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Bounds on Packings of Spheres
In the Grassmann Manifold

Alexander BargSenior Member, IEEEand Dmitry Yu. Nogin

Abstract—We derive the Gilbert—Varshamov and Hamming Let B(6) be the metric ball of radiusin X. Obviously, if A/
bounds for packings of spheres (codes) in the Grassmann mani- js any number such that
folds over R and C. Asymptotic expressions are obtained for the

geodesic metric and projection Frobenius (chordal) metric on the Mh(B(8)) < 1 (1)
manifold.

Index Terms—nvariant measure, minimum distance, principal there exists a code iX of Si.Z?M +1and di;tancé. Il_’ldeed, .
angles, volume bounds. as long as (1) holds true, it is always possible to pick a point

z € X so that the centers of already chosen balls together with
« form a code with distance at leastThis principle is called the
Gilbert—Varshamov lower bound. On the other hand, obviously
A. Distances i for any codeC

ET X be a Riemannian homogeneous space with metric
p and (normalized) invariant measufé. A codeC' is a

finite subset ofX. Let6 = 6(C) be the minimum distance be-Thjs is the Hamming upper bound on the size of codes. We note
tween distinct points i”. One of the main problems of codingthat if the metric onX is not “strictly intrinsic,” i.e., the triangle
theory is establishing the maximum size of a code with a givefequality is never satisfied with equality (for pairwise distinct
distance$. The best known examples are the sphgte!(R) points), the Hamming bound can be improved.

and, in the discrete case, the Hamming spH¢e One of the  To define the distance i, ., we have to introduce principal
possible generalizations of the former is studying codes in thagles between plangsandq. Leta € p andb € ¢ be two unit
Grassmann manifold;, (L), whereL = R or C. Itis a ho- vectors and) = arccos |(a, b)| the angle between them. As
mogeneous space of the groUn) or [/(n), respectively. For varies overlp andb varies overy, 6 hask stationary points
instance

I. INTRODUCTION

|CIh(B(8/2)) < 1.

0<bp<---<6 <7/2

Gr,n(R) = O(n)/O(k) x O(n — k). corresponding to some pairs of vectdts, b;), 1 < ¢ < k.

The sets of vector§s; ) and(b;) form orthogonal bases in their

Recently, this space has been the focus of attention for a numRﬂpective planes, and ff < /2, thena; is orthogonal tdb,
’ — ’ 7, J

of reasons. From a purely geometric point of view, packings {8 any; - j. For a proof see, for instance, [10]. Note also that
G, form a natural generalization of spherical codes. How A,isa g‘enerator matrix of a plage i.e., the matrix whose
ever, their study seems to have been first addressed only a fgWs form an orthonormal basis pf and 4, is the same for
years ago [3], [13], motivated in part by a group-theoretic ag; then for the eigenvalues, ..., A of A, A%A, A% we have
plication that connects them with the theory of quantum codeg. — ¢os? g, (herex denotes the Hermitian conjugate). In other

Apart from this, codes ir, ,,(C) arise naturally in the areawords, the singular value decomposition of the matjxi* has
of multiple-antenna transmission (especially, in the case of lape form?/CV*, where

noise), and a few papers that underline this connection [1], [15] _
have been published. Therefore, it seems timely to address basic C = diag(cos 1, cosba, ..., cos Ox).
coding-theoretic questions such as the sphere-packing bouxﬂﬂ

S . .
. . . is also means that wi n change th is an I it-
on the size of codes. This is the aim of the present paper. S also means that we can change the basis and apply a suit

able unitary rotation so thatis generated by
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Throughout the text)xz||> denotes thé&s-norm and||x||.. the affords an isometric embedding in a sphéseof radiusr =

£o-norm of a vector:. For a matrixi/ VEk(n —k)/n in R-D0+2)/2 |t is realized as follows. The
matrix II,, = A7 A, is an orthogonal projection frofd™ on p.
M2 = i‘;fé [Ml2/|%]]2 As shown in [3], for anyp the Euclidean norm of the matrix
o I, — (k/n)I, equalsr, sop is represented as a point on the
is its operato2-norm and spheres;.. For differentk, these spheres lie on a large sphere
in R*("*+1)/2 of radius } \/n. The main result of [3] is that
IM|lp = [> |mi this embedding o ,.(R) in Sy, is isometric in the sense that
i (p, @) = (1/2)||1,—11,||%, i.e., the distancgis proportional

to the length of the chord that joins the projection matrices. Ob-

its Frobenius, or Euclidean norm. X N .
Letp, ¢ € Gi (L) be two planes. There are several possperve that other embeddings, such as the Plicker embedding,

bilities for the distance betwegnandg, see [4]: usu_ally r_napﬁ_?kyn into a space of a much hig_h_er dimension.
Likewise, in the complex case the Hermitian matily =

geodesic distance Ar A, is an orthogonal projector gn We again have*(p, q) =
LI, —IL,||%, tr11, = k, and||IL, — £ I,||% = k(n—k)/n. A

