
ENEE739C: Homework 1. Solutions

1. Let
[
n
k

]
be the Gaussian binomial. Consider the ensemble of all [n, k] linear binary codes (there are

[
n
k

]
of them). A vector x 6= 0 is contained in

[
n−1
k−1

]
codes. The probability that x is a vector in a random code

from the ensemble is then

Pr[x ∈ C] =

[
n−1
k−1

][
n
k

] =
2k − 1
2n − 1

.

The expected number of vectors of weight w in a code is

EAw =
(

n

w

)
2k − 1
2n − 1

.

By the Markov inequality,

Pr[Aw ≥ n

(
n

w

)
2k−n] ≤ EAw

n
(

n
w

)
2k−n

=
1
n

2n−k 2k − 1
2n − 1

<
1
n

Hence there exists a code in the ensemble in which the number of vectors of weight w satisfies

Aw ≤ n

(
n

w

)
2k−n

simultaneously for all w = 1, 2, . . . , n.

2. Consider the subset X ′ ⊂ X formed by all the points y ∈ X such that vol(Bd−1(y)) ≥ 2〈Bd−1〉.
Clearly, |X ′| ≤ |X|/2. Consider the subset Y = X\X ′. Next perform the Gilbert procedure on Y . We see
that there exists a code C of distance d and size M satisfying

M ≥ |Y |
maxy∈Y vol(Bd−1(y))

≥ |X|
2

1
2〈Bd−1〉

as claimed.

3. Part (a) is obvious by considering the supports of two distinct vectors in J n,w. For part (b) let us
compute the volume of the ball of radius d− 2 = 2(δn− 1) in J n,w:

vol(Bd−2) =
δn−1∑
i=0

(
w

i

)(
n− w

i

)
.

To find the maximum on i take 2 vectors x,y ∈ J n,w. If x is fixed, the maximum is attained when y is
a “typical random vector” of weight w. Then i ≈ w(1 − w

n ). Thus if δ ≤ ω(1 − ω), volume of the ball has
the same exponential order as the last term in the sum. Substituting this into the Gilbert inequality and
putting w = ωn we obtain

M = 2Rn ≥ |J n,w|
vol(Bd−2)

&

(
n
w

)(
w

δn−1

)(
n−w
δn−1

) .

Computing logarithms and dividing by n we obtain the bound claimed.

4. We have (with t the covering radius)

Pe ≤ 2−n(1−R)
2t∑

w=d

(
n

w

) t∑
r=dw/2e

[ w∑
i=w/2

(
w

i

)(
n− w

r − i

)]
pr(1− p)n−r +

n∑
r=t+1

(
n

r

)
pr(1− p)n−r.

The first term on the right i a growing and the second a falling function of p as long as pn < t. Hence
the minimum, which is attained when the two terms are (roughly) equal, is attained for the smallest t that
satisfies

2−n(1−R)
2t∑

w=d

(
n

w

) w∑
i=w/2

(
w

i

)(
n− w

t− i

)
≥

(
n

t

)
.

1



2

As we have seen, for large i we can replace the sum on i with the first summand, obtaining

2−n(1−R)
2t∑

w=d

(
n

w

)(
w

w/2

)(
n− w

t− w/2

)
=

(
n

t

)
.

To maximize on w on the left we can employ the Covering Lemma which says that the maximum is attained
for w = 2t(1− t

n ). Putting t = τn and recalling that the left-hand side behaves as 2−n(1−R)
(
n
t

)2, we find the
equation for t

2−n(1−R)

(
n

t

)2

=
(

n

t

)
or

h2(τ) = 1−R = h2(δGV),
whence τ = δGV(R).

5. Observe that GGT = 0, so C = C⊥. Hence one possibility for the parity-check patrix is H = G.
Further, by inspection, every triple of columns in G has rank 3, so d(C) = 4. Thus, C is a [8, 4, 4] code.
Therefore, CE has the parameters [3, 3, 1], CE is a [3, 0] code. Finally, (C⊥)E = CE , (C⊥)E = CE .

6. Let G be a generator matrix of C. Every k × k submatrix of G has full rank. For suppose not. Then
there are two distinct vectors which are equal in some k coordinates. Their difference gives a vector of weight
n− k < d which is impossible.

The distance of the dual code is then d⊥ ≥ k+1. Hence C⊥ is MDS since n−k⊥+1 = n−(n−k)+1 = k+1.
(Note that d⊥ > k + 1 is impossible by the Singleton bound).


