ENEE 739C: Advanced Topics in Signal Processing: Coding Theory
Instructor: Alexander Barg
Lecture 8 (draft; 10/27/03). Asymptotically good families of codes. (Serially) concatenated codes and
their decoding. Generalized minimum distance decoding.
http://www.enee.umd.edu/ abarg/ENEE739C/course.html

In this part we will start our study of constructive code families, i.e., codes that can be constructed and/or
decoded in time polynomial in the code length such as O(n?) or even O(n). With these restrictions it is still
possible to construct very good codes, both in the asymptotic and “practical” sense.

ProbucT CODES. Let Alng, kg, do] and B[ny, k1, d1] be two binary linear codes. Consider a linear code C
whose codewords are ng X n, matrices such that every column is a codeword in A and every row a codeword
in B (in mathematical terms, C = A ® B, the tensor product of the linear spaces A and B).

Theorem 1. C is an [N = ngni, K = kok1, D = dodi] code. The number of codewords of weight dody is
Agy (A)Ag, (B), where the factors are the corresponding weight coefficients of the component codes.

Proof : Clearly, D > dod; because a nonzero row must contain at least d; ones and each of the d; nonzero
columns must contain at least dy ones. To show the equality consider a codeword a € A of weight dy and
suppose that supp(a) = {i1,...,44,}. Let b € B be a codeword of weight d;. Form a codeword of C as follows:
rOwSs i1, 42, ...,%4, contain b and the rest is filled with zeros. Then wt(c) = dod;.

The claims about the dimension of C and the number of weight D codewords are left for Homework 2. 1

We will call A the column code and B the row code.

Another useful way to think of product codes is as follows. Let G = (Vp U Vi, E) be a bipartite graph
with |Vo| = n1, |[Vi| = ne and deg(v) = ng for every v € Vy and deg(w) = ny for every w € V4. The graph
contains N = ngn; edges which are in an one-to-one correspondence with the coordinates of the product
code C (we need some ordering of the edges in E). Let x(v) be the projection of a binary N-vector x on the
coordinates in E(v),v € Vp UVi.. By definition ¢ € C if

(1) for every v € Vj the vector c(v) € A,
(2) for every w € Vi the vector c(w) € B.

Ezample: Consider C = A ® B, where A[4,2,2] and B[3, 1, 3] are some linear codes (so C is a [12,2, 6]
linear code). The graph G = K4 3 has the following form:

A codeword c € C satisfies c(v;) € A, c(w;) € B. In this context we call the column code A the left code
and the row code B the right code.

Let us write out a parity-check matrix H of the code C. Take parity-check matrices of A and B in the

form
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Let h;, f; denote the columns of H and F respectively. A parity-check matrix of C has the following form.
hy hy hs hg
hy hy hs hg
hy hy hs hy
f1 f2 I3
fi f2 I3
N1 fa I3
f1 f2 I3

Caution: this matrix has 14 rows while the code length n = 12, so it must have dependent rows.

DECODING of the code C can be accomplished in many ways. The simplest decoding algorithm is first
to decode all the columns with the code A and then all the rows with the code B (or first rows and then
columns).

Proposition 2. This decoding corrects every error pattern of weight not exceeding (D — 1)/4.

Proof : Assume that di > dg. The error pattern of a fixed weight e that corrupts the most columns has
weight (dgp+1)/2 in every column. If the number of miscorrected columns < (d; —1)/2 then the error pattern
will be corrected. This means that e < (D — 1)/4.

If dy < dy then the result is established by considering first row decoding and then column decoding. 1

Computing the weight distribution of the code C given the weight distributions of the codes A and B is a
difficult problem (in general the w.d. of C is not determined uniquely by the weight distributions of A and
B). However the number of vectors of weight dod; equals the product Ag, (A)Ag, (B).

If the codes A, B are asymptotically good then so is the code C. However if A, B meet the GV bound, the
code C is substantially below it.

