
ENEE 739C: Advanced Topics in Signal Processing: Coding Theory

Instructor: Alexander Barg

Lecture 9 (draft; 11/07/03). Codes defined on graphs. The problem of attaining capacity. Iterative
decoding.

http://www.enee.umd.edu/ ãbarg/ENEE739C/course.html

In this part we analyze code families and their decoding procedures motivated partly by the graph-theoretic
representation of product codes of Lecture 8 and partly by decoding of linear block code on a trellis. The
ideas explored here shift the general point of view from the study of parameters and structure-motivated
decoding algorithms to iterative refinement of the decision. Another motivation is that of studying thresholds
of codes versus the code rate instead of first computing the distance and weight distribution. Finally, the
attention is shifted from block error rate to bit (symbol) error rate as a measure of quality of transmission.

This view of codes crystallized through the study of turbo decoding and message passing decoding of
low-density parity-check codes in the last decade. The material covered here is discussed in books [2, 7, 8]
and in more detail in [14, 10]. Codes in this lecture are binary linear.

Decoders of binary codes. Our first goal is to motivate and define basic iterative algorithms for codes
on graphs. The main idea of these algorithms is to exploit the locally sparse structure of parity checks.

The ML decoder minimizes the error probability if codewords are equiprobable. In general, the error
probability is minimum under maximum aposteriori probability (block APP) decoding which outputs c =
arg maxc

′∈C Pr[c′|y] where y is the received word. Since

P (c|y) =
Wn(y|c)P (c)

P (y)
,

for equiprobable messages these two decoders are the same.

It is possible to take another point of view, that of MAP (maximum aposteriori probability) bit decoder.
For a = 0, 1 it computes

(1) Pi(a|y) =
∑

c∈C
ci=a

Pr[c|y]

and outputs the bit whose posterior is larger. Note that it may happen that the outcome of this decoding is
not a valid codeword.

The motivation behind studying this decoding is as follows. ML and block APP decoding procedures
provide very good performance but are in general very difficult to implement. The most successful setting
for these algorithms is that of syndrome trellises. ML decoding on a trellis is performed by the Viterbi
algorithm which we discuss below. MAP decoding on a trellis can be implemented by the so-called BCJR
(Bahl-Cocke-Jelinek-Raviv) procedure (the two-way or backward-forward algorithm). It has been observed
that these algorithms can be exported into a more general setting of Tanner graphs like the graph of a product
code in the previous lecture. The Viterbi algorithm then becomes “min-sum” algorithm and the BCJR the
“sum-product” algorithm. These algorithms are performed in iterations until some stopping condition is
satisfied. Codes with a low density of parity checks (in which few coordinates enter each check equation)
are particularly suitable for these iterative procedures. Iterative decoding of LDPC codes for the erasure
channels has been shown to reach capacity (reliable communication with iterative decoding is possible at
any rate below capacity). On other channels theoretical analysis is incomplete.

Recall briefly the Viterbi algorithm and the two-way, or BCJR algorithm.

the viterbi algorithm. The trellis of the code has 2n−k levels which correspond to syndrome values
and n + 1 states. Let us number the levels according to a lexicographic order of the syndromes. An edge
between vertices vi,j and vi+1,ℓ is drawn if the value of the syndrome i changes (from j) to ℓ upon adding
ahi (here hi is the ith column of H and a = 0, 1). Paths not leading to the state vn,0 are purged from the
lattice. The obtained (BCJR or Wolf) trellis is minimal.

Suppose that the parity-check matrix of a [4, 2, 2] code has the form H =
[

0 1 1 0
1 1 0 1

]
. The trellis has the

following form:
1

2

1
1

vv

v

01

1
1

1

0
0

0
1

0

v 21

22

23

24

31

32

41

12

v v

vvv

v

11

1

0 0

00

1 1 1

00

Let y = (y1, . . . , yn) be the received vector. Compute the likelihoods wi,a = − logW (yi|a), where W is the
probability (distribution) given by a binary-input memoryless channel W . For a given i ≥ 1 and 1 ≤ j ≤ Si

find

ri,j = min
a,ℓ

(ri−1,ℓ + wi,a)

The optimal decision corresponds to the minimum-weight path in the trellis.

