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Abstract. We consider the Minimum Independent Set Partition Prob-
lem (MISP) and its dual (MISPDual). The input is a multi-set of N
vectors from {0, 1}n, where U := {1, . . . , n} is the index set. In MISP,
a threshold k is given and the goal is to partition U into a minimum
number of subsets such that the projected vectors on each subset of in-
dices has multiplicity at least k, where the multiplicity is the number
of times a vector repeats in the (projected) multi-set. In MISPDual, a
target number χ is given instead of k, and the goal is to partition U into
χ subsets to maximize k such that each projected vector appears at least
k times.
The problem is inspired from applications in private voting verification.
Each of the N vectors corresponds to a voter’s preference for n contests.
The n contests are partitioned into χ subsets such that each voter receives
a verifiable tracking number for each subset. For each subset of contests,
each voter’s tracking number together with the votes for that subset is
released in some public bulletin, which can be verified by each voter.
The multiplicity k of the vectors’ projection onto each subset of indices
ensures that the bulletin for each subset of contests satisfies the standard
privacy notion of k-anonymity.
In this paper, we show strong inapproximability results for both prob-
lems. For MISP, we show the problem is hard to approximate to within
a factor of n1−ε. For MISPDual, we show the problem is hard to approxi-
mate to within a factor of N1−ε. Here, ε can be any small constant. Note
that factors n and N approximation are trivial for MISP and MISPDual
respectively. Hence, our results imply that any polynomial-time algo-
rithm can almost do no better than the trivial one.

1 Introduction

We study the Minimum Independent Set Partition problem (MISP) and its dual
problem (MISPDual). This problem was raised by Wagner on cstheory.stackexchange [12]
in the context of data privacy [6]. We first describe the problem and an applica-
tion scenario.
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In MISP, a multi-set Y of N vectors in {0, 1}n is given together with a
multiplicity threshold k. Our goal is to partition the indices [n] into minimum
number χ of subsets such that the projection of Y on each subset has multiplicity
at least k.

The dual problem MISPDual is also of interest, in which a multi-set Y of
vectors is also given. However, the target number χ of parts is given, and the goal
is to return a χ-partition of the indices [n] such that the minimum multiplicity
k of the projected vectors is maximized.

Application Scenario. The problem is motivated by privacy in voting verifi-
cation. We have N voters, each of whom is voting for n contests (with {0, 1}
voting). To verify that all votes have been counted, each voter gets assigned a
verifiable tracking number during voting. Then, there is a public bulletin board
where all pairs of tracking numbers and votes are posted (where names of voters
are withheld) such that each voter can verify that his votes are correct using
his own tracking number. This could provide verifiability, but it is well-known
in the privacy community that simply replacing a user’s name with a random
id cannot achieve privacy [6], since a voter might be uniquely identified by the
way he votes in the n contests.

An expensive solution would be for each voter to get a separate tracking
number for each contest, but this would increase the space complexity to store
n numbers for each voter. Observe that if k is the minimum of the number of
minority votes over all n contests, this expensive solution achieves the standard
notion of k-anonymity [11].

To obtain a tradeoff between the space complexity of each voter and the
anonymity parameter, one solution is: after receiving all votes, partition the n
contests into some small number χ of subsets such that within each subset of
contests, each voter has at least k− 1 other voters who vote in exactly the same
way in that subset of contests, for some parameter k. In the public bulletin
board, the χ subsets of contests are released independently. Each voter needs to
store only χ tracking numbers (one for each subset of contests), and k-anonymity
is achieved.

The case for MISP corresponds to the scenario when a parameter k is given,
and the goal is the minimize the number χ of subsets to achieve k-anonymity.
For the dual problem MISPDual, the number χ of subsets is given, and the goal
is to partition the contests into χ subsets such that the anonymity parameter k
is maximized. Hence, it is of interest to investigate the complexity and hardness
of approximation for these problems.