The product construction is just one of the forms of interleaving the transmission sequence. The purpose
of introducing interleaving is fighting error bursts and other effects of memory in the channel. An error burst
of length b is an error pattern in which errors are grouped within a window of b consecutive symbols in the
transmission.

Proposition 3. The product code C corrects error bursts of length max(not1,nito). Heret, = |(d;—1)/2],i =
0, 1.

nl

no

t1+1

Proof : If ngt;y > nitg, we transmit by columns and decode first columns then rows. Then upon column
decoding no row can continue more than ¢; errors which will be corrected by row decoding. 1

OTHER OPERATIONS ON CODES. We have seen shortening and puncturing. There are a number of other
operations used on linear codes to increase or reduce their length. In this way it is often possible to construct
very good codes.

|ulu + v| construction. Let Ci[n, k1, d1],Ca[n, k2, d2] be two linear codes. Consider a code B formed by
vectors |ulu + v|, where u; € C1, v € Ca.
Proposition 4. The parameters of B are [n, k1 + k2, min(2d;, d2)].
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Proof : Let ¢ = |ulu+ v|, where u € C1.v € Co. If v =0 then wt(c) > 2d;. Otherwise the smallest weight is
obtained if u < v and is at least di + (dz — d1) = da. 1

The generator matrix of B has the form

G G
0 Go

In this way a Reed-Muller code of length 2™ is constructed from two RM codes of length 2™~ 1:
Z(m,r)=uju+v], ueZm-1,r),veZm—1r—1)]
We shall briefly discuss RM codes, their properties and decoding (see [6, 2]).

Suffiz construction (construction X ). Let €1 C %> be codes with the parameters (n, M7, d;) and (n, Mz =
bzw'g,dg). Let
by = (Xl +%1)U(X2+<51)U--'U(Xb+%1)
be a partition of %% into “cosets” with respect to €. Let €3 be an (m, b, ds) code. Define a code C as
1+ G1fy1 U |xz2 + Gify2| U Ulxy + 1y
The parameters of the code C are (n + m, My, min(dy, ds + d3)).

For instance, BCH codes can be used codes %1, %> in this construction (we will discuss the BCH codes in
more detail after reviewing finite fields in lecture 11). Many good codes can be obtained in this way.

ANOTHER WAY TO SHORTEN A CODE. Let C be an (n, M, d) code, t > 0, and let x € ijt be a vector. Let
E={n—-t+1,...,n}. Consider the subset of codewords (ci,...,c,) € C such that their projection on E
falls in the ball of radius r around x :

c(E):=(ch—t+1,---s¢n) € Br(x).
From every such vector delete the last ¢ coordinates and denote the subset obtained by 4. The code A
depends on x, 7, t.

Lemma 5. For any x the code A has length n —t and distance > d — 2r. There exists a vector x such that
Al = B.M/q".
where By, denotes the volume of the ball of radius v in /'

Proof : We use the usual trick: compute the cumulative size of the codes A;(x) and average. A vector c(E)
is contained in all the balls B,(x) such that x € B,(c(F)). We thus have

> =Y Y 1-mM
x€H} c:ic(E)eEB(x) ceC x€B.(c(E))
There exists a vector x such that
t{c:c(E) € B,(x)} > ¢ 'BLM.

The code A constructed from this vector x proves our claim. 1

This lemma is used for establishing a recurrence relation on the parameters of the code C using upper
bounds on the size of an (n — t, x,d — t) code:

g
A(n,d) < mA(n —t,d — 2t).

More operations on codes of the types discussed here appear in [6, 10].

CONCATENATED CODES. Consider a different way of combining two codes, called (serial) concatenation.
Let A be a binary [ng, kg = Rono,dg] code and B an [ny, k1] Reed-Solomon (RS) code over Fai,. Through
the rest of this lecture we write 1 = (log, |B|)/n1 = k1/n1 (in deviation from our earlier definition involving
base-2 logs).