Obviously, the Viterbi algorithm performs ML decoding. A complexity saving is explained by the obser-
vation that common parts of different codewords are stored on one and the same edge in the trellis. The
probability computation for these parts is performed only once (taken outside the brackets).

The BCJR algorithm does essentially a very similar computation except its object is to perform bit
MAP decoding. Our goal is to find which is the two letters 0 or 1 is more likely to have been transmitted in
each coordinate. Recall from (1) that we need to compute a collection of marginal distributions. We have

Pi(a|y) =
∑

c∈C
ci=a

Pr[c|y] =
∑ P (c,y)

P (y)
=

∑ Wn(y|c)P (c)

P (y)
,

where P (y) =
∑

c∈C P (y|c)P (c). Assuming that messages are equiprobable1, we notice that the probability
Pi(a|y) is proportional to ∑

c∈C
ci=a

Wn(y|c) =
∑ ∏

m 6=i

Wn(ym|cm).

Thus the sought probability is proportional to

(2) Pi(a|y) ∝
∑ i−1∏

m=1

W (ym|cm)
∑ n∏

m=i+1

W (ym|cm)

with an obvious breakdown into two parts. The algorithm relies on a decomposition of this form to compute
the posterior probabilities of branches (edges) recursively, starting from the state s0 (forward flow) and sn

(backward flow). Let us associate partial results αi,j , βi,j with states and branches of the trellis as follows:
the cost αi,j is associated with the branch (i, j) and the vertex to its right; the cost βi,j is associated with
the branch (i, j) and the vertex to its left. Consider the forward computation. We need to describe the
update rule for finding the values αi+1,∗ given the values αi,∗. That rule is given by

αi,j =
∑

j

αi−1,jW (yi|c),

where the sum is over the branches incident to vi,j and for a given branch, the value c is the bit associated
with it. The backward computation is organized analogously. Once both flows are complete, every branch
will have two numbers associated with it, namely βi,j , αi,j . These numbers will correspond to the first and
the second parts of the decomposition (2), respectively. Thus we can find the (quantity proportional to the)
marginal distribution of every branch in the trellis and therefore also find the greater of the marginals of 0
and 1 in each of the n positions of the transmission.

1In the context of sum-product, or message passing iterative decoding considered below messages can have different proba-
bilities determined by the output of another decoder. The algorithm can be easily adapted to handle this.

3

Since the computation involves every path in the trellis (every codeword), the two-way algorithm per-
forms bit MAP decoding. The organization of the computation is efficient for the same reason as above:
computation for the common parts of different codewords is performed only once.

A general view of the BCJR algorithm and the sum-product algorithm is discussed in papers [1, 9, 5].

An important point is to realize that these algorithms can be generalized from trellises to “Tanner graph”
representation of codes and from one- or two-pass to iterative decoding. This idea was put forward by [6, 12]
implicitly and realized fully in [13].

Given a linear code with an m× n parity-check matrix H we represent it by a bipartite graph whose left
vertices correspond to coordinates and right vertices to parity-check equations. We do not assume that H

has rank n − k (although it does in our examples); the only assumption is that it fully describes the set of
parity checks of the code, i.e., k ≥ n −m. There are a few possible ways to depict this graph. Consider a
code whose p.-c. matrix is

H =

[
1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

]

Its Tanner graph looks as follows:

1

3

2

1

w

w

w2

5

v

v

3

4

5

6

1

2 3

6

v

v

v

v 4v

v

v

v

v

v

These representations (the first one somewhat closer to the trellis, the second one to product and related
codes) pave way for exporting the Viterbi and BCJR algorithms from trellis decoding to iterative decoding
(message passing) algorithms.

the min-sum algorithm This algorithm and the one after it generalize to the Tanner graph setting the
Viterbi and BCJR algorithms defined for the trellis. Decoding is best described in terms of message passing
between variable and check nodes.