9(p: ) = [10ll2; Hermitian matrix with fixed trace can be represented by a point
chordal distance on the sphere iR™ 1.
12y g . ] The existence of these embeddings implies that upper bounds
p(p, @) = 2777 ApAy — AGAl[r = [|sinb]l2; on the size of codes on the sphere apply to codes,in, (L)

with distance functiom. In particular, the well-known Rankin

Fubini—Study distance ! k ]
bounds in the real case imply the following [3]:

drs(p, q) = arccos | det APA;| = arccos <H cos 95,) ; 5(0) < @ éﬂl, if |C| <n(n+1)/2,
‘ = ) k(n—k :
chordal 2-norm : n )’ IF]C] > n(n +1)/2
1 This inequality is an analog of the Plotkin bound of coding
dea(p, q) = [|AU — AGV |2 = ‘ 2sin 5 9H ; theory. Interestingly, there exist sequences of codé.in (R)
o0 that meet these bounds [13].
chordal Frobenius norm We are interested in codes &, , whose size grows expo-

nentially withn. Our goal is to derive an expression for the
3 Gilbert—Varshamov and Hamming bounds on codes. The an-
o swer can be written in a compact form only in the asymptotic
projection 2-norm setting. We assume that— oc andk is a fixed constant. Fur-
X X . ther, the quantity? = (1/») ln |C| is called the rate of the code.
=||ATA, — AL A |l = . . :
b2 (p, @) = [[ApAp = AgAqll2 = || sin bl Note that the casé'; ,,(R) with the metricg(p, ¢) = 6 was

i i i . treated by Shannon [12]. He proved that there exist sequences
Note that the metrig(p, ¢) is sometimes called the projec-

. . . . ~of codes with distancé and
tion Frobenius distance. The term “chordal distance” was in-

troduced in [3] for the reasons discussed in the next paragraph. R > —lnsin @ — o(1).
The projection2-distance is the same as the chordal diStancﬁbte that in the cask
except that the Frobenius norm is replaced by2tmrm. The
geodesic distance is the arc length in a natural geometry of
Grassmann manifold viewed as a quotient space of the orthg_g-s
onal group. The Fubini—Study distance is derived via the Plicker ] ) ) )
embedding ofG, ,, in the projective spac@’(/\k(lR")). The Our main result, proved in Section Ill, is as follows.
chordal2-norm and Frobenius-norm distances are derived by Theorem 1:Let B(6) be the ball of radiuss in G (L)
embedding the Grassmann manifold in the vector sp¢e Then

then using the operat@-norm and Frobenius norm, respec-

1
dor(p, q) = 1430 = AV || = |[25in 56

2

= 1 codes optimal for the metrig will
mgo be optimal for the metrig.

phere Packing i ,,.

i) for the chordal distance

tively.

Advantages of the chordal distanpeare discussed in [3]. WB(8)) = § '8"’“*0(")_ 4
One of them is that under this definition of the nor@,_,.(R) (B(8) = N ’ )
cos 61 0 0 sin 6 0 0 0O --- 0

0 cosfy --- 0 0 sinfy --- 0 0O --- 0 3)

0 0 .-+ cosby, 0 0 -+ ginf;, 0 --- 0
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T Suppos&” is chosen inX with uniform probability distribution.

Then
Iy
o S = (e - bt - )
z

o whereE denotes the mathematical expectation. From (4), the
right-hand side equals(B(t))(1 — o(1)). By the Markov in-
equality we conclude that among sequences of codes that meet

Yy the bound (6), i.e., for which the distanégC) = /ke /%%
there exist codes whose distance density is bounded above as

a(t) < pm)|CIBH)L —o(1)) (™Y < t/VE < 1)

Fig. 1. Chordal distance and the Hamming bound.

ii) for the geodesic distance wherep(n) is some function of polynomial growth. In other
5\ Bnkro(n) words, the logarithm of the average number of neighbors for
h(B(6)) = <Sin ﬁ) (5) these codes is bounded above as