Define a concatenated code C via its encoding procedure:



e the kok; bits of the message are viewed as a ki-vector over Fyr, and encoded with the code B into
a codevector b,

e the vector b is viewed as a binary kg X ni array C,

e the columns of C are encoded with the code A.

We will denote the “concatenated product” of codes by C = AKX B.

This construction is not as symmetric as product codes in the sense that we cannot switch the roles of
A and B in encoding and decoding. It is also not clear (and often wrong) that the code meets the product
bound, i.e., contains vectors of weight dgd; : it can happen that the symbols in a vector of minimum weight
of the RS code A are mapped by B on vectors of weight higher than dj.

Proposition 6. The parameters of the concatenated code C are [N = ngni, k = kok1, D > dod;].

The parameter D is called the designed distance of the code. Its true distance is often greater than the
designed distance.

Concatenated codes were introduced and analyzed by G.D. Forney [5]. They proved to be a very fruitful
idea both theoretically and in numerous practical applications. Their properties can be summarized as
follows:

(1) There are families of asymptotically good concatenated codes that can be constructed and decoded
to correct D/2 errors. These codes also attain capacity of a DMC and Gaussian channels with a
positive error exponent. These results can be attained by decoding algorithms of complexity O(N?).

(2) Ensembles of random concatenated codes contain codes that meet the GV bound. Under ML de-
coding the performance of these codes is the same as that of random linear codes (i.e., they achieve
the random coding exponent).

(3) Simple decoding algorithms exist that correct up to D/2 errors where D is the designed distance of
the code.

Let us quote the ensemble result (2) (from [3, 8, 9]).

Theorem 7. Consider the ensemble of concatenated codes with an outer [n1,n1R1] RS code B of rate Ry
and random [ng, noRo] inner code A. It contains codes with relative distance 6(R)(1 — o(1)), where

5(R) = {5@}&2() Ro > 10g,(2(1 — dav (R)))

W otherwise.

This result is proved by a rather tedious (and not very insightful) calculation of the average weight
distribution in the code ensemble. We will discuss in more detail the other two results. Before doing this,
let us also remark that the ensemble weight distribution results enable one to claim that concatenated codes
under mazx likelihood decoding achieve the random coding exponent Fo(R,p). This claim is made under a
restriction on the inner rate Ry similar to the one in Theorem 6.

The main emphasis in the study of code concatenation is on decoding. A simple possibility is to first
decode all the received columns with the code A, then form a “received vector” for the code B and decode it.
If A is decoded by a bounded distance decoding algorithm (which can also produce erasures) then decoding
of the code A must be able to handle both errors and erasures. A foremost example is the RS code for which
there exist low-complexity algebraic algorithms which correct any combination of e errors and z erasures as
long as 2e +x < dy — 1.

Proposition 8. Suppose that the column code is used for decoding up to to = |(dg — 1)/2] and the row code
decodes e errors and x erasures as long as 2e + x < dy — 1. If the true distance of C equals the designed
distance, then the smallest weight of an uncorrectable error is

(to—i—l)(Ldlz_lJ +1).

Proof : Let t; = Ldlglj. Let c¢q,ca be two codewords of C that differ in dyd; bits. This means that

the corresponding outer codewords by, by are at distance d; and in these columns the corresponding inner
codewords are at distance dy. Consider an error pattern with the following properties
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(1) it is located in ¢; + 1 columns within the support supp(b; — bs)

(2) in each of these columns it contains ¢g + 1 bits which make the inner decoder miscorrect.

Then the overall algorithm decodes wrongly. It is also clear that any other error pattern which leads to a
decoding error has weight (to + 1)(¢1 + 1) or greater. 1

Thus decoding described corrects up to D/4 (quarter of the product bound D = dyd;) errors. This falls
below our expextations of correcting errors up to half the designed distance. This problem is addressed next.

