ENEE739C: Homework 1. Solutions

1. Let [}] be the Gaussian binomial. Consider the ensemble of all [n, k] linear binary codes (there are [}]

k
of them). A vector x # 0 is contained in [

"_1] codes. The probability that x is a vector in a random code
from the ensemble is then
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The expected number of vectors of weight w in a code is
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By the Markov inequality,
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Hence there exists a code in the ensemble in which the number of vectors of weight w satisfies
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2. Consider the subset X’ C X formed by all the points y € X such that vol(Bs—1(y)) > 2(Bi_1).
Clearly, | X’| < |X|/2. Consider the subset ¥ = X\X'. Next perform the Gilbert procedure on Y. We see
that there exists a code C of distance d and size M satisfying
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simultaneously for all w =1,2,... n.
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as claimed.

3. Part (a) is obvious by considering the supports of two distinct vectors in _#™". For part (b) let us
compute the volume of the ball of radius d —2 = 2(dn — 1) in _#™":
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To find the maximum on ¢ take 2 vectors x,y € _#™". If x is fixed, the maximum is attained when y is
w

a “typical random vector” of weight w. Then i ~ w(1 — %). Thus if § < w(1 —w), volume of the ball has

the same exponential order as the last term in the sum. Substituting this into the Gilbert inequality and

putting w = wn we obtain
M = 2Rn > |/n,w > (ZLL))
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Computing logarithms and dividing by n we obtain the bound claimed.

4. We have (with ¢ the covering radius)
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The first term on the right i a growing and the second a falling function of p as long as pn < t. Hence
the minimum, which is attained when the two terms are (roughly) equal, is attained for the smallest ¢ that

satisfies
ey () 2, (005 6)

w=d i=w/2
1



2
As we have seen, for large i we can replace the sum on ¢ with the first summand, obtaining
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To maximize on w on the left we can employ the Covering Lemma which says that the maximum is attained
for w = 2t(1 — L). Putting t = 7n and recalling that the left-hand side behaves as 2-"(1= %) (?)2, we find the

t
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equation for ¢
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or
whence 7 = dgv(R).

5. Observe that GGT = 0, so C = C*. Hence one possibility for the parity-check patrix is H = G.
Further, by inspection, every triple of columns in G has rank 3, so d(C) = 4. Thus, C is a [8,4,4] code.
Therefore, Cg has the parameters [3,3, 1], C¥ is a [3,0] code. Finally, (C*)g = Cg, (CH)F =CF.

6. Let G be a generator matrix of C. Every k x k submatrix of G has full rank. For suppose not. Then
there are two distinct vectors which are equal in some k coordinates. Their difference gives a vector of weight
n — k < d which is impossible.

The distance of the dual code is then d+ > k+1. Hence C* is MDS since n—k*++1 = n—(n—k)+1 = k+1.
(Note that d*+ > k + 1 is impossible by the Singleton bound).