We will need some notation. As is customary, the coordinates of the transmission are called variables.
Let G(V0 ∪ V1, E) denote the Tanner graph, where V0 is the variable part and V1 the check part. Individual
variable and check nodes are denoted by vi, wj respectively. Given a vertex v and an edge e ∈ E incident
to it, we will say that e is in the neighborhood of v and write e ∈ N (v). The number of edges incident to a
vertex v is called its degree, deg(v) = |N (v)|. An edge can be also defined as a pair of vertices; in that case
we write e = (v, w).

Let us initialize the costs of variable nodes to rv(x) = − logW (yv|x) (on a BSC we can use the Hamming
distance) and the costs of check nodes to zero. The message sent from a variable node v to a check node w
in the ℓth iteration is computed as

µ(ℓ)
v,w(x) = rv(x) +

∑

w′ 6=w: (v,w′)∈E

µ
(ℓ−1)
w′,v (x).

By definition µ
(−1)
·,· = 0. Essentially we are sending the reliability of the symbol x in coordinate v as

determined by all the check equations that include it except w itself. Note the local nature of the decision

4

procedure to generate the message. The message sent from a check node w to a variable node v in iteration
m is computed as

µ(m)
w,v (x) = min

x

∑

v′ 6=v: (w,v′)∈E

µ
(m−1)
v′,w (xv′),

where the minimum is computed over all valid assignments of bits to the check equation w which have the
variable v equal to x, i.e., the vectors x such that

(1) xv = x,
(2) x fulfills the check w.

This time we are sending a local estimate of the reliability of the symbol x in coordinate v as determined
by all the other coordinates that enter the check w.

The procedure is terminated either when it converges (further iterations do not alter the local costs) or
after a suitable number of steps, say s. The final costs of the variable nodes are computed as follows:

qv(x) = rv(x) +
∑

w: (v,w)∈E

µ(s)
w,v(x).

Properties of this algorithm can be analyzed if G is a tree (does not contain cycles).

Theorem 1. If the graph G is a tree, then the min-sum algorithm converges in a finite number of steps.

The node v ∈ V0 will be assigned the cost

qv(x) = min
c∈C,cv=x

(
− log Wn(y|c)

)
.

In other words, for every variable node v we will find the quantity

min
c∈C
cv=x

(
−

∑

v∈V0

log W (yv′ |cv′)
)
.

Remarks. 1. It is possible to accommodate different prior probabilities of codewords P (c). For that the
initial costs of the check nodes rw are assigned values in such a way that log P (c) = −

∑
w rw.

2. For a tree the min-sum algorithm computes the max-likelihood decision (if the codewords are equiprob-
able) or in general the max APP decision.

the sum-product algorithm. Essentially the only difference between the min-sum and the sum-
product algorithms is in the fact that where the first takes a minimum over feasible bit assignments, the
second computes a sum of probabilities for all the possible feasible bit assignments (also because of this sum
we switch from logarithms to probabilities themselves).

Initialize the costs of the variable nodes to rv(x) = W (yv|x), x = 0, 1 and the check nodes to rc(x) = 1.
Messages from the variable side to the check side have the form

µ(ℓ)
v,w(x) = rv(x)

∏

w′ 6=w: (v,w′)∈E

µ
(ℓ−1)
w′,v (x).

where µ
(−1)
·,· = 1 by definition.

Messages in the reverse direction look as follows:

µ(m)
w,v (x) =

∑

x

∏

v′ 6=v: (w,v′)∈E

µ
(m−1)
v′,w (xv′),

where the sum is computed over all the vectors x such that

(1) xv = x,
(2) x fulfills the check w

5

Termination conditions are the same as of the min-sum algorithm. The final costs of the variable nodes
are computed as follows:

qv(x) = rv(x)
∏

w: (v,w)∈E

µ(s)
w,v(x).qv(x) =

∏

w: (v,w)∈E

µ(s)
w,v(x).

Theorem 2. If the graph G is a tree then the sum-product algorithm converges in a finite number of steps.