GMD DECODING. Our exposition follows [4]. Consider a concatenated code C = A K B. In this context
B can be any code for which there is an algebraic decoding procedure which corrects any combination of e
errors and x erasures as long as 2e + x < d; — 1. (You may always assume that B is an RS code.)

Suppose we decode the columns yi,...,yn, of the received vector and obtain vectors of the inner code
or erasures. The idea is that we can extract more information from inner decoding. namely, we can also
estimate the reliability of our decisions by computing the distance d(y;, a;) (if the ith column is not erased
by inner decoding). We will then treat the symbols of the outer received vector differently based on their
reliabilities.

Let
1/2 if inner decoding erases the ith column
w, =
! d(yi, ai)/do if it outputs a; € A.
The numbers w; should be thought of as reliability weights of columns.

Consider the following decoding algorithm due to G. D. Forney [5] Decode every column with the inner
code. Find the weight vector w = (wy,...,wy, ). Let us assume wlog that 1/2 > wy > -+ > w,,. Erased
columns receive the worst reliability weight of 1/2. Form a “received vector” z = (21, 22, . . . , 2, ) of the outer
code where some of the left entries may be erasures. In the first iteration the vector z = zq is decoded to

correct errors and erasures. In each subsequent iteration we erase the leftmost nonerased symbol and decode
the obtained vector z;.

Stopping condition. Let
W(z,b)= > wi+ Y (1—w).
i:Zi :bl 7 zﬁébl
The algorithm stops if it finds a vector b € B such that W(z;,b) < d1/2 (and outputs b) or if in the next
iteration the number of erased symbols in z; would reach d; (in this case we detect an error).
Remarkably, GMD decoding enables one to correct twice more errors that the basic algorithm described

above.
Theorem 9. The GMD algorithm corrects all errors of weight < (D —1)/2.

Proof : Let us fix notation:

c=(c1,...,Cp,) is the transmitted word of C, where c; € A,i =1,...,n;

v = (¥1,.--,¥n,) is the received vector;

b = (b1,...,by,,) is the vector of B that corresponds to c;

z = (2z1,...,2n,) is a generic notation for the “received vector” of the code B, i.e., an nj-vector of erasures

and g-ary symbols.

Our plan is to show that if the weight of error is below (D —1)/2 then the stopping condition W (z;,b) <
d1/2 will hold for one and only one of the vectors z;. Next we will show that if z satisfies W(z,b) < d1/2
then the number of erasures £ plus twice the number of distinct nonerased coordinates in z and b satisfies
dy —1

2 )

/
WE (Z, b) = 5 + dnonerased(za b) <

so z will be found in one of the GMD decoding iterations.



The first part is easy. For simplicity we write z instead of z;. Assume that d(y,c) < D/2. We have

dyW (z,b) = Z d(yi,c;) + Z (do — d(yi,ci))

i:z;=b; i:2;7b;
< d(Yac) < d0d1/27

which shows that the stopping condition holds for the vector z. Moreover, there is at most one codeword
b € B which satisfies W(z, b). Indeed, let b’,b” € B and let i be such that b; # b/. Then

W (2, 0;) + W (2, b)) > 1,
(an inequality can occur if z; # b}, z; # bY/) so

W(z,b') + W(z,b") > d.
Then W(z,b’) < d1/2 implies W(z,b") > d; /2.

Let us prove the second part. For that observe that a given vector W = (wq, ..., wy,) of reliabilities can
be written as
ni
W= wW,
=0

where
WZ = ((1/2)€0n1—€) (620517"'7711)7

and wg = 1 — 2wy, wy = 2(wg—1 —wy) for £ =1,...,n7 — 1 and w,, = 2w,,. Note that > w, = 1. Hence
W (z,b) can be written as a convex combination of the functions Wy(z, b) :

W(z,b) = wWi(z,b).
£=0

Observe that it is not possible that every term on the right exceeds d;/2 since this would contradict the
assumption W(z,b) < dy /2. Hence Wy(z,b) < dy /2 for some £. This just means that the vector z, obtained
by erasing the left ¢ coordinates of z will decode to b. 1

Note that GMD decoding in principle can be used for any code if the reliability values are provided by
the channel detector rather than the inner decoder. Therefore, GMD decoding has been also analyzed on a
Gaussian channel and in general on a discrete-input continuous-output memoryless channel (semicontinuous
in Wolfowitz’s terminology). While it is possible to prove that GMD decodes up to half the designed distance,
exact characterization of the decoding domains remains elusive. We refer to [4] for a comprehensive discussion
of these remarks.

