
MOTIVATION
The increasing complexity of modern computing systems makes
it difficult to achieve even a reasonable fraction of a system’s
available performance. System builders currently employ a variety
of techniques to boost peak system performance including multi-
core architectures, heterogeneous systems, and accelerators built
from nontraditional processing elements. Unfortunately, the level
of sophistication and expertise required to develop and tune a
program is growing with the complexity of the underlying
systems. As system complexity continues to grow, this problem
creates an increasingly serious bottleneck which inhibits the
ability of programmers to achieve the performance potential of
modern computer systems.

Programming language compilers that map an application
onto the underlying hardware are the principal moderators of
performance. It is typical for a user to provide substantial
assistance in this process through source-level directives, direct
specification of low-level application programming interfaces
(APIs), and many other mechanisms. The level of application
performance achieved is limited by the compiler’s ability to make
full use of the complex functionality of the underlying hardware.

Compilers have become large complex monolithic software
systems that can have upwards of two million lines of code and
take many years to develop. Optimized production compilers are
typically released several years after the initial release of the
computer systems they target. As a consequence, the optimized
compiler is frequently released around the time that its targeted
computer is eclipsed by the next generation computer platform.

An Architecture-Aware Compiler Environment (AACE1)
such as AESOP, is a computationally efficient compiler that
incorporates learning and reasoning methods to drive compiler
optimizations for a broad spectrum of computing system
configurations that can keep pace with the variety and rate of
deployment of new parallel computer systems.

OUR SOLUTION
We are developing novel compiler technology that brings
practical automatic parallelization into mainstream software
development reflecting the fact that people program using
conventional serial programming languages. Three key
innovations drive our development. System Characterization
automatically extracts key descriptive elements about the
computing platform to inform the compiler’s optimizations (e.g.
memory architecture, core configuration). Automatic

Parallelization will automatically parallelize sequential codes,
will extract fin-grained parallelization from explicitly parallelized
code and lightweight semantic annotations from the programmer
will enable even more significant levels of parallelization. Finally,
Continuous Optimization & Learning will exploit parallel
hardware to conduct multiple experiments to learn how to
estimate performance from system characteristics. These key
elements are divided into three main areas shown in the diagram
here:

1. The System Characterization Loop is highlighted on the left
in the diagram. System characterization is seeded by micro
benchmarks (☐ input from top into LLVM2’s Generate
Intermediate Representation step which also takes as input the
source code either unmodified serial or annotated parallel code in
upper right ☐) and iterates, driven by a nonlinear optimization
search engine. Derived system characteristics (bottom left ☐)
drive and increase the efficiency of the Continuous Optimization
Loop for auto-parallelizing, compiling and running parallel
applications.
2. The Continuous Optimization Loop (diagram right)
encompasses our dynamic runtime system, which includes
applying transformations (e.g. loop unrolling, code hoisting,
application of concurrent threads) and instrumentation to code,
monitoring the results of the transformations and
instrumentation, and then applying further transformations.
Knowledge-based search chooses the next set of optimizations
to explore the massive search space of program transformations.
3. The Learning and Reasoning element consists of the
persistent Knowledge Base (upper left ☐), its inputs—which

AESOP: Adaptive Environment for Supercomputing with Optimized Parallelism
 Page 1 of 2

1 Architecture-Aware Compiler Environment proposed and funded by DARPA.

2 Low-Level Virtual Machine. An open-source complier framework from The University of Illinois and now maintained by Apple. http://llvm.org

AESOP:
Adaptive Environment for
Supercomputing with
Optimized Parallelism

Objective: Automated transformation of sequential code, written in standard languages, into
continuously optimized parallelized code for a wide range of heterogeneous computing systems.

http://llvm.org
http://llvm.org

come from both system characterization and application
instrumentation—and its query interface API (☐ connecting
line). The Knowledge Base tracks relations between code
fragment features (e.g. operation count), optimization parameters
(e.g. loop unrolls) and system characteristics (e.g. L1 cache size)
and continuously refines learned classifications. The learned
correlations among machine, code, transform characteristics and
performance results are inputs to the Search/Transform (center
☐) to inform the next positions in the search space of program
transformations.