Our Results and Techniques. We prove strong inapproximability results for
both problems MISP and MISPDual. We first give a reduction from graph col-
oring, which is NP-hard; in graph coloring, each vertex is assigned a color such
that no two adjacent vertices receive the same color. Intuitively, each index in [n]
stands for a vertex, while the vectors capture the properties of the graph coloring
problem. In our construction, a valid coloring corresponds to a partition with
multiplicity k, while an invalid coloring corresponds to one with multiplicity 1.
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The inapproximability of graph coloring implies that the approximation hard-
ness of MISP and MISPDual with χ ≥ 3 is at least n1−ε and N1−ε respectively.

However, we show that MISPDual with χ = 2 is much harder than graph col-
oring. Observe that deciding if a graph is 2-colorable can be solved in polynomial
time. Hence, to show the hardness of MISPDual with χ = 2, we need new reduc-
tion techniques. We give a novel reduction from the NP-hard problem 3-SAT.
Similar to graph coloring, some indices stand variables and their negations. In-
tuitively, one subset stands for “true” and the other stands for “false”. In order
to show approximation hardness, for any threshold k, our reduction is carefully
constructed such that a satisfiable assignment corresponds to a partition with
multiplicity at least k, while an unsatisfiable formula corresponds to an instance
such that any 2-partition has multiplicity only 1. This gap property allows us to
prove that it is NP-hard to approximate MISPDual within factor N1−ε.

Our strong inapproximability results imply that there can be no efficient
approximation algorithms for the problems MISP and MISPDual in their most
general form. However, in real-world applications, the instances might have spe-
cial structures that facilitate useful heuristic algorithms, which we leave as future
research directions.

1.1 Historical Overview on Inapproximability

NP-Completeness has been developed in the 1970s [2, 9]. Its success motivated
the study of approximation algorithms. The first such paper was by Johnson [8].
He considered the problems Max SAT, Independent Set, Coloring and Set Cover.
Several approximation algorithms have been proposed for these problems in this
paper.

The design and analysis of approximation algorithms have grown since then.
Several problems are shown to admit polynomial time approximation schemes
(PTAS), meaning that they can be approximated as close to the optimum as
possible.

It was known from the very beginning of approximation algorithms that some
problems do not admit PTAS. For instance, coloring can not be approximated
within 4

3 − ε, since 3-coloring is NP-hard. However, the inapproximabilities for
many hard problems remains unknown.

Modern theory of inapproximability starts from the development of PCP
systems, which are proved in [1]. Unlike conventional NP-hardness reduction,
PCP systems can be used more readily to achieve inapproximability hardness.
Based on PCP systems, several strong inapproximability have been proved since
then, e.g., MAX 3SAT [7], Set Cover [5] and Coloring [4, 13]. In particular, one
of our reduction is based on the hardness of graph coloring [13].
Other Vector Partition Problems. Onn and Schulman [10] have also considered
vector partition problems in which the input is also a collection of vectors. How-
ever, the goal is to partition the vectors (as opposed the coordinate index set)
to maximize some convex objective function on the sum of vectors in each part.
They showed that if both the dimension and the number of parts are fixed, the
problem can be solved in strongly polynomial time.
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2 Problem Definition

We give the formal definition of the Minimum Independent Set Partition Problem
(MISP).

The input is a positive integer n, a multi-set Y := {y1, y2, . . . , yN} of N
vectors in {0, 1}n, and a multiplicity threshold k. We use U := [n] = {1, 2, . . . , n}
to denote the set of indices.

Given a vector y and subset I ⊆ U of indices, we use y|X to denote the
projection of vector y on I. For instance, for y = (0, 1, 0, 1, 0, 1) and I = {2, 4, 5},
y|I = (1, 1, 0).

Given a multi-set Y , the projection of Y on I is a multi-set defined similarly
Y |I := {y|I : y ∈ Y }.

