ENEE739C: Homework 1. Solutions

1. Let $\left[\begin{array}{l}n \\ k\end{array}\right]$ be the Gaussian binomial. Consider the ensemble of all $[n, k]$ linear binary codes (there are $\left[\begin{array}{l}n \\ k\end{array}\right]$ of them). A vector $\mathbf{x} \neq 0$ is contained in $\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]$ codes. The probability that \mathbf{x} is a vector in a random code from the ensemble is then

$$
\operatorname{Pr}[\mathbf{x} \in \mathcal{C}]=\frac{\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]}{\left[\begin{array}{c}
n \\
k
\end{array}\right]}=\frac{2^{k}-1}{2^{n}-1}
$$

The expected number of vectors of weight w in a code is

$$
\mathrm{E} A_{w}=\binom{n}{w} \frac{2^{k}-1}{2^{n}-1}
$$

By the Markov inequality,

$$
\operatorname{Pr}\left[A_{w} \geq n\binom{n}{w} 2^{k-n}\right] \leq \frac{\mathrm{E} A_{w}}{n\binom{n}{w} 2^{k-n}}=\frac{1}{n} 2^{n-k} \frac{2^{k}-1}{2^{n}-1}<\frac{1}{n}
$$

Hence there exists a code in the ensemble in which the number of vectors of weight w satisfies

$$
A_{w} \leq n\binom{n}{w} 2^{k-n}
$$

simultaneously for all $w=1,2, \ldots, n$.
2. Consider the subset $X^{\prime} \subset X$ formed by all the points $\mathbf{y} \in X$ such that $\operatorname{vol}\left(\mathcal{B}_{d-1}(\mathbf{y})\right) \geq 2\left\langle B_{d-1}\right\rangle$. Clearly, $\left|X^{\prime}\right| \leq|X| / 2$. Consider the subset $Y=X \backslash X^{\prime}$. Next perform the Gilbert procedure on Y. We see that there exists a code \mathcal{C} of distance d and size M satisfying

$$
M \geq \frac{|Y|}{\max _{\mathbf{y} \in Y} \operatorname{vol}\left(\mathcal{B}_{d-1}(\mathbf{y})\right)} \geq \frac{|X|}{2} \frac{1}{2\left\langle B_{d-1}\right\rangle}
$$

as claimed.
3. Part (a) is obvious by considering the supports of two distinct vectors in $\mathscr{J}^{n, w}$. For part (b) let us compute the volume of the ball of radius $d-2=2(\delta n-1)$ in $\mathscr{J}^{n, w}$:

$$
\operatorname{vol}\left(\mathcal{B}_{d-2}\right)=\sum_{i=0}^{\delta n-1}\binom{w}{i}\binom{n-w}{i}
$$

To find the maximum on i take 2 vectors $\mathbf{x}, \mathbf{y} \in \mathscr{J}^{n, w}$. If \mathbf{x} is fixed, the maximum is attained when \mathbf{y} is a "typical random vector" of weight w. Then $i \approx w\left(1-\frac{w}{n}\right)$. Thus if $\delta \leq \omega(1-\omega)$, volume of the ball has the same exponential order as the last term in the sum. Substituting this into the Gilbert inequality and putting $w=\omega n$ we obtain

$$
M=2^{R n} \geq \frac{\left|\mathscr{J}^{n, w}\right|}{\operatorname{vol}\left(\mathcal{B}_{d-2}\right)} \gtrsim \frac{\binom{n}{w}}{\binom{w}{\delta n-1}\binom{n-w}{\delta n-1}} .
$$

Computing logarithms and dividing by n we obtain the bound claimed.
4. We have (with t the covering radius)

$$
P_{e} \leq 2^{-n(1-R)} \sum_{w=d}^{2 t}\binom{n}{w} \sum_{r=\lceil w / 2\rceil}^{t}\left[\sum_{i=w / 2}^{w}\binom{w}{i}\binom{n-w}{r-i}\right] p^{r}(1-p)^{n-r}+\sum_{r=t+1}^{n}\binom{n}{r} p^{r}(1-p)^{n-r}
$$

The first term on the right i a growing and the second a falling function of p as long as $p n<t$. Hence the minimum, which is attained when the two terms are (roughly) equal, is attained for the smallest t that satisfies

$$
2^{-n(1-R)} \sum_{w=d}^{2 t}\binom{n}{w} \sum_{i=w / 2}^{w}\binom{w}{i}\binom{n-w}{t-i} \geq\binom{ n}{t}
$$

As we have seen, for large i we can replace the sum on i with the first summand, obtaining

$$
2^{-n(1-R)} \sum_{w=d}^{2 t}\binom{n}{w}\binom{w}{w / 2}\binom{n-w}{t-w / 2}=\binom{n}{t} .
$$

To maximize on w on the left we can employ the Covering Lemma which says that the maximum is attained for $w=2 t\left(1-\frac{t}{n}\right)$. Putting $t=\tau n$ and recalling that the left-hand side behaves as $2^{-n(1-R)}\binom{n}{t}^{2}$, we find the equation for t

$$
2^{-n(1-R)}\binom{n}{t}^{2}=\binom{n}{t}
$$

or

$$
h_{2}(\tau)=1-R=h_{2}\left(\delta_{\mathrm{GV}}\right),
$$

whence $\tau=\delta_{\mathrm{GV}}(R)$.
5. Observe that $\mathbf{G G}^{T}=0$, so $\mathcal{C}=\mathcal{C}^{\perp}$. Hence one possibility for the parity-check patrix is $\mathbf{H}=\mathbf{G}$. Further, by inspection, every triple of columns in \mathbf{G} has rank 3 , so $d(\mathcal{C})=4$. Thus, \mathcal{C} is a $[8,4,4]$ code. Therefore, \mathcal{C}_{E} has the parameters $[3,3,1], \mathcal{C}^{E}$ is a $[3,0]$ code. Finally, $\left(\mathcal{C}^{\perp}\right)_{E}=\mathcal{C}_{E},\left(\mathcal{C}^{\perp}\right)^{E}=\mathcal{C}^{E}$.
6. Let \mathbf{G} be a generator matrix of \mathcal{C}. Every $k \times k$ submatrix of \mathbf{G} has full rank. For suppose not. Then there are two distinct vectors which are equal in some k coordinates. Their difference gives a vector of weight $n-k<d$ which is impossible.

The distance of the dual code is then $d^{\perp} \geq k+1$. Hence C^{\perp} is MDS since $n-k^{\perp}+1=n-(n-k)+1=k+1$. (Note that $d^{\perp}>k+1$ is impossible by the Singleton bound).

