) distributions that have distinct mean
values, we need to cluster components and then subtract
from each colluded fingerprint component the sample mean
of the corresponding cluster. In the later case, the means

can be estimated using a Gaussian-mixture approximation,
and the clustering is based on the nearest-neighbor prin-
ciple. In our problem, under the randomized negative attack,
a simple solution is to first observe the bi-modality in the
histogram of , and then cluster all negative components
into one distribution and cluster all positive components
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Fig. 6. Histograms of the extracted fingerprints under the average, minimum and randomized negative attacks, respectively. The original fingerprints follow the
distribution in (38) with � = 1=9. N = 10 and K = 45.

Fig. 7. (a)P under the minimum attack, (b)E[F ] under the minimum attack, (c)P under the randomized negative attack, and (d)E[F ] under the randomized
negative attack with and without preprocessing. Fingerprints are generated from bounded Gaussian-like distribution (38) with � = 1=9.M = 100 and N =
10 . In (a) and (c), P = 10 . In (b) and (d), E[F ] = 10 .

into the other distribution. Given the extracted fingerprint
, define

as the sample mean of the negative components of the ex-
tracted fingerprint where is the indication function, and

as the sample mean

of the positive components of the extracted fingerprint. Then
the preprocessing stage generates

if
if (39)
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Fig. 8. (a) P of Lena, (b) E[F ] of Lena, (c) P of Baboon, and (d) E[F ] of Baboon with the Z statistics under different collusion attacks. The original
fingerprints follow the distribution in (38) with � = 1=9. M = 100. In (a) and (b), the length of the embedded fingerprints is N = 13691. In (c) and (d),
the length of the embedded fingerprints is N = 19497. In (a) and (c), P = 10 and simulation results are based on 10,000 simulation runs. In (b) and (d),
E[F ] = 10 and simulation results are based on 1,000 simulation runs.

and the detector applies the detection statistics to . The
analysis of the detection statistics with the preprocessing is the
same as in Section III and is not repeated.

The simulation is set up the same as before and the finger-
print components are generated from the bounded Gaussian-like
distribution (38) with . In Fig. 7(a) and (c), with

, we compare of the three statistics with and
without the preprocessing under the minimum and the random-
ized negative attacks, respectively. In Fig. 7(b) and (d), with

, we compare of the three statistics with
and without the preprocessing under the minimum and the ran-
domized negative attacks, respectively. The detection perfor-
mance under the maximum attack is the same as that of the min-
imum attack and is not shown here. We can see that the prepro-
cessing substantially improves the detection performance of the
detector, and the three statistics have similar performance under
the minimum, maximum, and randomized negative attacks.

Note that the estimated correlation coefficient in the
statistics removes the mean of the extracted fingerprint before
calculating the correlation between the extracted fingerprint and
the original fingerprint. This explains why the statistics per-
form better than the and statistics without preprocessing

under the minimum and maximum attacks, whereby the mean
of the colluded fingerprint components is substantially deviated
from zero.

VI. SIMULATION RESULTS ON REAL IMAGES

To study the performance of Gaussian based fingerprints
under different nonlinear collusion attacks on real images, we
choose two 256 256 host images, Lena and Baboon, which
have a variety of representative visual features such as the
texture, sharp edges, and smooth areas. We use the human
visual model based spread spectrum embedding in [23], and
embed the fingerprints in the DCT domain. The generated
fingerprints follow the bounded Gaussian-like distribution (38)
with . We assume that the collusion attacks are also
in the DCT domain. At the detector’s side, a nonblind detection
is performed where the host signal is first removed from the
colluded copy. Then the detector applies the preprocessing to
the extracted fingerprint if a nonzero sample mean is observed.
Finally, the detector uses the detection statistics to identify the
colluders.
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Fig. 8 shows the simulation results of the statistics. The
and statistics have similar performance and are not shown

here. We assume that there are a total of users. In
Fig. 8(a) and (c), we fix and compare of Lena
and Baboon, respectively, under different nonlinear collusion at-
tacks. In Fig. 8(b) and (d), we fix and compare

of Lena and Baboon, respectively, under different non-
linear collusion attacks. The simulation results from real images
agree with our analysis in Section III, and are comparable to
the simulation results in Sections IV and V. In addition, a better
performance is observed in the Baboon example than in Lena.
This is because the length of the embedded fingerprints in Ba-
boon, which is , is larger than that in Lena, which
is . Different characteristics of the two images, e.g.,
smooth regions and the texture, also contribute to the difference
in performance.