A subset I ⊆ U of indices is k-independent (with respect to Y ) if each vector
in the multi-set Y |I has multiplicity at least k, where multiplicity denotes the
number of times a vector in Y |I repeats. A partition {I1, I2, . . . , Iχ} of U is
k-independent if each part Ii is k-independent.

The goal is to find the smallest integer χ and partition U into χ subsets
I1, . . . , Iχ such that each partition Ii is k-independent.
Dual Problem. We also describe a dual version of the problem that we call
MISPDual. Similarly, a multi-set Y of vectors are given, and a target number χ
of partitions is given instead of k.

The goal is to maximize k and partition the indices U into χ subsets I1, . . . , Iχ
such that each Ii is k-independent.

3 General Reduction Schema

In this section, we reduce from the problem of graph coloring to MISP (and
MISPDual with χ ≥ 3); in a valid coloring of an undirected graph, each vertex
is assigned a color such that no two adjacent vertices receive the same color.
We convert from an undirected graph G = (V,E) to a multi-set of vectors such
that a valid coloring corresponds to satisfying some fixed multiplicity threshold
k while an invalid coloring leads to multiplicity 1. The use of this “k vs 1”-gap
will be clear in the proof of the hardness of MISPDual. Because graph coloring
is hard to approximate [13], our reduction readily implies the approximation
hardness of MISP (and MISPDual with χ ≥ 3).

Our reduction depends on an arbitrarily chosen parameter k > 1 that is
the same as the given threshold in MISP or may depend on the graph size
n = |V | in MISPDual. The index set is U := [n]. The multi-set Y consists of
N = k(n + 1) +

(
n
2

)
+ (k − 1)|E| vectors in {0, 1}n, where E is the edges in

the complement graph of G. We also use u ∈ V to denote an index of a vector.
Let MISP(G, k) be the instance reduced from graph G with parameter k. The
vectors in MISP(G, k) are defined as follows.

(I) An all-0’s vector, and the n vectors in the standard basis (each having exactly
one non-zero coordinate). Each of these vectors are repeated k times. There
are k(n+ 1) such vectors.
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(II) Vectors of exactly two non-zero coordinates. There are
(
n
2

)
such vectors.

(III) For each (u, v) /∈ E, the vector with exactly two non-zero entries at indices u
and v. Each of these vectors are repeated (k− 1) times. There are (k− 1)|E|
such vectors.

Figure 1 contains an example of the vectors for graphG = (V = {a, b, c, d}, E =
{{a, b}, {a, c}, {a, d}}) and k = 3. Observe that parts (I) and (II) only depend
on the size of graph G and k.

Fig. 1. An example of G = (V = {a, b, c, d}, E = {{a, b}, {a, c}, {a, d}}) and k = 3

a b c d
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 1 1 0
0 1 1 0
0 1 0 1
0 1 0 1
0 0 1 1
0 0 1 1

(II)

(I)

(III).(b,c)

(III).(b,d)

(III).(c,d)
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Note that a coloring of the graph gives a partition on U (and vice versa) in
a natural way, where vertices having the same color corresponds to a subset of
indices. Next we prove the relationship between colorings and partitions.

Theorem 1. For any k > 1 and graph G, G has a valid χ-coloring iff MISP(G, k)
has a k-independent χ-partition. If G does not have any valid χ-coloring, then
any χ-partition of MISP(G, k) is not 2-independent.

Proof. When G has a valid χ-coloring, we can induce a χ-partition from the
coloring. We prove it is k-independent.

Given a subset I of indices, consider the projected vectors in each part of the
reduction.

Each projected vector in part (I) appears at least k times by the construction.
Each projected vector in (III) appears at least k times since it repeats k−1 times
in (III) and we can find a same one in (II).

For a vector in part (II), it depends on the indices u and v at which the
entries are non-zero. If at most one of them is included in I, then the projected
vector already appears k times in (I); otherwise, both u and v are included in I.