The node v ∈ V0 will be assigned the cost

qv(x) =
∑

c∈C,cv=x

Wn(y|c).

Thus on a cycle-free graph the sum-product algorithm performs bit MAP decoding. Indeed, if the code-
words are equiprobable then the final cost of a vertex v is proportional to the bit MAP decision Pv(x|y)
from (1) since then for every codeword

Pv(x|c) =

∑
c∈C
cv=x

Wn(y|c)
∑

c∈C Wn(y|c)
∝

∑

c∈C
cv=x

Wn(y|c).

If the codewords are not equiprobable, then the initial values of the check costs rc(x) are set according to
the prior distribution on the code.

The sum-product algorithm is also called the belief propagation algorithm.

Example: Message passing decoding for the Binary Erasure Channel. The importance of this example
stems from the fact that for most part, rigorous analysis of message passing decoding of linear codes, and in
particular, of LDPC codes is possible only on a BEC(p).

The algorithm proceeds as follows:

(1) variable node values are set to the values of the received symbols yi

(2) the message sent on the edge (w, v) from the check node w to the variable node v is erasure if at
least one of the edges (v′, w), v′ 6= v is an erasure, or equals

∑

v′ 6=v:v′,w∈E

µ
(m−1)
v′,w

(sum mod 2 of the messages sent to w except the one from v).
(3) the message sent on the edge (v, w) from the variable node v to the check node w is erasure if both

yv = ∗ and all the messages µ
(m−1)
v,w are erasures, or it is the value of the variable node.

The reference to the value of the variable node in the last part may seem ambiguous because if yv is erased
then it might be that different check nodes send different guesses about the bit transmitted in position v.
This is however not the case because the algorithm only makes such a guess if the check is completely sure
of the value of the variable.

To make this algorithm look close to the sum-product we can use the isomorphism Z
+
2
∼= {1,−1} (the

additive group of Z2 and the multiplicative group of 2nd degree roots of unity). It must be possible to set
this decoding entirely in terms of sum-product.

LDPC codes. The next element in the picture is a particular code structure that supports the iterative
procedures of the type discussed. It is suggested by the fact that decisions at vertices are taken locally
based on the checks involving the coordinate (check) in question. Therefore it is plausible that we will keep
decoding complexity under control and guarantee convergence if there are only few checks that involve a
variable and few variables that figure in each check. In this part we follow [10].

A linear binary code C is called low-density parity-check or LDPC code if the number of ones in both each
row and each column of some parity-check matrix H of C is bounded above by a constant. If H contains r
ones per row and l ones per column the code is called a regular (r, l) code2.

2A bipartite graph G = (V0 ∪ V1, E) such that deg v = r for every v ∈ V0 and deg w = l for every w ∈ V1 is called (l, r)
regular. If r = l = ∆, the graph is called ∆-regular.

6

Proposition 3. The rate of an (r, l) LDPC code R ≥ 1− l
r
.

Proof : Let m be the number of rows in H. Count the ones in H (the edges in the Tanner graph) in two
ways:

(n− k)r ≤ mr = nl.

The main questions addressed in this setting are

(1) convergence and error probability of iterative decoding
(2) threshold probability of particular LDPC ensembles
(3) design of capacity approaching LDPC codes on binary-input channels (primary examples include the

BEC, BSC, binary-input Gaussian channel)

We need certain notation. Let Λi be the number of variable nodes of degree i, Pi the number of check
nodes of degree i. Consider the node degree generating functions

Λ(x) =
∑

i≥1

Λix
i, C(x) =

∑

i≥1

Cix
i.

where Λi, for instance, is the number of variable nodes of degree i. Consider also generating functions of
“edge degrees”

λ(x) =
Λ′(x)

Λ′(1)
=

∑

i

λix
i−1, ρ(x) =

C′(x)

C′(1)
=

∑

i

ρix
i−1,

where λi, for instance, is the fraction of edges that are incident on a variable node of degree i− 1. We have

Λ(1) = n, C(1) ≥ n(1−R), Λ′(1) = C′(1) = |E|

The normalized versions of these functions are

L(x) =
Λ(x)

Λ(1)
, Γ(x) =

C(x)

C(1)
.

