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Bounds on Packings of Spheres
in the Grassmann Manifold

Alexander Barg, Senior Member, IEEE,and Dmitry Yu. Nogin

Abstract—We derive the Gilbert–Varshamov and Hamming
bounds for packings of spheres (codes) in the Grassmann mani-
folds over and . Asymptotic expressions are obtained for the
geodesic metric and projection Frobenius (chordal) metric on the
manifold.

Index Terms—Invariant measure, minimum distance, principal
angles, volume bounds.

I. INTRODUCTION

A. Distances in

L ET be a Riemannian homogeneous space with metric
and (normalized) invariant measure. A code is a

finite subset of . Let be the minimum distance be-
tween distinct points in . One of the main problems of coding
theory is establishing the maximum size of a code with a given
distance . The best known examples are the sphere
and, in the discrete case, the Hamming space. One of the
possible generalizations of the former is studying codes in the
Grassmann manifold , where or . It is a ho-
mogeneous space of the group or , respectively. For
instance

Recently, this space has been the focus of attention for a number
of reasons. From a purely geometric point of view, packings in

form a natural generalization of spherical codes. How-
ever, their study seems to have been first addressed only a few
years ago [3], [13], motivated in part by a group-theoretic ap-
plication that connects them with the theory of quantum codes.
Apart from this, codes in arise naturally in the area
of multiple-antenna transmission (especially, in the case of low
noise), and a few papers that underline this connection [1], [15]
have been published. Therefore, it seems timely to address basic
coding-theoretic questions such as the sphere-packing bounds
on the size of codes. This is the aim of the present paper.
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Let be the metric ball of radiusin . Obviously, if
is any number such that

(1)

there exists a code in of size and distance. Indeed,
as long as (1) holds true, it is always possible to pick a point

so that the centers of already chosen balls together with
form a code with distance at least. This principle is called the

Gilbert–Varshamov lower bound. On the other hand, obviously
for any code

This is the Hamming upper bound on the size of codes. We note
that if the metric on is not “strictly intrinsic,” i.e., the triangle
inequality is never satisfied with equality (for pairwise distinct
points), the Hamming bound can be improved.

To define the distance in , we have to introduce principal
angles between planesand . Let and be two unit
vectors and the angle between them. As
varies over and varies over , has stationary points

corresponding to some pairs of vectors .
The sets of vectors and form orthogonal bases in their
respective planes, and if , then is orthogonal to
for any . For a proof see, for instance, [10]. Note also that
if is a generator matrix of a plane, i.e., the matrix whose
rows form an orthonormal basis of, and is the same for
, then for the eigenvalues of we have

(here denotes the Hermitian conjugate). In other
words, the singular value decomposition of the matrix has
the form , where

This also means that we can change the basis and apply a suit-
able unitary rotation so that is generated by

(2)

and by (3), as shown at the bottom of the following page.
Let
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Throughout the text, denotes the -norm and the
-norm of a vector . For a matrix

is its operator -norm and

its Frobenius, or Euclidean norm.
Let be two planes. There are several possi-

bilities for the distance betweenand , see [4]:

geodesic distance

chordal distance

Fubini–Study distance

chordal 2-norm

chordal Frobenius norm

projection 2-norm

Note that the metric is sometimes called the projec-
tion Frobenius distance. The term “chordal distance” was in-
troduced in [3] for the reasons discussed in the next paragraph.
The projection -distance is the same as the chordal distance,
except that the Frobenius norm is replaced by the-norm. The
geodesic distance is the arc length in a natural geometry of the
Grassmann manifold viewed as a quotient space of the orthog-
onal group. The Fubini–Study distance is derived via the Plücker
embedding of in the projective space . The
chordal -norm and Frobenius-norm distances are derived by
embedding the Grassmann manifold in the vector space,
then using the operator-norm and Frobenius norm, respec-
tively.