Two vertices u and v can be included in the same part I only if they are not
neighbors in G; hence, the projected vector appears once from (II) and k − 1
times from (III). This proves the “only if” part.

On the other hand, if a χ-partition is 2-independent, then we induce a χ-
coloring for G from the partition. We claim the coloring is valid. For any vertices
u, v with the same color, we have a vector in (II) with u, v in the same part I
(the part corresponding to their color). Such vector appears only once in (II).
It appears in (III) at least once, since the partition is 2-independent. Hence u, v
cannot be neighbours in G, thus it is a valid coloring. Notice k-independent
implies 2-independent. This proves the “if” part and the contrapositive proves
the second statement.

Theorem 2. The inapproximability of MISP is n1−ε for arbitrarily small ε >
0, unless P = NP; this means that if a k-independent partition has minimum
number of parts χ, it is NP-hard to return a k-independent partition with at
most n1−ε · χ parts. Moreover, the result holds for any constant k ≥ 2.

Proof. We want to show a reduction from a coloring instance G to an instance
of MISP.

Use the “reduction schema” in Theorem 1 with k ≥ 2 to get a multi-set Y ,
which is an MISP instance with threshold k.

It is immediate from Theorem 1 that the minimum χ such that there is a
k-independent partition with χ parts in the MISP instance is the same as the
chromatic number of G (the minimum number of colors needed to color G).

Thus, the inapproximability of graph coloring can be applied to MISP. The
inapproximability of chromatic number is n1−ε, by [13], meaning that it is NP-
hard to approximate chromatic number within a factor of n1−ε. Hence, it is also
NP-hard to approximate MISP within a factor of n1−ε.
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4 Approximation Hardness of MISPDual

In this section, we show that the dual problem of maximizing the multiplicity of
the projections into partitions with χ ≥ 3 is hard to approximate. In Section 5,
we show that even for χ = 2, the problem is hard.

Theorem 3. For arbitrarily small constant ε > 0, there is no polynomial time
algorithm that approximates MISPDual within a factor of N1−ε, where N is the
number of vectors in the given multi-set Y ; moreover this result holds for any
constant χ ≥ 3, unless P=NP.

Remark 1. We comment on choosing “n vs N” as the parameter to express
approximation hardness. In MISP, a trivial solution is to partition U into n
singletons, and hence, it is natural to compare with the trivial solution with
approximation ratio n. Hence, inapproximability within factor n1−ε is a strong
indicator that no useful algorithm would exist.

In MISPDual, since any partition would give multiplicity 1, and the maximum
possible multiplicity is the number N of vectors, inapproximability within factor
N1−ε indicates that there is no useful algorithm. Observe that we can also derive
nC hardness for MISPDual for any constant C.

Proof. We use the fact [3] that the problem of deciding whether a graph is χ-
colorable is NP-complete for any χ ≥ 3.

We reduce the problem of deciding whether a graph G is χ-colorable to
MISPDual, such that for a “YES” instance, the multiplicity of MISPDual solution
is at least k, otherwise the multiplicity is at most 1. Later we will set k = nC

for some large enough constant C = Ω( 1
ε ).

Given a graph G, we use the “reduction schema” in Theorem 1 with k = nC

to get a multi-set Y , which is an MISPDual instance with the same χ (target
number of parts).

Suppose the graph is χ-colorable. From Theorem 1, we know that the MISPDual
have solution with multiplicity at least k.

On the other hand, if the graph is not χ-colorable, then MISPDual only has
solution with multiplicity 1, since otherwise it will contradict Theorem 1.