Generalized Minimum Distance Decoding is a fundamental idea: after 35 years it is still a cornerstone
of our understanding of decoding of multilevel (concatenated) schemes. It is also remarkably resistant to
improvement attempts (we will elaborate when we discuss list decoding of RS codes).

In the GMD algorithm above we suggested to erase the least reliable symbols one by one, which leads to
dy — 1 trials of outer decoding. There are ways of accomplishing the same by fewer trials (in particular, it
is clear that we can erase those symbols in pairs). Let us consider the other extreme: what should we do if
we are allowed just two attempts of outer decoding. In other words, we want to find an optimal threshold 7
(which does not depend on the received vector) such that if all the symbols whose reliability is below it are
erased we correct the largest number of errors. Roughly the answer is given by 7 = d1/3 which enables us
to correct up to D/3 errors. This is an improvement over the D/4 estimate of the basic algorithm.

Theorem 10. Let 7 = (dy —2)/3. The GMD algorithm with one threshold T corrects any combination of up
to dod1/3 — 1 errors.

CONSTRUCTIVE, ASYMPTOTICALLY GOOD FAMILIES OF CONCATENATED CODES. In the next theorem
we show that there exist families of binary concatenated codes that are asymptotically good and can be
constructed with polynomial complexity.
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Theorem 11. (a) Let R be the code rate. There exists a concatenated code C[N, N R] whose distance meets
the bound

0z(R) = max, dav(x)(1 — R/x) (Zyablov bound).
The construction complexity of the code is O(N?). The code can be GMD-decoded to correct a 367(R)
proportion of errors.

(b) There exists a concatenated code of rate R which on a BSC(p) provides the error probability of decoding
falling as P.(C,p) < 2~ NEr(:p)=oN) yhere

Er(R,p) = nax Eo(z,p)(1 — R/x) (Forney bound)

This error exponent is attained under an O(N?) GMD decoding algorithm.

Proof : (a) Let A be a code of rate Rg and growing length ng which meets the GV bound. Let B be an
[n1 = q, k1 = Riny,d;] g-ary extended Reed-Solomon code (¢ = 2*). By the product bound
2 n— ki +1

~ = T5GV(RO) > (1~ R1)dav(Ro)-

Let us analyze the construction complexity of the code C. We have N = ngni = ngq = ng2%0™, so ng =
1
(log N)/Rg. The construction complexity of the code A is 20 ko ~ N7®: ' The power of N is below 2 for

rates Ry > 1/3. To contain complexity for smaller rates Ry we have to use other component codes such as
Hermitian codes.

(b) (oUuTLINE) This time we take A to be a code of rate Ry that achieves the random coding exponent
Eo(R,p) of the BSC'. Suppose that the inner decoder outputs a weight o; € [0,1] which measures the
reliability of its decision in the ith column of the received word. It is assumed that the value of «; is
a function of the likelihood (3(y;) computed by the inner decoder based on the received value of the ith
column. As in the proof of the GMD theorem (Thm. 8) we can show that the GMD decoder will decode
incorrectly if and only if

n1
E a; <ng —dy,
=1

where o = «; if y; is decoded correctly and o) = —a; otherwise. Finally the probability of the event
> al < ny —dy is estimated using the Chernov bound, which yields the result. The full argument (which
becomes fairly technical) is given in [5, pp.86-87].