Advantages of the chordal distanceare discussed in [3].
One of them is that under this definition of the norm,

affords an isometric embedding in a sphereof radius
in . It is realized as follows. The

matrix is an orthogonal projection from on .
As shown in [3], for any the Euclidean norm of the matrix

equals , so is represented as a point on the
sphere . For different , these spheres lie on a large sphere
in of radius . The main result of [3] is that
this embedding of in is isometric in the sense that

, i.e., the distanceis proportional
to the length of the chord that joins the projection matrices. Ob-
serve that other embeddings, such as the Plücker embedding,
usually map into a space of a much higher dimension.

Likewise, in the complex case the Hermitian matrix
is an orthogonal projector on. We again have

, , and . A
Hermitian matrix with fixed trace can be represented by a point
on the sphere in .

The existence of these embeddings implies that upper bounds
on the size of codes on the sphere apply to codes in
with distance function . In particular, the well-known Rankin
bounds in the real case imply the following [3]:

if ,

if .

This inequality is an analog of the Plotkin bound of coding
theory. Interestingly, there exist sequences of codes in
that meet these bounds [13].

We are interested in codes in whose size grows expo-
nentially with . Our goal is to derive an expression for the
Gilbert–Varshamov and Hamming bounds on codes. The an-
swer can be written in a compact form only in the asymptotic
setting. We assume that and is a fixed constant. Fur-
ther, the quantity is called the rate of the code.
Note that the case with the metric was
treated by Shannon [12]. He proved that there exist sequences
of codes with distance and

Note that in the case codes optimal for the metric will
also be optimal for the metric.

B. Sphere Packing in .

Our main result, proved in Section III, is as follows.

Theorem 1: Let be the ball of radius in .
Then

i) for the chordal distance

(4)

(3)
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Fig. 1. Chordal distance and the Hamming bound.

ii) for the geodesic distance

(5)

where , , and for ,
respectively.

With the above, this implies the following theorem.

Theorem 2: Let , . There exist sequences
of codes in with distance and asymptotic rate

(chordal distance) (6)

(geodesic distance) (7)

For any sequence of codes with distance

(chordal distance) (8)

(geodesic distance) (9)

Proof: Only the Hamming bound (8) for the chordal dis-
tance is not obvious. To prove it, observe that ifand are two
planes in with distance , then their im-
ages and on the sphere are at distance .
Let be the “midpoint” between and (i.e., the point on
that halves the arc). The distance betweenand is then easily
computed: , where

and is the radius of the sphere (see
Fig. 1). If the inverse image of is a plane in and the code

has distance, the spheres of radiusabout and do not
have common interior points. Thus, . Since

, we obtain (8) from (4).

C. Distance Distribution

Apart from the minimum distance, an important parameter
of codes is their distance distribution, i.e., the average number
of neighbors of a code point at a given distance. For instance,
consider codes in the chordal metric. Sincein principle can be
any number betweenand , it is convenient to consider the
distance density of defined as follows:

Suppose is chosen in with uniform probability distribution.
Then

where denotes the mathematical expectation. From (4), the
right-hand side equals . By the Markov in-
equality we conclude that among sequences of codes that meet
the bound (6), i.e., for which the distance ,
there exist codes whose distance density is bounded above as

where is some function of polynomial growth. In other
words, the logarithm of the average number of neighbors for
these codes is bounded above as

Codes with similar properties in other spaces of interest to
coding and information theory (the binary Hamming space

and the sphere ) have a number of interesting
properties. The most important of them is related to the use
of codes for transmission of information over noisy channels.
In this situation, random codes account for the best known
exponential upper bounds on the probability of incorrect
recovery of the code vector transmitted from the noisy version
of this vector received from the channel [12].

II. I NVARIANT DENSITIES IN

To prove (4), we need explicit volume forms on .
A general construction of invariant measures in homogeneous
spaces with applications to classical groups and related mani-
folds is given, for instance, in [11]. A combinatorial approach is
presented in [9]. Necessary background material can be looked
up in any textbook on geometry, for instance, [14], [16].