Note that the gap between “NO” and “YES” instances is 1 vs k.
We next prove no polynomial algorithm can approximate MISPDual within

a factor better (smaller) than k = nC . Note that the size N of Y is at most
k(n+1)+

(
n
2

)
+(k−1)|E| ≤ nC+10, hence this will imply no polynomial algorithm

can approximate MISPDual within a factor better than N
C

C+10 .
Suppose there is an algorithm A that can approximate MISPDual within a

factor better than k. Then, we can decide whether a graph is χ-colorable by ex-
amining if the multiplicity is greater than 1. Hence, it is NP-hard to approximate

MISPDual within a factor better than k = nC > N
C

C+10 . Note that for constant
C, this is a polynomial-time reduction.

Setting C large enough such that C
C+10 > 1− ε gives the result.
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5 Improved Approximation Hardness of MISPDual

This is the most technical part of the paper. In view of Section 4, it is natural
to ask whether MISPDual with χ = 2 is polynomial-time solvable, as deciding if
a graph is 2-colorable has an easy solution.

In this section, we answer this question negatively. We show strong inap-
proximability result for MISPDual with χ = 2. Observe that the reduction from
graph coloring no longer works. To derive such a result, we need some problem
with binary choice to tackle 2-partition. It turns out that 3-SAT does the job.
In our construction the two parts correspond to “true” and “false” literals. At
the same time, “true” and “false” literals are distinguishable via additional in-
dices. The inapproximability comes from the fact that any satisfiable assignment
corresponds to a 2-partition with high multiplicity, while any non-satisfiable as-
signment corresponds to a 2-partition with low multiplicity. In particular, we
prove the following result.

Theorem 4. For arbitrarily small constant ε > 0, there is no polynomial algo-
rithm that approximates MISPDual with χ = 2 within a factor of N1−ε, unless
P=NP.

Proof. We use the fact that 3-SAT is NP-hard [9]. We construct a reduction from
3-SAT to MISPDual with χ = 2. Consider an instance of 3-SAT: C = ∧li=1Ci =
∧li=1(ci,1 ∨ ci,2 ∨ ci,3), with l clauses and p distinct variables.

Here ci,j can be x or ¬x. Without loss of generality, we assume that x and
¬x do not appear in the same clause. It is obvious that p ≤ 3l, and we further
assume that p, l ≥ 2 to avoid trivial cases.

The property of our reduction is that a satisfiable 3-SAT instance corresponds
an MISPDual solution with multiplicity at least k (later fixed to be lΩ( 1

ε )), while
a non-satisfiable 3-SAT corresponds to an MISPDual solution with multiplicity
at most 1. Notice that the gap “1 vs k” is used to derive the inapproximability
result.

We next give the construction for the reduction from 3-SAT to MISPDual with
χ = 2. We need a parameter k ≥ 2 to be fixed later, which will be polynomially
related to l. We denote the resulting MISPDual instance by MISPDual(C, k),
where C is the 3-SAT instance and k is the parameter.

Our reduction will generate a multi-set Y of vectors from {0, 1}(1+l+2p), with
index set U := [l + 1 + 2p]. The first l indices are identification indices and are
denoted by [1..l]. The (l+ 1)-th index is the separation index and is denoted by
(l + 1). The last 2p indices correspond to literals (and their negations) and are
denoted by the literals, e.g., x or ¬x. The use of identification and separation
indices will become clear in the proof.

NOTATION. To make the description easier, coordinates not mentioned
are set to 0.

There are four parts of vectors as below:

(I) There are 2k vectors:
The 1st vector is the vector with the first l coordinates being 1.
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The 2nd to the k-th vectors are the vectors with the first l + 1 coordinates
being 1.
The (k + 1)-st vector is the vector with the (l + 1)-st coordinate being 1.
The remaining k − 1 vectors are all zero vectors.
The use of (I) is to force the identification indices 1..l to be in different part
from the separation index l+1 in a “good” partition. Notice that some (0, 1)
will appear only once otherwise.

(II) There are (2k + 1)p vectors. For each variable x, we have (2k + 1) vectors
described as below:

(II.x) The first k vectors are the vectors with coordinates (x,¬x) being (0, 1).
The next k vectors are the vectors with coordinates (x,¬x) being (1, 0).
The last vector is a vector with indices (x,¬x) being (1, 1).