For the code rate we have

R(C) ≥ 1−
C(1)

Λ(1)
.

From now on we will disregard the difference between the true and designed code rate.

The Standard Ensemble of LDPC (n, λ, ρ) codes can be defined by choosing n variable nodes, n(1 − R)
check nodes, and assigning edges according to a random permutation on the set of |E| elements.

An important result, stated in the next theorem, shows that with high probability a code from the (n, λ, ρ)
ensemble under message passing decoding has the bit error rate close to the expected bit error rate on the
ensemble.

Theorem 4. Suppose a code C from the (n, λ, ρ) ensemble is used on a BEC(p). For any ǫ > 0 there exists

a δ = δ(λ, ρ, ǫ, m) such that upon m iterations of message passing decoding,

Pr
{
|Pb(C, p, m)− E(Pb(C, p, m))| > ǫ

}
≤ e−δn.

This is a particular case of a more general result valid for a variety of communication channels under
sum-product decoding. Another result, also stated without proof says that the expected bit error rate over
the ensemble, converges to the optimal (MAP) bit error rate.

Theorem 5. Given the degree distributions, consider a sequence of LDPC ensembles of growing length.

Then

lim
n→∞

E(Pb, p, m) = PMAP
m,λ,ρ(p).

7

The quantity on the right-hand side is the bit error rate under m rounds of message-passing decoding of
an ensemble of tree LDPC codes with edge degree distributions λ, ρ.

These two theorems show that a code chosen from the standard LDPC ensemble with high probability
will have bit error rate equal to that of MAP decoding under a simple iterative decoding algorithm. The
existence of such an algorithm constitutes the difference between these results and the corresponding results
for the ensemble of random linear codes.

A related question is whether the threshold probability for the standard ensemble (under a suitable choice
of the degree distributions) approaches capacity of the BEC C = 1 − p. In brief, the answer is yes (this is
the only interesting example where such a result is known).

We will study density evolution equations for the tree ensemble on an erasure channel.

Iterative decoding on the Tanner graph can be viewed as exchanging information between the decoders
of a repetition code on the variable side and a single parity-check code on the check side. The algorithms
can be generalized to other channels [11], message passing between decoders of other codes to cover iterative
decoding of serially concatenated codes, parallel concatenations (turbo codes, whose decoding has been
realized to be an instance of the belief propagation algorithm), repeat-accumulate codes and other schemes.
Less is known about the analysis of such schemes, although a number of useful approximations are available
[4].

In practical terms, many good LDPC and turbo codes have been constructed not just for the BEC, but also
for the BSC and the Gaussian channel. Does this mean that the previous knowledge should now be discarded
and all the effort spent on the study of iterative decoding? I think the answer is a firm “no”: experience
teaches us that good ideas reemerge in different contexts, and it is never clear which new connections and
problems may arise. In particular, it seems unreasonable that we should ignore the code structure altogether
in the decoding problem. Iterative schemes will form a solid part of coding theory but never displace the
rest of it.

We conclude with a collection of sundry results on LDPC codes and their relatives.

Flipping algorithm. We discuss one simple iterative decoding algorithm of regular LDPC codes on a
BSC which stands somewhat aside in the context of this lecture.

Let C be an (r, l) regular LDPC code with the parity-check matrix H and let y be the vector received
from a BSC. Denote by s(y) = HyT be the syndrome of y. Let ci = (c1 . . . ci−1c̄ici+1 . . . cn) denote the
vector c in which the ith bit has been inverted.

Flipping algorithm (C,y)

• Put ĉ = y.

• Find a coordinate i such that wt(s(ĉi)) ≤ wt(s(ĉ)), assign ĉ← ĉi.

• Repeat until no further replacements can be made, output ĉ.