We note that the metric plays no role in the construction of
the measure which is unique (up to a constant factor). Let us
begin with the real case. Density for the submanifold of critical
angles was calculated several times in statistics (see [8]). Let

and be orthonormal column vectors
that span a planeand its orthogonal complement. The invariant
measure on is (locally) given by the form

where means transposition.
To isolate the part of this form that corresponds to the den-

sity on principal angles, we also introduce the Stiefel manifold
, i.e., the manifold of orthonormal-frames in . In par-

ticular, is the orthogonal group . It is proved in [8]
that the open part of decomposes into a direct product of
the simplex

and two manifolds, and , where is the submani-
fold of the Stiefel manifold specified by those frames in which
in each vector the first coordinate is positive. Based on this, it is
possible to write as a product of three independent densities
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and compute the marginal distribution on[8]. This gives the
answer in the real case (see below). In the complex case, it
is easier, though not so intuitive, to rely upon the distribution of
eigenvalues of random Gaussian unitary matrices [6]. We can
assume that is a fixed plane with generator matrix
and is uniformly distributed on . Then we are inter-
ested in the distribution of the eigenvalues of the
matrix . It can be shown that this distribution is related
to the distribution of eigenvalues of Wishart matrices, i.e., ma-
trices of the form where is a matrix with Gaussian

elements [6, p. 202]. The final answer has the form

where the constant is chosen to normalize the measure
of . In the real case its value is obvious from the preceding
geometric considerations

Volumes of the manifolds involved are well known [11], and we
get

where is the area of the unit sphere in
. Note that grows polynomially in for fixed , so

in our context its exact form is not essential. This also holds true
for , namely, we have [7]

Hence the volume of the ball of radiusis given by
, where

(10)

where the integration is carried over the region insidegiven
by

(chordal distance)

(geodesic distance)

III. A SYMPTOTICS: PROOF OFTHEOREM 1

We would like to compute the logarithmic asymptotics of
. Both cases considered turn out to be quite similar, so

let us compute the behavior of for the -metric. We have

(11)

Note that for (but not for ), is symmetric in
, so we can divide out and remove the ordering

condition. To treat both cases simultaneously, we compute the
asymptotics of the integral by the Laplace method [2], [5]. In
the multidimensional case, the corresponding theorem has the
following form.

Theorem 3 [5, p. 131]:Let be a connected open domain
in , be its boundary, , and let

be real functions. Further, suppose that the maximum
is attained only at the point , and at this

point

a) , where is differentiation along the
interior normal to at ;

b) the matrix

is negative definite, where is an ortho-
normal basis in the tangent space to at ;

c) in the neighborhood of .

Then

for some constants . Moreover, is proportional to .

Let us use this result in our problem. We have

The maximum of over is attained at

This is because is a convex function and is a convex domain,
so we can use Lagrange multipliers to compute the maximum.
To satisfy the conditions of the theorem, we have to adjust the
integration domain in several ways.

i) Observe that has discontinuities at the hyperplanes
and has discontinuities at the hyperplanes

. Therefore, let us shift the domain from these
hyperplanes.

ii) At the point , the boundary is not differentiable.
Therefore, let us extend the domain by including small
sectors.

For instance, for , the domain is formed by
the intersection of the sector of radiusand angle in
the first quadrant and the strip . The discussed
extension amounts to increasing the angle to for
some small finite . Note that the maximum of over
the extended domain does not shift from. In the general
case, consider the adjusted domain
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Note that to corresponds an adjusted domainin the
coordinates , where

Since the integrand in (10) is bounded by, this implies
that differs from the corresponding integral over by

uniformly in .

iii) Finally, the case also has to be excluded since
then has a singularity at . In this case, the ball
exhausts the entire spaceexcept for a set of measure,
and the bounds are extended by continuity.

We need to verify conditions a) and b) of Theorem 3. Note
that in the basis the Hessian

has the form , and so

This quadratic form is negative definite. Clearly, remains
negative definite under the restriction to the subspace spanned
by . To verify a), note that the interior normal to
the sphere has the form . The level sur-
faces of are given by , which are convex
hypersurfaces. Moreover, they are homothetic to each other with
respect to the origin; therefore, strictly increases along the
diagonal .

So, let us apply the theorem to. We have ; thus,

This concludes the proof of (4).
To prove (5), we compute the integral in (11) over the region

Since is concave, so is . Therefore, the maximum of the
function over is attained for

otherwise, the argument is the same. This gives (5).
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