VII. A FEW MORE COLLUSION ATTACKS

Besides of the attacks listed in (1), we further consider a few
other possible collusion attacks. One of them is the copy and
paste attack where in generating each component of the attacked
copy , the colluders equiprobably choose one of the dif-
ferent copies and take that value as . In terms of
the effects on the energy reduction of the original fingerprints
and the effect it has upon the detection performance, this attack
and the average attack have similar performance.

Another possible attack is on bounded fingerprints. Since
all the embedded fingerprints are within the range of

, so are the minimum and the maximum of
these copies. The minimum and the maximum values also
tell the colluders the lower and upper bounds of the pos-
sible fingerprints that will not introduce noticeable distortion.
The colluders can randomly choose any value between the
minimum and the maximum as the colluded copy without
introducing perceptual distortion. We call it the uniform
attack, which can be modeled as the minmax attack fol-
lowed by an additive noise . The extracted fingerprint is

where is uniformly
distributed in .
When is large, are approximately uniformly distributed
in [ , 1]. Note that in addition to the collusion functions listed
in (1), the colluders can also add another additive noise to the
attacked copy, as long as the overall distortion introduced in
the host signal (the extracted fingerprint plus the additive noise
in this case) is bounded by JND. This additional noise will
hinder the detection performance without degrading the per-
ceptual quality of the attacked signal. We can show that given
a fixed power of the overall noise introduced in the host signal,
different collusion attacks have comparable performance in
defeating the fingerprinting systems.

VIII. CONCLUSION

In this paper, we have provided theoretical analysis on the
effectiveness of different collusion attacks and studied the per-

ceptual quality of the attacked signals under different collusion
attacks. We have also studied several commonly used detection
statistics and compared their performance under collusion at-
tacks. Furthermore, we have proposed the preprocessing tech-
niques specifically for collusion scenarios to improve the detec-
tion performance.

We first studied the effectiveness of average and various
basic nonlinear collusion attacks with unbounded Gaussian
fingerprints. From both our analytical and simulation results,
we found that with the three detection statistics as defined in the
literature and without any modification, the randomized nega-
tive attack is the most effective attack against the fingerprinting
system. We showed that the statistics are more robust against
the minimum and maximum attacks than the other two statistics
by implicitly removing the mean of the extracted fingerprint.
We also showed that all three statistics have similar perfor-
mance under other collusion attacks. However, the unbounded
Gaussian fingerprints may exceed JND and introduce percep-
tual distortion in the host signal even when without collusion,
and the minimum, maximum, and randomized negative attacks
introduce much larger distortion in the attacked copies than
others.

In order to remove the noticeable distortion introduced by
the unbounded fingerprints, we proposed the bounded Gaussian-
like fingerprints, which maintain the robustness against the col-
lusion attacks. With the bounded Gaussian-like fingerprints, the
randomized negative attack is still the most effective attack, and
the statistic are more robust against the minimum and max-
imum attacks than the other two statistics. The bounding im-
proves the perceptual quality of the fingerprinted copies and that
of the attacked copies, and both the fingerprint designer and the
colluders do not introduce noticeable distortion.

Observing that the extracted fingerprints under the minimum
and the maximum attacks do not have a zero mean, we proposed
the preprocessing of the extracted fingerprints, which removes
the mean from the extracted fingerprints before applying the de-
tection statistics. We also applied preprocessing to the extracted
fingerprints after the randomized negative attacks, which have
distinct bimodal distribution as opposed to the single modality
under other collusions. We showed that these preprocessing
techniques improve the detection performance, and all detec-
tion statistics give similar performance after preprocessing.

We have also studied the effectiveness of different collusion
attacks and the performance of different statistics on real im-
ages. Our real image simulation results agree with our analysis
and are comparable with the ideal case simulation results.
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