Let us connect convergence of the flipping algorithm to one property of the underlying Tanner graph,
its expansion. Let y be the error vector and s = HyT be its syndrome. Let us assume that there exists a
function w∗(e) such that for every y, wt(y) = e, the weight of the syndrome wt(s) ≥ w∗(e). Thus,

w∗(e) ≤ wt(y) ≤ w∗(e) := el.

Lemma 6. If wt(s) > el/2, there exists a coordinate i such that wt(s + hi) < wt(s).

Proof : Indeed, the average number of unsatisfied checks per coordinate is wt(s)/e > l/2. Hence at least one
coordinate contributes more than l/2 ones to s, so flipping it reduces the weight of the syndrome.

The assumption of the lemma will be satisfied if w∗(e) > el/2. Let e0 be the maximum value of e such
that this inequality holds true. Clearly e0 > 0 for large n and constant l. For any error vector of weight
e ≤ e0 the algorithm will find a coordinate to invert. Inverting it, we reduce the weight of the syndrome and
either add or remove one error. In the worst case, the number of errors becomes one greater and the weight

8

of syndrome one less. To visualize the decoding process, let us represent it as a trajectory in the “phase
plane” showing the weight of syndrome vs. the multiplicity of errors. Starting from an (integer) point in the
plane, in the worst case we advance to its south-east neighbor. Thus, for successful decoding, it is sufficient
that moving along the worst-case trajectory, we do not leave the region wt(e) < e0. We conclude that for the
algorithm to converge, it is sufficient that the initial point is below the line drawn from the point (e0, e0l/2)
with slope −1. Denote by e1 the value of e for which this line and the upper bound w∗(e) intersect. This
is a lower bound on the number of correctable errors. A quick calculation shows that e1 > e0/2. Hence the
algorithm corrects any e0/2 or fewer errors.

syndrome
weight w*(e)

eh/2

e

w (e)
*

e 1 e
0

It can be shown that if the algorithm converges, then in every step the weight of the syndrome reduces
by a constant factor, so the complexity of the algorithm is O(n log n).

Lemma 7. Suppose that every subset T ⊂ V1 of e ≤ αn variable nodes have at least (3
4 + ǫ)le neighbors in

V0, ǫ > 0. The flipping algorithm for this code corrects an α/2 proportion of errors.

Proof : The total number of check nodes for which at least one of the edges is in error equals the weight
wt(s) plus the number, x, of checks containing 2, 4, . . . errors. By assumption, the number of neighbors of
variables in error is

wt(s) + x >
3

4
le.

Every unsatisfied check contains at least one error, and every satisfied one at least two. Hence

wt(s) + 2x ≤ le.

These two inequalities imply that wt(s) > el/2, hence e < e0.

In general, the property of the graph under which the number of neighbors of every (not too large) subset
of vertices is bounded from below, is called expansion, and graphs satisfying this are called expander graphs.
In the next lecture we will see another application of expansion to error correction.

Theorem 8. (Gallager bound [6]) Let C be an [n, nR] linear code whose parity-check matrix has r ones in

each row. Suppose that C is used for transmission on a BSC(p). If the error probability under ML decoding

Pe(C)→ 0 as n→∞ then

R ≤ 1−
h2(p)

h
(

1
2 (1− (1 − 2p)r)

) .

Proof : Let c be the transmitted and y the received.vectors.

(3) I(c,y) = H(c) −H(c|y) = H(y)−H(y|c).

We have

H(c) = nR, H(y|c) = nh2(p).

Let us estimate H(y). Let s be the received syndrome. The trick is to realize that knowing s and the values of
y on some information set of C is equivalent to knowing y. This is true because the parity-check matrix can be

9

written as [I|A], where the columns of A correspond to the information set E. Then s = y(Ē) +A(y(E))T .
This implies the identity

H(y) = H(s) + H(y|s).

A parity check is satisfied if it contains an even number of errors; thus, the probability of this equals

∑

even i

(
r

i

)
pi(1− p)r−i =

1

2
(1 + (1 − 2p)r)

(this is verified by expanding (1−p+p)r +(1−p−p)r by the binomial formula). Let us denote the right-hand
side of the last equation by pr. We have

H(s) ≤ n(1−R)h2(pr)

since dependent rows can only decrease the value of entropy. Finally (with a bit of handwaving) H(y|s) =
H(y) = nR. Then

H(y) ≤ n((1 −R)h2(pr) + R).