These technologies combine to allow AESOP to automate
the optimization and parallelization of both scientific and general
purpose applications, to increase programmer productivity
through automation, to quickly produce detailed system
characterizations in order to seed the optimization search, and to
adapt automatically to novel system configurations and future
parallel hardware architectures.

INNOVATIONS
1. Linear programming approach to system characterization

minimizes the number of micro-benchmark runs needed to
reach >90% accuracy.

2. Automatic parallelization of general-purpose sequential code
enables >10X productivity for full software life-cycle and
range of system configurations.

3. Run-time system uses efficient heuristic search to adapt
parallelization and optimization to the system to achieve
>20% performance increase.

4. Learning from results of optimization seeds iterative
compilation and transfers results across runs, programs and
even hardware.

5. Design combines all these elements seamlessly for full
AACE vision including adapting codes to new hardware
systems with zero code modifications.

6. AESOP’s architecture and implementation is designed to
promote broad applicability and user acceptance. By being
based on the LLVM compiler framework and adopting the
same unencumbered open source licensing, combined with
LLVM’s plug-in architecture, AESOP is an ideal platform on
which researchers and commercial entities can base their
work and products.

GO/NO-GO METRICS
Processing system characterization (> 75%/90% accuracy phase I/II).
Building on the mature Active Harmony framework, AESOP will
auto-adapt to never-before-seen computer systems through
highly accurate system characterization.

10X development productivity with 20% runtime performance gains. Early
indications from SPEC 2000 benchmarks indicates AESOP will
achieve >80% performance improvements when applied in a
completely automated fashion to general-purpose (serial) code in
C/C++/Fortran. Even more substantial (>500%) performance
benefits will accrue if programmers also provide sparse
(<1/100% source lines) semantic annotations.

TEAM

Member Affiliation Task areas
Dr. Gregory
Sullivan

BAE Systems, AIT PI
Knowledge base, System
Architecture

Dr. Jothy
Rosenberg

BAE Systems, AIT Assist PI
Integration, Open Source &
commercialization prep

Dr. David
August

Princeton University
Parakinetics

AESOP architecture
Automatic parallelization

Dr. Scott
Mahlke

U of Michigan
Parakinetics

Automatic parallelization
LLVM modifications

Dr. Rajeev
Barua

U of Maryland Affine and non-affine
transformations

Dr. Alan
Sussman

U of Maryland MPI-level optimization
System characterization

Dr. Rance
Cleaveland

U of Maryland System characterization
Optimization parameter space
exploration

Dr. Dan
Poznanovic

Cray Supercomputer expert, advisor on
preliminary and final design

PHASES§ AND GOALS

Phase 1 18 Months
• Develop preliminary design of AESOP concept and

architecture.
• Develop preliminary design of AESOP concept and

architecture.

• Specify AESOP source languages and extensions.• Specify AESOP source languages and extensions.

• Prototype the AESOP tool environment to support end-
to-end system experimentation and to assess performance
of the system characterization features.

• Prototype the AESOP tool environment to support end-
to-end system experimentation and to assess performance
of the system characterization features.

Phase 2 18 Months
• Develop final detailed design for AESOP based on

feedback, reviews and prototyping efforts.
• Develop final detailed design for AESOP based on

feedback, reviews and prototyping efforts.

• Develop an open source release plan.• Develop an open source release plan.

• Develop source-to-source language translator based on the
language specification established at PDR.

• Develop source-to-source language translator based on the
language specification established at PDR.

• Develop a prototype capability including run-time system
to automatically optimize unmodified C/C++ or Fortran
codes for efficient execution on single-node, multi-note
and heterogeneous systems.

• Develop a prototype capability including run-time system
to automatically optimize unmodified C/C++ or Fortran
codes for efficient execution on single-node, multi-note
and heterogeneous systems.

Phase 3 12 Months
• Complete the implementation of AESOP. Continue the

spiral development process, including internal gate metric
evaluations.

• Complete the implementation of AESOP. Continue the
spiral development process, including internal gate metric
evaluations.

• Execute the open source release plans.• Execute the open source release plans.

• Support system evaluations and AACE bake-offs.• Support system evaluations and AACE bake-offs.

AESOP: Adaptive Environment for Supercomputing with Optimized Parallelism
 Page 2 of 2
§ Start date March 9, 2009