The use of (II) is to force x and ¬x to be apart. Since there will be only
one (1, 1) if the two indices are put together. In a “good” partition, literals
setting to be “true” are supposed to be within the identification indices’ (the
first l indices) partition, while the “false” are in the separation index’s (the
l + 1-st index) partition.

(III) There are (3k + 1)l vectors. For each clause Ci = x ∨ y ∨ z (with literals x,
y and z), we have 3k + 1 vectors:

(III.i) The first k vectors are the vectors with the i-th coordinate set to 1 and
coordinates (¬y,¬z) set to 1.
The next k vectors are the vectors with the i-th coordinate set to 1 and
the coordinates (¬x,¬z) set to 1.
The next k vectors are the vectors with the i-th coordinate set to 1 and
the coordinates (¬x,¬y) set to 1.
The last vector is the vector with the i-th coordinate set to 1 and the
coordinates (¬x,¬y,¬z) set to 1.
Note that for all the (3k + 1) vectors, the i-th coordinate is set to 1.

The use of (III) is to force the variables to satisfy the constraints. Notice
that if a clause is not satisfied, then all the indices ¬x,¬y,¬z are on the
“true” side (together with the first l indices), causing (1, 1, 1) to appear only
once in the projection onto the coordinates (¬x,¬y,¬z). On the other hand,
as long as the not all indices ¬x,¬y,¬z are included on the “true” side, any
vector will appear at least k times. Notice the use of identification indices
(the first l indices) here. With different identification indices, clauses will not
affect each other.

(IV) There are lk vectors. For each clause Ci = x ∨ y ∨ z there are k vectors as
follows.

(IV.i) The k vectors are the same with the coordinates (¬x,¬y,¬z) set to 1.

Notice that in (IV) the identifier columns are set to 0, which is different
from (III). The idea is to handle the situation when in (III.i) all ¬x,¬y,¬z are
partitioned into the “false” side. If this happens, the vector (projected on the
“false” side with the (l + 1)-st index) will repeat at least k times.

Figure 2 (in appendix) gives an example for (x∨ y ∨ z)∧ (¬y ∨¬x∨w) with
k = 2.
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It remains to show that a satisfiable assignment corresponds to an k-independent
partition, while a non-satisfiable assignment corresponds to an MISPDual in-
stance such that any 2-partition is not 2-independent.

Lemma 1. For all k > 1 and 3-SAT instance C, if C has a satisfiable assign-
ment, then MISPDual(C, k) has a k-independent 2-partition.

Proof. Give a satisfiable assignment, we partition the indices set U into 2 subsets
T and F as follows. The first l indices [1..l] are included in T , and the (l+ 1)-st
index is in F . For each literal x, if x = true then the index x is included in T
and the index ¬x is included in F ; otherwise, the index ¬x is in T and the index
x is in F .

We next consider the vectors in each part projected on T and F .

Claim. In (I), each vector appears at least k times on both T and F .

Proof. First we consider the each vector in (I) projected on T . By construction,
in the first l coordinates, each of the all 1’s and all 0’s vectors is repeated k
times, and other coordinates are all set to 0.

For the projections on F, only the (l+ 1)-st index has non-zero values and it
contains exactly k 1’s and k 0’s. Hence, in (I), each projected vector repeats at
least k times.

Claim. In (II.x), each vector appears at least k times on both T and F .

Proof. It can be seen that the only non-zero values are at indices x and ¬x. At
both x and ¬x, we have more than k 0’s and k 1’s.

By the construction we know that x and ¬x are assigned to different parts.
In each part, the only non-zero coordinate is repeated at least k times, for each
of the two values 0 and 1.

Claim. In (III.i), each vector appears at least k times on both T and F .