Substituting into (3), we obtain

H(c|y) ≥ n(h2(p)− (1− R)h2(pr)).

Suppose that the right-hand side of this inequality is positive, or

R > 1−
h2(p)

h2(pr)
.

Then H(c|y) ≥ ǫ > 0. But then the error probability is bounded away from zero by Fano’s inequality. Hence
the bound claimed in the statement of the theorem is necessary for reliable communication.

This theorem implies that a code (family) whose parity checks each involve a constant number of coordi-
nates does not reach capacity of the BSC under ML decoding. Indeed, let r be large (but fixed), then the
gap to capacity (the difference between the capacity and the threshold rate of a regular (r, ℓ) code) is

(1− h2(p))−
[
1−

h2(p)

h2(pr)

]
≈

h2(p)

2 ln 2
(1− 2p)2r

(recall the behavior of h2(θ) in the neighborhood of θ = 1
2 from Lecture 2). It is still possible that the

code comes arbitrarily close to capacity for large but fixed r (for r →∞ the upper bound on the threshold
approaches C) Gallager’s bound can be improved and generalized to binary-input output-symmetric channels
and irregular LDPC codes [3].

Asymptotic properties of LDPC ensembles. Consider the ensemble of regular (r, l) codes. As
r → ∞ and l = r(1 − R), the average relative distance in the ensemble approaches δGV(R). Their weight
profile is not far from the weight profile of a random linear code.

The bulk of ideas about LDPC codes (including the sum-product algorithm) were suggested by Gallager
in [6].

References

1. S. M. Aji and R. J. McEliece, The generalized distributive law, IEEE Trans. Inform. Theory 46 (2000), no. 2, 325–343. MR
1 748 973

2. R. E. Blahut, Algebraic codes for data transmission, Cambridge University Press, 2003.
3. D. Burshtein, M. Krivelevich, S. Litsyn, and G. Miller, Upper bounds on the rate of LDPC codes, IEEE Trans. Inform.

Theory 48 (2002), no. 9, 2437–2449. MR 2003j:94121
4. S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, Analysis of sum-product decoding of low-density parity-check codes

using a Gaussian approximation, IEEE Trans. Inform. Theory 47 (2001), no. 2, 657–670.
5. G. D. Forney, Jr., Codes on graphs: normal realizations, IEEE Trans. Inform. Theory 47 (2001), no. 2, 520–548. MR

2002f:94055
6. R. G. Gallager, Low-density parity-check codes, MIT Press, Cambridge, MA, 1963.
7. C. Heegard and S. B. Wicker, Turbo coding, Kluwer Academic Publishers, Boston e.a., 1999.
8. W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, New York: Cambridge University Press, 2003.
9. F. Kschischang, B. J. Frey, and H.-A. Loeliger, Factor graphs and the sum-product algorithm, IEEE Trans. Inform. Theory

47 (2001), no. 2, 498–519.

10

10. T. Richardson and R. Urbanke, Modern coding theory, Lecture Notes (2001–), EPFL, available on-line at
http://lthcwww.epfl.ch/teaching/coding2003.php.

11. T. J. Richardson and R. L. Urbanke, The capacity of low-density parity-check codes under message-passing decoding, IEEE
Trans. Inform. Theory 47 (2001), no. 2, 599–618.

12. M. Tanner, A recursive approach to low-complexity codes, IEEE Trans. Inform. Theory 27 (1981), no. 5, 1710–1722.
13. N. Wiberg, H.-A. Loeliger, and R Kötter, Codes and iterative decoding on general graphs, Eur. Trans. Telecomm. (1995),

513–525.
14. S. B. Wicker and S. Kim, Fundamentals of codes, graphs, and iterative decoding, Boston : Kluwer Academic Publishers,

2003.

