ENEE739C: Homework 2. Solutions

1. We wish to prove that E contains an information set, or that \bar{E} is contained in a check set (an information set of \mathcal{C}^{\perp}).

Let $\mathbf{s} \neq 0$ be the syndrome that corresponds to \mathbf{x}. For any check set B there is a vector \mathbf{e} such that

$$
\mathbf{H e}^{T}=\mathbf{s}, \quad \operatorname{supp}(\mathbf{e}) \subseteq B
$$

Hence $|E| \leq n-k$. Moreover, since \mathbf{x} is a vector of minimum weight in its coset, there is no other vector \mathbf{x}^{\prime} with the same syndrome such that $\operatorname{supp}\left(\mathbf{x}^{\prime}\right) \subset \bar{E}$. This implies that $\operatorname{rk}(\mathbf{H}(\bar{E}))=|\bar{E}|$. Hence by Lemma 6a. 3

$$
0=|\bar{E}|-\operatorname{rk}(\mathbf{H}(\bar{E}))=k-\operatorname{rk}(\mathbf{G}(E))
$$

as required.
2. (a) is obvious. (b) follows from (a) and the equality

$$
\sum_{i=1}^{n} \epsilon_{\mathcal{C}}(t)\binom{n}{t}=2^{n-k}
$$

Indeed,

$$
2^{n-k}=\sum_{i=1}^{n} \epsilon_{\mathcal{C}}(t)\binom{n}{t} \geq \sum_{i=0}^{t} \epsilon_{\mathcal{C}}(t)\binom{n}{t} \geq \epsilon_{\mathcal{C}}(t) \sum_{i=0}^{t}\binom{n}{t}
$$

(c) is implied by observing that for $h_{2}(p)>n-k$ the right-hand side of the inequality in (b) goes to 0 , so the fraction of correctable errors of relative weight $p n$ is vanishingly small.
3. Part (a) follows on observing that the outer code corrects $2 e+x$ errors, so replacing one error by erasure will not increase its correcting capacity.
(b). Let s be the number of different reliability values in the vector W. In particular, assume that the first l_{1} coordinates are erased as a result of inner decoding (so their reliability is $w_{1}=1 / 2$), the next l_{2} coordinates all have reliability w_{2}, and so on up to l_{s}. Consider s vectors $W_{i}=\left((1 / 2)^{\sum_{j=1}^{i} l_{j}} 0^{n_{1}-\sum_{j=1}^{i} l_{j}}\right)$. Let $\omega_{0}=1-2 w_{1}, \omega_{i}=2\left(w_{l_{i}-1}-w_{l_{i}}\right), i=1, \ldots, s-1, \omega_{s}=2 w_{s}$. The rest of the proof is the same.
4. The vector \mathbf{y} is linearly independent of the code \mathcal{C} and therefore is a unique codeword of minimum weight in the code $\mathcal{C}^{\prime}=\langle\mathcal{C}, \mathbf{y}\rangle$. Therefore running the algorithm on the code \mathcal{C}^{\prime} finds \mathbf{y}, which is the error vector. This solves the decoding task.
5. See the argument in Lecture 8, Remark 2 (on p.8). Essentially the only thing to be proved is that the error exponent $E_{0}(R, p)$ behaves as $O\left(\epsilon^{2}\right)$ as $\epsilon \rightarrow 0$. This is proved by computing the Taylor series (or just by showing that the first derivative $\frac{\partial}{\partial R} D\left(\delta_{\mathrm{GV}}(R) \| p\right)$ vanishes for $R=\mathcal{C}$. Write δ for $\delta_{\mathrm{GV}}(R)$.

$$
\frac{\partial D(\| p)}{\partial R}=\frac{\log \frac{\delta(1-p)}{(1-\delta) p}}{\log \frac{1-\delta}{\delta}}
$$

As $R \rightarrow \mathscr{C}$, the value $\delta \rightarrow p<\frac{1}{2}$. Then the denominator tends ro a constant $\log \frac{1-p}{p}$ and the numerator to 0 .
6. Linear algebra (write out a parity check symbol computed in two ways and convince yourself that the result is the same).