Ina(t) < n(R+ BkIn(t/VE) — o(1)).
wheren — oo, kK = const, andg =1, 2for L = R, C, na(®) < n( Phin(t/VE) = o(1))

respectively. Codes with similar properties in other spaces of interest to
coding and information theory (the binary Hamming space
H and the spher&s™1(R)) have a number of interesting

Theorem 2:Letn — oo, k = const. There exist sequencesproperties. The most important of them is related to the use

With the above, this implies the following theorem.

of codes inG,,,, with distance$ and asymptotic rate of codes for transmission of information over noisy channels.
In this situation, random codes account for the best known
Rz —pkn(6/VEk) (chordal distance) (6) exponential upper bounds on the probability of incorrect

R = —pk ln(sin(é/\/E)) (geodesic distance) (7) recovery of the code vector transmitted from the noisy version
of this vector received from the channel [12].
For any sequence of codes with distaace

Il. INVARIANT DENSITIES IN Gy »
2
R=<-pkln ( 1—4/1— ;S_k ) (chordal distance) (8) To prove (4), we need explicit volume forms @, ,,(L).

A general construction of invariant measures in homogeneous
) Cn spaces with applications to classical groups and related mani-
R=—pk hl(sm(é/m/%)) (geodesic distance) ©) folds is given, for instance, in [11]. A combinatorial approach is
Proof: Only the Hamming bound (8) for the chordal disPresented in [9]. Necessary background material can be looked
tancep is not obvious. To prove it, observe thapifindg are two  Up in any textbook on geometry, for instance, [14], [16].
planes inGy, ,, with distances(p, ¢) = § = /20, then theirim- We note that the metric plays no role in the construction of
agesr andy on the spheré), are at distancéz — y||» = 20. the measure which is unique (up to a constant factor). Let us
Let ~ be the “midpoint” betweern: andy (i.e., the point onS;,  begin with the real case. Density for the submanifold of critical
that halves the arc). The distance betweemd: is then easily angles was calculated several times in statistics (see [8]). Let

computed]|z — z||» = v/2¢, where ai, ..., ag andby, ..., b, be orthonormal column vectors
that span a plangand its orthogonal complement. The invariant
o=r1— m measure o, ,,(R) is (locally) given by thek(n — k) form
n—k k
andr = +/k(n—k)/n is the radius of the sphers;, (see = /\ /\ bzdai

Fig. 1). If the inverse image cfis a plane iy ,, and the code
C has distancé, the spheres of radiusaboutp andq¢ do not
have common interior points. Thusg;| < (h(B(p)))~!. Since

j=1 i=1

where! means transposition.

r ~ v/, we obtain (8) from (4). _ To |solr_:1te_the part of this form_ that corresponc_is to the _den-
sity on principal angles, we also introduce the Stiefel manifold
C. Distance Distribution Vi, n, 1.€., the manifold of orthonormal-frames inR™. In par-

ticular, Vi« is the orthogonal grou@(k). It is proved in [8]

Apart from the minimum distance, an important parametgt,; the open part o, ,, decomposes into a direct product of
of codes is their distance distribution, i.e., the average numl:iﬁé simplex

of neighbors of a code point at a given distance. For instance,
consider codes in the chordal metric. Sinée principle can be ©={(61,...,0k):7/2>0,> >0, >0}
any number betweefand/%, it is convenient to consider the

ifoldsVs, 1 . n—k, WhereV is th i-
distance density of? defined as follows: and two manifolds};, » and Vi, ,,—x, whereV is the submani

fold of the Stiefel manifold specified by those frames in which
£ — 1 _— < <4 in each vector the first coordinate is positive. Based on this, it is
a(t) = @I{(p, 0):t = (1/n) < plp, @) < t}]- possible to writes” as a product of three independent densities
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and compute the marginal distribution @&[8]. This gives the condition. To treat both cases simultaneously, we compute the
answer in the real case (seg below). In the complex case, it asymptotics of the integral by the Laplace method [2], [5]. In
is easier, though not so intuitive, to rely upon the distribution alfie multidimensional case, the corresponding theorem has the
eigenvalues of random Gaussian unitary matrices [6]. We collowing form.

assume that is a fixed plane with generator matrik= [} 0]

andp is uniformly distributed orzy,, .,(L). Then we are inter- n R¥, 99 be its boundary[2] = QUAQ, and letf(z), S(z) €