It is easier to give a proof of an error probability estimate which has a %Ep error exponent:
n1 n
1\ .
W) re > (M- mm
1=t1+1
where pg = 27 "0E0(Fo.P) | For n; — oo the exponent of this expression is exactly the claimed %EF.

The complexity estimate is related to the complexity of GMD decoding. Under a straightforward imple-
mentation like the one discussed above, it is O(n$) which yields the the overall O(N?3) complexity estimate.
There is a faster GMD procedure which involves only a small amount of additional computations in passing
from step to step of GMD decoding [7]. This result gives the O(N?) complexity estimate. B

We see that concatenated codes reach capacity of the BSC under an O(N?) decoding algorithm. The
error exponent is substantially smaller than the random coding exponent (see the plot), but positive for all
R<%.

IThe result does not depend on the BSC assumption. For another channel just take an inner code that achieves the random
coding exponent Ep of that channel.



exponent s

The case of R — ¢ is the most annoying: put e = ¢ — R, then Eo(R,p) = Q(e?) while Er(R,p) = Q(e?).

Remarks. 1. We have seen in Part (b) that if instead GMD decoding we perform algebraic decoding to
correct dy /2 errors, the error exponent attained is %EF(R,p). Performing errors-and-erasures decoding we
can achieve a 2Ep(R,p) error exponent.

2. Tt is possible to achieve capacity under an O(N?) decoding. Is the communication problem solved?
Yes and no: the task of inner decoding involves constructing and decoding a random-like inner binary code.
The length of the code is only about log NV, so theoretically its brute-force decoding is polynomial. Yet there
is an uneasy feeling that the result is not 100% clean even though the complexity-theoretic argument looks
flawless. I would like to point out one way to quantify this remark: suppose that R = ¥ — e. Then since
Ro > R, the difference ¢ — Rg < e. We know that if ¢ — 0 then Ey(¢ — €, p) =~ 2. Now consider equation
(1): the logarithm of the term for ¢ = t; + 1 behaves as

(const)ny — ngE(Ro,p)ni(1 — Ry).

We would like to claim that this quantity is negative. We start running into problems if F(Rg,p) — 0: we
then need that ng > 1/¢2; hence the decoding complexity of inner codes grows as 2%0m0 = 20(e7?)

The question of whether this theorem is indeed constructive was discussed in the literature in the 1970s
(see [1]). It was reiterated in a plenary talk at the ISIT 2001, where R. J. McEliece suggested to look at
codes from the point of view of estimating the number of operations per message bit needed to guarantee
reliable transmission for rates e away from capacity.

3. The results of this theorem can be improved in a number of ways: by considering multilevel concate-
nations, by taking algebraic geometry codes as outer codes B instead of RS codes. We will indicate another
way of improving this theorem when we discuss bipartite-graph (expander) codes.

OTHER VERSIONS OF SERIAL CONCATENATION. Let us consider a code construction somewhere between
product and concatenated codes. Let A[ng, n1] and B[ny, k1] be the inner and the outer codes. Denote by m
an integer parameter called the “interleaving depth.” We will define a serial concatenation C of the codes A
and B by specifying the encoding procedure. Encoding operates on an array of mk; message bits which are
encoded with the code B. This results into m codewords of B totaling mnj bits. These bits are permuted
according to a pre-defined mapping called an interleaver. The m X ny bit array obtained is then encoded
with the inner code B. We obtain m codewords of the inner code. The rate of the code C equals

mky :ﬂﬁ:RoRl

mno Ng N1

The main problem addressed for serially concatenated codes is estimating the bit error rate under iterative
decoding.

The success of Forney’s concatenated codes relies upon employing Reed-Solomon codes in the outer level.
These codes possess efficient, low-complexity algebraic decoding algorithms. This makes the overall scheme
amenable to theoretical analysis and opens a way for its applications in communication systems. The
most prominent of these applications is coding for audio and data compact disks; others include deep-space
communication. No comparable results are known for other versions of serially concatenated codes.
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