Proof. We denote the i-th clause by Ci = x∨y∨z, where x, y, z can be a variable
or its negation. By construction, at least 1 of ¬x,¬y,¬z is in F , since it is a
satisfiable assignment. For instance, suppose ¬z is in F ; other situations follow
the same argument.

Consider projections on F . Since the first l indices are not in F , we can find
at least k same vectors in (III.i) and (IV.i) (in case ¬x,¬y,¬z ∈ F ).

Now consider the projections on T . Vectors in (III.i) projected on T only
differ at indices ¬x and ¬y. It can be seen from the construction that no matter
which part each of the indices ¬x and ¬y goes, each projected vector still appears
at least k times.

Hence, result of Claim 5 follows.

Claim. In (IV), each vector appears at least k times on both T and F .

Proof. This follows immediately from the construction.



11

The result of Lemma 1 follows, since each projected vector repeats at least
k times.

Lemma 2. For all k > 1 and 3-SAT instance C, if MISPDual(C, k) has a 2-
independent 2-partition, then C has a satisfiable assignment.

Proof. We first argue that if the 2-partition is 2-independent, then the identifi-
cation (first l) indices and the separation (l + 1-st) index should be in different
subsets. Similarly, x and ¬x should be in different subsets. Then, an assignment
is derived (such that literals on the same side as the identification indices are
set to true) and analyzed.

Claim. Each of the indices [1..l] is in the subset different from the subset con-
taining the index l + 1.

Proof. Note that the only 1’s at index l+1 happens in vectors 2 to k+1. Suppose
on the contrary that some index in j ∈ [1..l] is in the same subset at index l+ 1.
Then, at the coordinates (j, l + 1), the projection (0, 1) will appear only once
due to vector k + 1. This contradicts 2-independence.

We denote T as the subset containing [1..l], and F as the other subset F .

Claim. For each literal x, x and ¬x are in different subsets.

Proof. Notice that we assume that no x and ¬x appear in the same clause. As a
result, there will be no vector with coordinates (x,¬x) being (1, 1) in (I,III,IV).
Such a vector appears only once in (II). The result follows as the partition is
2-independent.

From this point it is obvious that we should assign true to the literals in T
and false to the literals in F . Next we prove that this is indeed a satisfying
assignment.

Claim. Every clause Ci is satisfied by the above assignment.

Proof. Suppose Ci = x ∨ y ∨ z is not satisfied. Then, it must be the case that
¬x,¬y,¬z ∈ T . We consider the vectors in (III.i) projected on T . From the con-
struction, in (III.i) there will be exactly one vector with coordinates (¬x,¬y,¬z)
being (1, 1, 1).

We argue that this vector projected on T does not appear anywhere else. To
see this, note that the identification indices are included in T , which is different
from all other parts except (III.i). In (III.i), such vector (projected on T ) only
appears once, and hence the result follows.

This completes the proof of Lemma 2.

The following corollary is the contrapositive of Lemma 2.

Corollary 1. For all k > 1 and 3-SAT instance C, if C does not have any satis-
fiable assignment, then any 2-partition for MISPDual(C, k) is not 2-independent.
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At this point, we can see that there is a gap of 1 vs k, meaning that to dis-
tinguish satisfiable 3-SAT from unsatisfiable ones, we only need to distinguish
between multiplicity 1 and k. Hence, any polynomial algorithm that approxi-
mates MISPDual within a factor better than k will imply P=NP.

We can set k = lC for some large enough constant C, and observing that N ≤
lC+10, we conclude that there is no polynomial algorithm with approximation

ratio better than N
C

C+10 .
Choosing C large enough (depending on ε) completes the proof of Theorem 4.

Acknowledgment. We would like to thank David Wagner for posting the prob-
lem online [12] and for useful discussions.
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Appendix

Fig. 2. An example for (x ∨ y ∨ z) ∧ (¬y ∨ ¬x ∨ w) with k = 2; unspecified entries are
0.