; L . RS
ested in the distribution of the eigenvalugs= cos- 8, of the ([2]) be real functions. Further, suppose that the maximum

matrix.J A* A,J*. It can be shown that this distribution is relate . . . .
pLip p
to the distribution of eigenvalues of Wishart matrices, i.e., ma- el 5(x) is attained only at the poiat® € 52, and at this

trices of the formz* G where( is ak x n matrix with Gaussian point

N(0, 1) elements [6, p. 202]. The final answer has the form &) 95(z”)/dn # 0, whered/on is differentiation along the
interior normal tod$2 at z°;

Wi = H (sin 6;)P(n=2k) b) the matrix

2 k—=1
I (sin®6; —sin®6,)7dby A--- A dby H= <a <l )>
’ J aSZaSJ i, =1

1<i<j<k
where the constardt (k, ») is chosen to normalize the measure
of ©. In the real case its value is obvious from the preceding

Theorem 3 [5, p. 131]:Let 2 be a connected open domain

is negative definite, wheré¢y, ..., &—1) is an ortho-
normal basis in the tangent spdEg 02 to 9 at z°;

geometric considerations c) f, S, 9Q € C* in the neighborhood of°.
vol (f/;% k) VOl(Vk7n_k) Then
K(k‘, 7’L) = . )\S( ) A+1 )\S( 0)
vol(Gy n) f@)e™'" de= * Za AT (A—o0)
Volumes of the manifolds involved are well known [11], and we ” ** m=0
get for some constants,,,. Moreover,a is proportional tof (z°).
K(k, n) ﬁ Ok —i+1)20(n—k—i+1) Let us use this result in our problem. We have R*, A = n
n)=

T 2/31n(a:1---a:k)=/321na:7;
whereO(k) = 27%/2/T'(k/2) is the area of the unit sphere in . i
R*. Note thatk (k, n) grows polynomially inn for fixed k, so ok ov_1/2 s
in our context its exact form is not essential. This also holds truef H w; (L =) / H (=7 = ”fj)

for C, namely, we have [7] i=1

i<j

X N [Q =[(@1, ..., 26): 0 Sz £ Sy S [l < 6]
K(k,n)= Zli[l % The maximum ofS(z) over[Q] is attained at
- o D =k"Y2(5,6,...,6).
Hence the volume of the ball of radiéiss given byh(B(6)) =
K(k, n)Jy(6), where This is becaus§ is a convex function anft is a convex domain,
Wi SO we can use Lagrange multipliers to compute the maximum.
/ Kk.n) (10) To satisfy the conditions of the theorem, we have to adjust the

. L . o . integration domain in several ways.
where the integration is carried over the region ingitlgiven 9 y

by i) Observe thatS(x) has discontinuities at the hyperplanes
x; = 0 and f(z) has discontinuities at the hyperplanes
z; = 1. Therefore, let us shift the domdft] from these
hyperplanes.

[|sinf||z <6 (chordal distance)
6]l <6  (geodesic distance)

ii) At the point z°, the boundang$ is not differentiable.
Therefore, let us extend the domain by including small
We would like to compute the logarithmic asymptotics of sectors.

Ill. ASYMPTOTICS PROOF OFTHEOREM 1

h(B(6)). Both cases considered turn out to be quite similar, so For instance, fok: = 2, the domain{?] is formed by
let us compute the behavior df, for the p-metric. We have the intersection of the sector of raditiand angler/4 in
(122 - 22)P0 =20 [T (22 — %2)@ theflrsyquadrant and t_he strﬁp§ 21 < 1. The discussed
i<y extension amounts to increasing the angle té + ¢ for
VA=) -2 (1—=2) some smalll finitgz. Note that the maximum () over
O/ll‘v‘ SL the extended domain does not shift frefh In the general
dry - des. (11) case, consider the adjusted domain
Note that for3 = 2 (but not for3 = 1), Ji is symmetric in Q. =[(z1, ..., an)ie <z < 1—e,

z1, ..., Tx, SO we can divide out! and remove the ordering zip1 L zi(l+e), ||z]]2 £ 4]
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Note that t&f2. corresponds an adjusted dom@ininthe Sincef? is concave, so Y. Therefore, the maximum of the
coordinated;, ..., 0, where function S(z) over[§Y'] is attained for

vol(©\ ©.) 4 vol(©. \ ©) = O(e). a® = k7Y2(siné, ..., siné)

Since the integrand in (10) is bounded hythis implies
that.J;, differs from the corresponding integral o\er by
O(e) uniformly in n.

otherwise, the argument is the same. This gives (5).
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